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Abstract

We present an approach for safe motion planning under robot state and envi-

ronment (obstacle and landmark location) uncertainties. To this end, we first

develop an approach that accounts for the landmark uncertainties during robot

localization. Existing planning approaches assume that the landmark locations

are well known or are known with little uncertainty. However, this might not be

true in practice. Noisy sensors and imperfect motions compound to the errors

originating from the estimate of environment features. Moreover, possible occlu-

sions and dynamic objects in the environment render imperfect landmark esti-

mation. Consequently, not considering this uncertainty can wrongly localize the

robot, leading to inefficient plans. Our approach thus incorporates the landmark

uncertainty within the Bayes filter estimation framework. We also analyse the

effect of considering this uncertainty and delineate the conditions under which it

can be ignored. Second, we extend the state-of-the-art by computing an exact

expression for the collision probability under Gaussian distributed robot mo-

tion, perception and obstacle location uncertainties. We formulate the collision

probability process as a quadratic form in random variables. Under Gaussian

distribution assumptions, an exact expression for collision probability is thus

obtained which is computable in real-time. In contrast, existing approaches ap-

proximate the collision probability using upper-bounds that can lead to overly

conservative estimate and thereby suboptimal plans. We demonstrate and eval-

uate our approach using a theoretical example and simulations. We also present

a comparison of our approach to different state-of-the-art methods.
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1. Introduction

Robots have become more pervasive and are being increasingly used in close

proximity to humans and other objects (both static and dynamic) in factories,

living spaces, elderly care, and robotic surgery. Planning for collision free tra-

jectories in real-time is imperative for robots to operate safely and efficiently in

such realistic conditions. However, uncertainties often arise due to insufficient

knowledge about the environment, imperfect sensing or inexact robot motions.

In these situations, it is indispensable to employ approaches that perform safe

motion planning under motion and sensing uncertainties. Planning is therefore

performed in the belief space, which corresponds to the set of all probability

distributions over possible robot states and other variables of interest. How-

ever, at the planning time, future observations are yet to be obtained. Thus,

for efficient planning and decision making, it is required to reason about fu-

ture belief distributions due to possible actions and the corresponding expected

future observations. The corresponding problem, known as Belief Space Plan-

ning (BSP), falls under the category of Partially Observable Markov Decision

Processes (POMDPs) [1].

Uncertain environments are such that they often preclude the existence of

collision free trajectories [2]. In the presence of noisy sensors, both the robot and

the environment state cannot be estimated precisely and one can only reason in

terms of the corresponding belief states. Moreover, in case of dynamic obstacles,

their future states have to be predicted and they are not known exactly due

to the lack of perfect knowledge of their motions. As such, providing safety

guarantees is difficult and for safe navigation, both the robot state uncertainty

and the uncertainty in obstacle estimates need to be considered while computing

collision probabilities.

Most robotic tasks require the knowledge of where the robot is with respect

to the environment. Localization is therefore one of the most fundamental prob-
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lem in robotics and significantly impacts planning and decision making. As such,

localization is therefore a key aspect for safe and efficient navigation. However,

existing approaches assume that the landmark locations are known precisely or

with little uncertainty. For example, given the map of the environment, while

planning for future actions the standard Markov localization does not take into

account the map uncertainty (that is, landmark locations are assumed to be

perfect). This means that given the map and the sensing range, there exists a

region from which the landmark can be observed. This however, might not be

true in practice. For example, let us consider a Simultaneous Localization and

Mapping (SLAM) session. Wrong data association or dynamics objects pre-

venting loop closures could lead to wrongly estimated landmark locations and

thereby the corresponding map. Thus landmark estimates arising out of such a

SLAM session might not be known precisely. It is noteworthy that due to this

landmark location uncertainty the regions from which the landmark can be ob-

served are also uncertain. This is visualized in Fig. 1. We define the pose space

as the set of all possible poses the robot can assume. The blue blob denotes

the object which when viewed from a pose x produces an observation z. Dif-

ferent observations are produced when the object is viewed from distinct poses

such that the object falls within the sensing range and there are no occlusions.

The set of all such poses is a subset of the pose space and is defined to be the

viewpoint space (green region in the figure). We note that the viewpoint space

is sensor-dependent and is determined by the sensing range and other aspects

such as occluding objects. Intuitively, the viewpoint space is object depended

and this set changes for each object. However, a pose x′ that falls outside the

viewpoint space does not produce an observation. Consequently, as seen on

the left hand side of the figure, when the object location is known precisely,

there exists a subset of the pose space from which the object can be observed.

On the right hand side of the figure, the light-blue shaded region denotes the

uncertainty in object location. Thus in practice the object can be anywhere

within the uncertainty region. As a result, given a pose, it cannot be said with

certainty that the object can be observed. Subsequently, the cardinality of the
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Figure 1: The blue blob denotes an object in the environment. The green region

is the viewpoint space corresponding to the set of poses from which the object can

be observed. Robot pose x produces an observation z however x′ does not produce

an observation. On the right hand side, the light-blue shaded region denotes the

uncertainty in object location. In practice the object can be anywhere within the

uncertainty region. As a result, depending on where the object really is, it can be

observed from either x or x′ or both the poses.

subset of the pose space from which the object can be observed is increased, that

is, the viewpoint space has increased (green region in the figure). As seen in the

figure, depending on the object really is, it can be observed from either x or x′

or both the poses. As a result, one can only reason in terms of the probability

of observing the object from the considered pose or the viewpoint. Therefore, a

probability distribution function for the viewpoint space is obtained where the

mean viewpoint corresponds to observing the object with highest probability.

Not accounting for this uncertainty can cause localization errors, leading to in-

efficient plans. In this paper, we will use the term object uncertainty to refer to

this notion of uncertainty in landmark location.

1.1. Related Work

Much research activities about planning under robot state uncertainty have

been carried out in the past few years, with applications spanning a variety of

areas [3, 4, 5, 6, 7, 8, 9, 10]. Yet, most approaches assume that the landmarks

are fairly well known or are known with little uncertainty. However, in practice,

the environment is seldom known with high certainty and hence providing for-
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mal guarantees for safe robotic tasks under environment uncertainty is of vital

importance. In this work we explicitly consider uncertainties in the landmark

locations and derive the resulting Bayes filter.

Several methods exist in the literature to compute collision probability and

they differ from one another in different aspects such as (1) the formulation of

the collision constraint, (2) assumptions in the shape of the robot and the ob-

stacle, (3) modelling the associated uncertainties. The approach of truncating

Gaussian distributions is leveraged to compute risk-aware and asymptotically

optimal trajectories by [11]. [12] truncate [13] the estimated a priori Gaussian

state distributions to consider only the collision free samples. Thus propagating

these truncated distributions enable them to compute collision free trajecto-

ries. However, it must hold that the propagated distributions are Gaussians and

therefore the truncated distributions are approximated to be Gaussian distri-

butions. Though we model uncertainties using Gaussian distribution, we do

not truncate them. Bounding volume approaches enlarge the robot by their 3-

σ uncertainties. Rectangular bounding boxes for robot and the obstacles are

used in [14] to compute an approximate upper bound. In [15] the future state

distributions are predicted and the uncertainties are used to compute bounded

collision probabilities. [16] use sigma hulls for bounding robot links and com-

pute the signed distance of these hulls to the obstacles to formulate the collision

avoidance constraints. These approaches typically overestimate collision proba-

bilities and the computed values tend to be larger than the actual values.

The joint distribution between the robot and the obstacle is used to de-

rive the collision constraint in [17] and [18] , giving bounded collision proba-

bilities. The probabilities are obtained by marginalizing the joint distribution.

However, since there is no closed form solution to this formulation, an approx-

imate formulation is computed in [17], [18]. Assuming that the robot radius

is negligible the joint distribution can be approximated as the product of the

volume occupied by the robot and the conditional distribution of the obstacle

evaluated at the robot location. However, as identified by [19], both the ap-

proaches produce tight bounds only when the sizes of objects are relatively very
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small compared with their position uncertainties. In contrast, we do not assume

any approximation and derive an exact expression for collision probability com-

putatation. [20], an approximation is computed using Monte Carlo Integration

(MCI), which is nonetheless computationally intensive. Another related work

that uses a Monte Carlo approach and is real-time compatible is Monte Carlo

Motion Planning (MCMP) [21]. They first solve a deterministic motion plan-

ning problem with an inflated obstacle and later adjust the inflation to compute

the desired safe path.

Chance-constrained1 approaches compute approximate upper bounds by lin-

earizing the collision conditions. In contrast, we compute the exact collsion

probability value. [22] employs chance-constraints to ensure that the probability

of collision is below a specified threshold. This approach is leveraged to compute

bounded collision-free trajectories with dynamic obstacles by [19], wherein the

dynamic obstacles follow a constant velocity model with Gaussian noise. In [2],

a Gaussian Process (GP) based approach is used to learn motion patterns (a

mapping from states to trajectory derivatives) to identify possible future obsta-

cles trajectories. [23] focus exclusively on obstacle uncertainty. They formalize a

notion of shadows, which are the geometric equivalent of confidence intervals for

uncertain obstacles. The shadows fundamentally give rise to loose bounds but

the computational complexity of bounding the collision probability is greatly re-

duced. Uncertain obstacles are modelled as polytopes with Gaussian-distributed

faces by [24]. Planning a collision-free path in the presence of risk zones is con-

sidered by [25] by penalizing the time spent in these zones. Risk contours map,

which take into account the risk information (uncertainties in location, size and

geometry of obstacles) in uncertain environments are used by [26] to obtain safe

paths with bounded risks. A related approach for randomly moving obstacles is

presented by [27]. Formal verification methods have also been used to construct

1A chance-constrained approach finds the optimal sequence of control inputs subject to

the constraint that the collision probability must be below a user-specified threshold. This

constraint is known as a chance constraint.
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safe plans [28, 29].

Most of the approaches discussed above leverage Boole’s inequality to com-

pute the collision probability along a path by summing or multiplying the prob-

abilities along different waypoints in the path. However, the additive approach

assumes that the probabilities along the waypoints are mutually exclusive and

the multiplicative approach treats them as independent. Such approaches tend

to be overly conservative and rather than computing bounded collision proba-

bilities along a path, the bound should be checked for each configuration along

the path itself. In this work we perform this check for each configuration along

the path. Moreover, in most approaches, the collision probability computed

along each waypoint is an approximation of the true value. For example, the

MCI approach of [20] approximates the resulting double summation expression

for collision probability to a single summation. [19] compute an approximate

upper bound for collision probability by linearizing the collision condition. [18]

and [17] assume the volume occupied by the robot to be negligible. On the one

hand, such approximations can overly penalize paths and could gauge all plans

to be infeasible. On the other hand some approximations can be lower2 than

the true collision probability values and can lead to synthesizing unsafe plans.

1.2. Contributions

This paper makes three main theoretical contributions. First, we incorporate

object uncertainties in BSP and derive the resulting Bayes filter in terms of the

prediction and measurement updates of the Extended Kalman Filter (EKF). We

also analyse the effect of incorporating object uncertainty while computing the

posterior robot belief state.

The second is the computation of the collision probability under robot state

uncertainty and the uncertainties in estimated obstacle locations. We formulate

the collision avoidance constraint as a quadratic form in random variables under

2For example, the approach of [17] computes a lower value than the actual when the robot

state covariance is small.
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the assumption of spherical geometries for robot and obstacles. Unlike previous

approaches that compute an upper bound or derive conservative estimates for

the probability of collision, we derive an exact expression for computing it. The

convergence of the obtained expression is proved and an upper bound for the

truncation error is also derived. We also formalize a notion of safety in order to

compute configurations that satisfy the required collision probability bounds.

Moreover, we employ a Bayesian framework to predict future states of dynamic

obstacles when their motion model is unknown. The current state of dynamic

obstacles is estimated given the measurements, and the estimated states are

used to predict future trajectories. The approach is not limited to a single

obstacle and can be used to estimate the states of all obstacles detected by the

robot.

The third is the derivation of collision constraints for convex shaped polygo-

nal objects. Note that we derive the collision avoidance constraint by assuming

robot and obstacles to be spherical objects. This is a reasonable assumption

for most practical purposes since the robot and obstacles may be enclosed by

minimum volume spheres. However, in the case of 2D mobile robot collision

avoidance planning, most often it is enough to consider the robot footprint.

Due to the minimum volume spheres considered, the footprints are thus circu-

lar. Yet, this assumption can lead to overly conservative estimates and while

deriving the collision constraint and therefore we go a step beyond previous

approaches by considering the exact convex footprints of the robot and the

obstacles.

This paper is an extension of the preliminary work presented by [30]. Com-

pared with [30], a more rigorous treatment of object uncertainty is presented by

introducing viewpoint and pose spaces. We also provide the derivations for the

mean and covariance of the posterior belief when incorporating object uncer-

tainty and further discuss the impact of object uncertainty under varying object

location uncertainties. We further derive the collision constraint for non-circular

geometries and provide a rigorous comparison of our approach with other state-

of-the-art methods. Collision computation is extended to dynamic obstacles
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by estimating the state of all the obstacles perceived by the robot. Further,

the offline planning approach is extended to real-time online planning. Finally,

we discuss the limitations of our approach and delineate suitable extensions to

overcome them. We also present new results with static and dynamic obstacles

in both single-robot and multi-robot settings.

1.3. Organization

The rest of the paper is organized as follows. We introduce the notations,

define the considered problem and the assumptions in Section 2. In Section 3,

we derive the posterior belief parameters incorporating object uncertainty. We

formulate the collision constraint and derive an expression for the collision prob-

ability in Section 4. In this section, we also provide a rigorous comparison of our

approach to other approaches. State estimation for dynamic obstacles is then

discussed in Section 5. In Section 7 we evaluate our approach in simulation

under different mobile robot scenarios. In Section 8 we outline the limitations

and discuss possible extensions. Conclusion are drawn in Section 9.

2. Notations and Problem Definition

We shall denote vectors by bold lower case letters, that is x and its compo-

nents by lower case letters. The transpose of x will be denoted by xT and its

Euclidean norm by‖x‖ =
√

xTx. The the expected value of a random vector3 x

will be denoted by E(x). Matrices will be denoted by capital letters, that is M .

The trace of a square matrix M will be denoted by tr(M) and its determinant

by det(M). The identity matrix will be denoted by I or In when the dimension

needs to be stressed. A diagonal matrix with diagonal elements λ1, . . . , λn will

be denoted by diag(λ1, . . . , λn). Sets will be denoted using mathcal fonts, that

is S. Unless otherwise mentioned, subscripts on vectors/matrices will be used

to denote time indexes and (whenever necessary) superscripts will be used to

indicate the robot or the object that it refers to. For example, xik represents the

3By a random vector we refer to a vector random variable.

9



state of robot i at time k. The notation P (·) will be used to denote the proba-

bility of an event and the probability density function (pdf) will be denoted by

p(·).

We now formally define the problem that we tackle in this paper. Let us

consider a mobile robot operating in a partially-observable environment. The

map of the environment is either known a priori or it is built using a standard

Simultaneous Localization and Mapping (SLAM) algorithm. At any time k,

we denote the robot pose (or configuration) by xk
.
= (xk, yk, θk), the acquired

measurement from objects is denoted by zk and the applied control action is

denoted as uk. It is noteworthy that by objects we refer to both the landmarks

and the obstacles in the environment. We also make the following assumptions:

(1) the uncertainties are modelled using Gaussian distributions, (2) the robot

and obstacles are assumed to be non-deformable objects.

To describe the dynamics of the robot, we consider a standard motion model

with Gaussian noise

xk+1 = f(xk,uk) + wk , wk ∼ N (0, Rk) (1)

where wk is the random unobservable noise, modeled as a zero mean Gaussian.

Objects are detected through the robot’s sensors and assuming known data

association, the observation model can be written as

zk = h(xk, O
i
k) + vk , vk ∼ N (0, Qk) (2)

where Oik is the i−th detected object and vk is the zero mean Gaussian noise.

We note here that the motion (1) and observation (2) models can be written

probabilistically as p(xk+1|xk,uk) and p(zk|xk, Oik), respectively.

Given the models in (1) and (2), in this paper we compute safe plans, wherein

the probability of collision of the robot with any obstacle is guaranteed to be

less than a specified bound while navigating to the goal. To this end, we con-

sider the object uncertainties while localizing the robot. Further, we employ a

Bayesian framework to estimate the current state of dynamic obstacles and use

the estimated states to predict future obstacle states. The estimated states are
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then used for non-myopic collision avoidance planning. Given the robot and

obstacle locations, we compute the exact probability of collision under motion,

sensing uncertainty, and the uncertainty in obstacle location.

3. Object Uncertainty

As discussed in Section 1, most localization approaches assume that the

landmark locations are known precisely or with little uncertainty. This however,

might not be true in practice due to noisy measurements and/or imperfect

sensors. Thus, it is pertinent that landmark uncertainties are considered within

the localization and planning framework. Below, we delineate the incorporation

of object uncertainty within the Bayes filter.

3.1. Object Uncertainty Model for BSP

We define the collection of all objects in the environment to be the object

space O = {Oi|Oi is an object, and 1 ≤ i ≤ |O|}. Let us posit that at time

k the robot received a measurement zk which was originated by observing the

object Oik. Given an initial distribution p(x0), and the motion and observation

models in (1) and (2), the posterior probability distribution at time k is the

belief b[xk] and can be written as

b[xk] = p(xk|zk, Oik, z0:k−1,u0:k−1) (3)

where Oik is the object observed at time k, z0:k−1
.
= {z0, ..., zk−1} and u0:k−1

.
=

{u0, ...,uk−1}. This posterior is thus a multivariate Gaussian, that is, b[xk] ∼

N (µk,Σk), where µk, Σk are the mean and covariance of xk, respectively. We

note that this posterior belief is computed after incorporating the measurement

at time k, that is, zk.

Given the belief b[xk] and an action uk, the belief before incorporating a

measurement will be called the propagated belief and can be written as

b[ ¯xk+1] =

∫
xk

p(xk+1|xk,uk)b[xk] (4)
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Now let us consider that a measurement zk+1 is obtained that corresponds

to observing the object Oik+1. The posterior distribution b[xk+1] can then be

computed using Bayes rule and the theorem of total probability. This expansion

is obtained in terms of the belief at the previous time step since the Bayes filter

is recursive. Thus we have

p(xk+1|zk+1, O
i
k+1, z0:k,u0:k) =

ηp(zk+1|xk+1, O
i
k+1)p(Oik+1|xk+1)

∫
xk

p(xk+1|xk,uk)b[xk] (5)

where η = 1/p(zk+1|z0:k,u0:k) is the normalization constant. The term p(Oik+1|xk+1)

denotes the probability of observing the object Oik+1 from the pose xk+1. In

other words, this term models the fact, how likely it is to observe Oik+1 from

xk+1 and thus models the object uncertainty. The term p(Oik+1|xk+1) also ad-

ditionally model aspects such as occlusions due to static obstacles that hinder

the observation, occlusions that results due to dynamic obstacles, faulty sensors

or other aspects that impedes observations of objects of interest. Thus, given

an object one can only reason probabilistically about observing it to obtain

the corresponding measurement. However, when the object uncertainty and

other additional aspects are ignored an object is observed whenever the robot

is within the viewpoint space (see left hand side of Fig. 1). Thus, in the case

of such an assumption, for poses within the viewpoint space the term is equal

to unity, that is, p(Oik+1|xk+1) = 1. For poses that lie outside the viewpoint

space, p(Oik+1|xk+1) = 0 and hence no measurement can be obtained. As such,

when the object uncertainty is ignored, the term p(Oik+1|xk+1) can be removed

from (5) and the posterior belief parameters can be computed using the standard

EKF update equation as

Kk+1 = Σ̄k+1H
T
k+1

(
Hk+1Σ̄k+1H

T
k+1 +Qk+1

)−1

µk+1 = µ̄k+1 +Kk+1

(
zk+1 − h(µ̄k+1)

)
Σk+1 = (I −Kk+1Hk+1) Σ̄k+1

(6)

whereHk+1 is the Jacobian of h(·) with respect to xk+1, andKk+1 is the Kalman

gain.

12



The exposition so far has been agnostic to the actual model of p(Oik+1|xk+1).

In general, this term can be modeled given the environment map, the sensing

capabilities and the robot objectives. These aspects should hence be incorpo-

rated to obtain the actual object uncertainty model. However, in this work we

approximate the object distribution as a Gaussian distribution:

p(Oik+1|xk+1) ∼ N (µOi
k+1

,ΣOi
k+1

) (7)

where µOi
k+1

is the viewpoint/pose that corresponds to the maximum probabil-

ity of observing Oik+1 and ΣOi
k+1

is the associated uncertainty in the observation.

We will now consider the object uncertainty term p(Oik+1|xk+1) and derive

the Gaussian belief parameters by expanding (5). Expanding the right hand

side of (5) using the probability density function (pdf) of multivariate Gaussian

distributions, we have b[xk+1] = η′
∫

exp(−Jk+1), where η′ contains the non-

exponential terms and Jk+1 is given by

Jk+1 =
1

2

(
zk+1 − h (µ̄k+1)−Hk+1 (xk+1 − µ̄k+1)

)T
Q−1
k+1

(
zk+1 − h (µ̄k+1)−Hk+1 (xk+1 − µ̄k+1)

)
+

1

2
(xk+1 − µOi

k+1
)TΣ−1

Oi
k+1

(xk+1 − µOi
k+1

)

+
1

2
(xk+1 − µ̄k+1)T Σ̄−1

k+1(xk+1 − µ̄k+1) (8)

where Hk+1 is the Jacobian of h(·) with respect to xk+1. As shown in [31], the

covariance Σk+1 is obtained as the inverse of the second derivative of Jk+1 with

respect to xk+1. The expression for the second derivative is obtained as

∂2Jk+1

∂x2
k+1

= HT
k+1Q

−1
k+1Hk+1 + Σ−1

Oi
k+1

+ Σ̄−1
k+1 (9)

Therefore the posterior covariance is obtained as

Σ−1
k+1 = HT

k+1Q
−1
k+1Hk+1 + Σ−1

Oi
k+1

+ Σ̄−1
k+1 (10)

The mean of b[xk+1] is the value that maximizes b[xk+1] and hence is obtained

by equating the first derivative of Jk+1 to zero. The expression for the mean
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µk+1 is obtained as (see Appendix A for derivation)

µk+1 = µ̄k+1 +Kk+1

(
zk+1 − h (µ̄k+1)

)
+ Σk+1Σ−1

Oi
k+1

(
µOi

k+1
− µ̄k+1

)
(11)

whereKk+1 = Σk+1H
T
k+1Q

−1
k+1 is the Kalman gain. We note that when no object

uncertainty is considered the update step of the standard EKF gives µk+1 =

µ̄k+1 +Kk+1

(
zk+1 − h (µ̄k+1)

)
. The additional term in (11) rightly adjusts the

mean µk+1 accounting for the fact that the object location is uncertain.

As in the standard EKF based Bayes filter, the expression for the covariance

Σk+l can also be derived in terms of the Kalman gain Kk+1 and the predicted

covariance Σ̄k+1. Using the matrix inversion lemma on (10), the following ex-

pression is obtained (see Appendix B for derivation)

Σk+1 = (I −Kk+1Hk+1) Σ̄k+1Σ̃k+lΣOi
k+1

(12)

where Σ̃k+l =
(

Σ̄k+1 + ΣOi
k+1

)−1

.

When object uncertainty is not considered, the update step of the standard

EKF gives Σk+1 = (I −Kk+1Hk+1) Σ̄k+1. The extra terms in (12) account for

the object uncertainty and scale the posterior covariance accordingly. We note

that when object uncertainty is not considered, p(Oik+1|xk+1) = 1 and hence

the results in (11) and (12) reduce to that of the standard EKF case in (6). The

method presented above is easily generalized to multiple objects observed at

any time instant. This is done by following the sequential-sensor method ([32]),

considering the fact that given the current state estimate, the observations are

independent of each other.

3.2. Implications

Let us now analyse the effect of object uncertainty. As discussed above when

object uncertainty is not assumed, p(Oik+1|xk+1) = 1, and therefore the poste-

rior belief parameters reduce to that of the standard EKF case. However, in

practice, one should consider object uncertainty and the posterior belief param-

eters are as delineated in (11) and (12). Yet, the impact of considering object

uncertainty in localisation depends on the covariance of the estimated object

14



location. When the covariance of the object location is much larger compared

to the predicted robot belief state covariance, the impact of considering object

uncertainty is greatly reduced.

Lemma 1. When the covariance of the estimated object location is much larger

than the predicted robot belief state covariance, that is, when ΣOi
k+1
� Σ̄k+1,

then the object uncertainty has limited impact and can be ignored.

Proof. In order to prove the above lemma, it suffices to show that when

ΣOi
k+1
� Σ̄k+1, the posterior belief parameters reduce to that of the standard

EKF update case as given in (6). Let us first consider the expession in (10).

Using the fact that ΣOi
k+1
� Σ̄k+1, then Σ−1

Oi
k+1

� Σ̄−1
k+1 and hence it can be ne-

glected when compared to Σ̄−1
k+1. This gives Σk+1 =

(
HT
k+1Q

−1
k+1Hk+1 + Σ̄−1

k+1

)−1

,

and is the expression for the posterior belief covariance when object uncertainty

is not considered. Again, using ΣOi
k+1
� Σ̄k+1, Σ̄k+1 can be neglected from the

sum
(

Σ̄k+1 + ΣOi
k+1

)
. The expression for Kalman gain thus reduces to

Kk+1 = Σ̄k+1

(
ΣOi

k+1

)−1

ΣOi
k+1

HT
k+1(

Hk+1Σ̄k+1

(
ΣOi

k+1

)−1

ΣOi
k+1

HT
k+1 +Qk+1

)−1

= Σ̄k+1H
T
k+1

(
Hk+1Σ̄k+1H

T
k+1 +Qk+1

)−1

(13)

Thus, as can be seen in (6), the Kalman gain is exactly the gain obtained when

object uncertainty is not considered. Similarly, we have Σk+1Σ−1
Oi

k+1

� 1, thus

µk+1 = µ̄k+1 + Kk+1

(
zk+1 − h (µ̄k+1)

)
. Following a similar argument, it is

easily seen that Σk+1 = (I −Kk+1Hk+1) Σ̄k+1. This completes the proof of

Lemma 1.

Although the above result might seem counter-intuitive at first, we note

here that the viewpoint space, when object uncertainty is not considered, is the

space centred around the mean of the viewpoint space when the object uncer-

tainty is considered. When the covariance of the object location is very high,

then the probability values for viewpoints slightly away from the mean reduces

drastically. Consequently considering these viewpoints adds little impact.
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4. Exact Collision Probability

We denote by R the set of all points occupied by a rigid-body robot at any

given time. Similarly, let S represent the set of all points occupied by a rigid-

body obstacle. A collision occurs if there exits a point such that it is in both R

and S. Thus the collision condition is defined as

R∩ S 6= {φ} (14)

and we denote the probability of collision as P
(
R∩ S 6= {φ}

)
. In this work we

assume spherical geometries for R and S with radii r1 and s1, respectively. We

assign body-fixed reference frames to both the robot and the obstacle located

at xk and sk, respectively in the global frame. By abuse of notation we will use

xk and sk equivalently to R and S. The collision condition is thus defined in

terms of the body-fixed frames as

Cxk,sk : R∩ S 6= {φ} (15)

We recall here that the locations of the obstacles are in general uncertain. Let

us now consider an obstacle at any given time instant, distributed according

to the Gaussian sk ∼ N
(
µsk ,Σsk

)
, where µsk represents the mean and Σsk

the associated covariance. Given the current robot state xk and the obstacle

state sk, the probability of collision can be formulated if the joint distribution

between the robot and the obstacle state is known. In such a case the collision

probability is given by

P
(
Cxk,sk

)
=

∫
xk

∫
sk

Ic(xk, sk)p(xk, sk) (16)

where Cxk,sk as defined above represents the fact that the robot configuration

xk and its collision with an obstacle at location sk is considered, and Ic is an

indicator function defined as

Ic(xk, sk) =


1 if R∩ S 6= {φ}

0 otherwise.

(17)
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and p(xk, sk) is the joint distribution of the robot and the obstacle. [19] compute

an approximate upper bound for the collision probability by linearizing the

collision condition. [20] use MCI to compute (16). However, the resulting double

summation is approximated to a single summation to reduce computational

complexity. [17], [18] approximate the integral in (16) as V p(xk, sk), where V is

the volume occupied by the robot. For computing p(xk, sk), they first assume

a distribution centered around the obstacle with the covariance being the sum

of the robot and obstacle location uncertainties. Then the density p(xk, sk) is

computed by assuming a constant robot location. Du Toit and Burdick use the

robot center, whereas in [18] the maximum of p(xk, sk) on the surface of the

robot is used to obtain an upper bound. However, the approximation is valid

only when the robot radius is negligible. To demonstrate, let us re-write the

collision condition as

P
(
Cxk,sk

)
=

∫
xk

[∫
sk∈R

p(sk|xk)

]
p(xk) (18)

If the robot radius is negligible then it can be assumed that sk = xk, giving

P
(
Cxk,sk

)
=

∫
xk

[
p(sk = xk|xk)

∫
sk∈R

]
p(xk) (19)

Thus assuming a constant value of the obstacle evaluated at the robot location,

we have

V =

∫
sk∈R

(20)

where V is the volume occupied by the robot. The approximate collision prob-

ability is thus

P
(
Cxk,sk

)
≈ V

∫
xk

p(sk = xk|xk)p(xk) (21)

Assuming that the robot and the obstacle locations are independent Gaus-

sian distributions with sk ∼ N
(
µsk ,Σsk

)
and xk ∼ N

(
µxk

,Σxk

)
, the collision

probability can be approximately written as

P
(
Cxk,sk

)
≈ V p(xk = µxk

, sk = µsk) (22)
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where

p(xk = µxk
, sk = µsk) = det

(
2π
(
Σsk + Σxk

))− 1
2

exp

(
−1

2
(µxk

− µsk)TΣ−1(µxk
− µsk)

)
(23)

Other existing approaches truncate the state distributions or compute approx-

imate upper bounds using chance-constraints. As such, these approaches com-

pute an approximation of the collision probability. In contrast, we formulate

the collision constraint as a quadratic form in random variables, allowing us to

compute an exact expression for the collision probability. In the remainder of

this section a rigorous treatment of the same is presented.

Since the robot and the obstacles are assumed to be spherical objects, the

collision constraint is written as

‖xk − sk‖2 ≤ (r1 + s1)2 (24)

where (as before) xk and sk are the random vectors that denote the robot and

obstacle locations, respectively. Let the current estimates of the two random

vectors be distributed according to sk ∼ N
(
µsk ,Σsk

)
and xk ∼ N

(
µxk

,Σxk

)
.

Let us denote the difference between the two random variables by w = xk− sk.

Using the expression for the difference between two Gaussian distributions, we

have w ∼ N
(
µxk
− µsk ,Σxk

+ Σsk

)
. The collision constraint in (24) can now

be written in terms of w ,

y =‖w‖2 = wTw ≤ (r1 + s1)2 (25)

where y is a random vector distributed according to the squared L2-norm of w .

Now, given the probability density function (pdf) of y , the collision constraint

reduces to solving the integral

P
(
Cxk,sk

)
=

∫ (r1+s1)2

0

p(y) (26)

where p(y) = Py (y = y) is the pdf of y . It is noteworthy that the above integral

is the cumulative distribution function (cdf) of y , that is, P
(
Cxk,sk

)
= Fy (y),

18



where Fy (y) denotes the cdf. Thus the collision condition reduces to finding the

cdf of y such that y ≤ (r1 + s1)2. As a consequence, we have

P
(
Cxk,sk

)
= P

(
y ≤ (r1 + s1)2

)
= Fy

(
(r1 + s1)2

)
(27)

In the following Sections, we will first show that the collision constraint is a

quadratic form in random variables and later derive an exact expression for the

cdf of the quadratic from.

4.1. Quadratic Form in Random Variables

We define a quadratic form in random variables:

Definition 1. Let x = (x1, . . . , xn)
T

denote a random vector with mean µ =

(µ1, . . . , µn)
T

and covariance matrix Σ. Then the quadratic form in the random

variables x1, . . . , xn associated with an n× n symmetric matrix A = (aij), with

i and j in 1, . . . , n, is

Q(x) = Q(x1, . . . , xn) = xTAx =

n∑
i=1

n∑
j=1

aijxixj (28)

Let us define v = Σ−
1
2 x and define a random vector z =

(
v − Σ−

1
2µ
)

. The

resulting distribution of z is thus zero mean with covariance being the identity

matrix. Therefore, the quadratic form becomes

Q(x ) =
(
z + Σ−

1
2µ
)T

Σ
1
2AΣ

1
2

(
z + Σ−

1
2µ
)

(29)

Let us suppose there exists an orthogonal matrix P , that is, PPT = I which

diagonalizes Σ
1
2AΣ

1
2 , then PTΣ

1
2AΣ

1
2P = diag (λ1, . . . , λn), where λ1, . . . , λn

are the eigenvalues of Σ
1
2AΣ

1
2 . The quadratic form can now be written as

Q(x ) =
(
z + Σ−

1
2µ
)T

Σ
1
2AΣ

1
2

(
z + Σ−

1
2µ
)

= (u + b)
T

diag (λ1, . . . , λn) (u + b)

(30)

where u = PT z = (u1, . . . , un)T and b = PTΣ−
1
2µ = (b1, . . . , bn)T . The

expression in (30) can be written concisely,

Q(x ) = xTAx =

n∑
i=1

λi(ui + bi)
2 (31)
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It is easily verified that the left hand side of (25), that is wTw , is in the

quadratic form Q(w) with A = I, that is, the identity matrix. Thus the collision

probability can be computed from the cdf of the quadratic form.

4.2. Series Expansion for the Quadratic Form

We describe below the most general method used to obtain a series expansion

for the pdf and cdf of the quadratic form in random variables. Various other

methods exists in the literature and we refer the interest readers to [33] for a

brief survey. The series expansion that we seek for the pdf of the quadratic form

is of the form

py(y) = p(y = y) =

∞∑
k=0

ckhk(y) (32)

where ck is a sequence of complex number and {hk} is a known sequence of the

form yk. Let the Laplace transform of hk(y) be denoted by L(hk(y)). In the

expansion sought here, the Laplace transform is of the special form ([34])

L(hk(y)) = ξ(s)ηk(s) (33)

where, for Re(s) > α and α being a real constant, ξ(s) is a non-vanishing

(non-zero everywhere) analytic function and η(s) is an analytic function with

an inverse function η(ζ(θ)) = θ. Now we are interested in the case where the

series expansion is convergent, that is,
∑∞
k=0 ckhk(y) <∞. For any real number

β, let us define

∞∑
k=0

ckhk(y) ≤
∞∑
k=0

|ck||hk(y)| ≤ αeβy, y ∈ [0,∞] (34)

If the above equation is satisfied almost everywhere, then computing the Laplace

transform, we have ∫ ∞
0

e−syαeβy = α

∫ ∞
0

e−(s−β)ydy <∞ (35)

if (s− a) > 0. Therefore, from Lebesgue’s dominated convergence theorem, we

have the following lemma.
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Lemma 2. Let {hk}∞0 be a sequence of measurable complex valued functions on

[0,∞] and {ck}∞0 be a sequence of complex numbers such that almost everywhere

the following is satisfied

∞∑
k=0

|ck||hk(y)| ≤ αeβy, y ∈ [0,∞] (36)

where α, β are real constants. Then when s > 0 and py(y) =
∞∑
k=0

ckhk(y), we

have

L
(
py(y)

)
=

∞∑
k=0

ckL(hk(y)) (37)

The implications of the above lemma are twofold. The first is that the

series expansion is convergent. This however is rather straightforward from our

construction of the series expansion. The second is the fact that the Laplace

transform of the series py(y) can be obtained by taking the Laplace transform

of the individual terms of the series. This fact will be used below to derive the

pdf and the cdf of the quadratic from. We now state the following theorem

without proof. The proof may be found in [33].

Theorem 1. For Q(x) = y = xTAx with A = AT > 0,x ∼ N (µ,Σ),Σ > 0,

the moment generating function MQ(t) of Q is given by

MQ(t) = exp

−1

2

n∑
i=1

b2i

 exp

1

2

n∑
i=1

b2i (1− 2tλi)
−1

 n∏
i=1

(1− 2tλi)
− 1

2 (38)

where the bi, λi are the parameters of the quadratic form as defined in Sec-

tion 4.1. Let us now define the series M(θ) such that

M(θ) =

∞∑
k=0

ck
L(hk(y))

ξ(ζ(θ))
=

∞∑
k=0

ckθ
k (39)

where the infinite series is a uniformly convergent series for θ in some region

with M(θ) > 0, M(0) = c0 and s = ζ(θ). We note here that if py(y) = 0 for

y < 0, then MQ(−t) represents the Laplace transform of py(y). Thus, from (38)
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we have

L
(
py(y)

)
= exp

−1

2

n∑
i=1

b2i

 exp

1

2

n∑
i=1

b2i (1 + 2sλi)
−1

 n∏
i=1

(1 + 2sλi)
− 1

2

(40)

Using ζ(θ) = θ−1, we have

L
(
py(y)

)
= s−

n
2M(θ) (41)

Thus we obtain,

c0 = M(0) = exp

−1

2

n∑
i=1

b2i

 n∏
i=1

(2λi)
− 1

2 (42)

Differentiating the natural logarithm of M(θ), we get the following form

lnM(θ) = d0 +

∞∑
k=1

dk
θk

k
(43)

where

d0 = −1

2

n∑
i=1

b2i + ln

n∏
i=1

(2λi)
− 1

2

dk =
1

2

n∑
i=1

(
1− kb2i

)
(2λi)

−k
(44)

From (41), we have the following lemma.

Lemma 3.

L
(
py(y)

)
=

∞∑
k=0

ck(−1)ks−(n
2 +k) (45)

We now obtain the required expressions for the pdf and cdf of the quadratic

form of Q(x).

Lemma 4. The cdf of Q(x) = y = xTAx with A = AT > 0,x ∼ N (µ,Σ),Σ > 0

is

Fy(y) = p(y ≤ y) =

∞∑
k=0

(−1)kck
y

n
2 +k

Γ
(
n
2 + k + 1

) (46)
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and its pdf is given by

py(y) = p(y = y) =

∞∑
k=0

(−1)kck
y

n
2 +k−1

Γ
(
n
2 + k

) (47)

where Γ denotes the gamma function, c0 and d0, dk are the terms defined in (42)

and (44), respectively. The expression for ck is given by (see Appendix C for

derivation)

ck =
1

k

k−1∑
j=0

dk−jcj , k ≥ 1 (48)

Proof. From Lemma 3, we have L
(
py(y)

)
=
∞∑
k=0

ck(−1)ks−(n
2 +k). The lemma

is proved by noting that s−(n
2 +k) is Laplace transform of y

n
2 +k−1/Γ

(
n
2 + k

)
.

Integrating the expression for py(y), we obtain the required expression for Fy(y).

Theorem 2. The collision probability for the collision constraint formulated

in (25) is given by

P
(
Cxk,sk

)
=

∞∑
k=0

(−1)kck
y

n
2 +k−1

Γ
(
n
2 + k

) (49)

where y = (r1 + s1)2.

Proof. From (25), the collision constraint is in the quadratic form Q(y),

with w ∼ N
(
µxk
− µsk ,Σxk

+ Σsk

)
. We recall here that w = xk − sk, where

xk and sk are the random vectors that denote the robot and obstacle loca-

tions, respectively and are distributed according to sk ∼ N
(
µsk ,Σsk

)
and

xk ∼ N
(
µxk

,Σxk

)
. As noted before, the collision probability is the cdf of

the quadratic form Q(y). Thus from Lemma 4, the above theorem is proved.

4.3. Revisiting Convergence of the Series Expansion

As seen in Lemma 2, the cdf and the pdf of the quadratic form is convergent.

In the following, we will derive upper bounds for the truncation error of the series

expansions for the pdf and the cdf of the quadratic form.

23



If the infinite series pdf in (47) is truncated after N terms, the truncation

error is

e(N) =

∞∑
k=N+1

|ckhk(y)| =

∣∣∣∣∣∣
∞∑

k=N+1

ck
y

n
2 +k−1

Γ
(
n
2 + k

)
∣∣∣∣∣∣ (50)

Using Cauchy’s inequality, we get

|ck| ≤
m(ρ)

ρk
, m(ρ) = max|θ|=ρ|M(θ)| (51)

Thus we have

e(N) ≤ m(ρ)

ρk

∣∣∣∣∣∣
∞∑

k=N+1

y
n
2 +k−1

Γ
(
n
2 + k

)
∣∣∣∣∣∣ ≤

m(ρ)

(
Γ

(
n

2

)
N !

)−1(
y

2

)n
2−1(

y

2ρ

)N+1

exp

(
y

2ρ

)
(52)

where we have used the gamma function identity, ∀ς > 0, Γ(ς+1) = ςΓ(ς). In a

similar manner, we obtain the truncation error for the infinite series cdf in (46)

E(N) ≤ m(ρ)

(
Γ

(
n

2

)
(N + 1)!

)−1(
y

2

)n
2
(
y

2ρ

)N+1

exp

(
y

2ρ

)
(53)

The expression for m(ρ) is obtained from [35],

m(ρ) =

n∏
i=1

λ
− 1

2
i exp

−1

2

n∑
i=1

b2iλi
λi + ρ

 n∏
i=1

(1− ρ

λi
)−

1
2 (54)

For the expression in (54) to be valid, it is required that ρ < λi and therefore

we have ρ < min λi. As a result, m(ρ) vanishes with
∑n
i=1 b

2
i → ∞. We recall

here that b = PTΣ−
1
2µ = (b1, . . . , bn)T . Thus, larger the distance from the

obstacles and lower the uncertainty in the robot and obstacle positions, the

greater is the bi value. In such scenarios, based on our experience, convergence

is often attained within the first few terms of the series.

It is worth noting that for a given robot configuration and obstacle param-

eters, the varying term in (53) is (y/2ρ)N+1/(N + 1)!. This term is inversely

proportional to the parameter ρ. As discussed above ρ depend on λi’s, that

is, the eigenvalues of Σxk
+ Σsk . Thus at time instant k, the parameter that
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(a) Configuration A (b) Collision probability evolution

(c) Configuration B (d) Collision probability evolution

(e) Configuration C (f) Collision probability evolution

(g) Configuration D (h) Collision probability evolution

Figure 2: Different configurations for a robot of radius 0.3m and obstacle of radius

0.5m. Different covariances are plotted as red circles. For each configuration the evo-

lution of collision probability is plotted for different covariances in (b), (d), (f) and

(h). In each of the 4 configurations, the maximum terms for convergence correspond

to the minimum covariance of diag(0.04, 0.04).
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(a) Configuration E (b) Collision probability evolution

(c) Configuration F (d) Collision probability evolution

(e) Configuration G (f) Collision probability evolution

(g) Configuration G (h) Collision probability evolution

Figure 3: Different configurations for a robot of radius 0.3m and obstacle of ra-

dius (a) 0.8m, (c) 0.7m, (e) 0.6m and (g) 0.5m. In the second column, for each of

these configurations the evolution of collision probability is plotted against different

covariances— the covariances are plotted as red circles in the figures on the left.
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influences the convergence is the degree of uncertainty in both the robot and

obstacle locations, that is, Σxk
+ Σsk . This is visualized for different configura-

tions in Fig. 2. The blue and green circles represent a robot and an obstacle,

respectively. The red ellipses corresponds to the 3σ uncertainties for different

covariances diag(0.04, 0.04), diag(0.08, 0.08), . . . , diag(0.74, 0.74). For all the

scenarios discussed we choose E(N) = 0.001. In Fig. 2(a) the robot and the

obstacle are touching each other. For each of these covariances, the number of

terms for convergence is shown in Fig. 2(b). The worst case corresponds to the

covariance of diag(0.04, 0.04), requiring 16 terms for convergence (dashed blue

line with spikes in Fig. 2(b)). In Fig. 2(c) the distance between the robot and

the obstacle is increased by 0.2m and the covariance diag(0.04, 0.04) needs 12

terms for convergence. The distances are further increased by 0.4m and 0.8m in

Fig. 2(e),(g) and their worst case convergences are 9 and 5 respectively, as seen

in Fig.2(f),(h). The number of terms for the worst case convergence corresponds

to covariance diag(0.04, 0.04) and the respective timings for collision probability

computation are shown in Table 1.

Similarly, the term (y/2ρ)N+1/(N + 1)! is directly proportional to y which

quantifies the size of the robot and the obstacle. We recall here from (27) that

y = (r1 + s1)2, that is, the square of the sum of robot and obstacle radius.

By keeping the robot size constant and varying the obstacle size, the influence

of y on convergence is visualized for four different configurations in Fig. 3.

In Fig. 3(a) y = 1.12(m2) and convergence is obtained within 7 terms. In

Fig. 3(c),(e),(g) we have y = 12, 0.92, 0.82 and the number of terms required for

convergence are 4, 3 and 2, respectively. The collision probability computation

times are as given in Table 2. For y > 1.12, it can be seen that the number of

terms for convergence did not exceed 7 and for y < 0.82 convergence is achieved

with the first two terms. Thus this shows that ρ plays a much larger role in

convergence than y.
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Table 1: The maximum number of terms required for convergence and the correspond-

ing collision probability computation time. The values correspond to the covariance

diag(0.04, 0.04) for each of the configurations.

Configuration Terms for convergence Computation time (s)

A 16 0.0412 ± 0.0086

B 12 0.0044 ± 0.0041

C 9 0.0008 ± 0.0003

D 5 0.0004 ± 0.0002

Table 2: The maximum number of terms required for convergence and the corre-

sponding collision probability computation time. Each configuration corresponds to

different y values with the robot and obstacle locations remaining the same; only

obstacle size varies.

Configuration Terms for convergence Computation time (s)

E 7 0.0006 ± 0.0005

F 4 0.0004 ± 0.0002

G 3 0.0004 ± 0.0001

H 2 0.0001 ± 0.0000
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4.4. Safe Configurations

In the presence of perception and motion uncertainty, providing safety guar-

antees for robot navigation is imperative. In this Section, we certify safety by

defining the notion of a “safe” robot configuration. Let us assume that the ob-

stacle position is known with high certainty as a result of perfect sensing, that

is, no significant noise is present. However, since the true state of the robot is

not known and only a distribution of these states can be estimated, collision

checking has to be performed for this distribution of states. Moreover, in prac-

tice, the observations are noisy and this renders the estimated obstacle location

(and shape) uncertain. Hence, this uncertainty should be taken into account

while considering collision avoidance.

Given a robot configuration xk, we define the following notion of ε−safe

configuration.

Definition 2. A robot configuration xk is an ε−safe configuration with re-

spect to an obstacle configuration s, if the probability of collision is such that

P
(
Cxk,s

)
≤ 1− ε.

For example, a 0.99−safe configuration implies that the probability of this

configuration colliding with the obstacle is at most 0.01. On the one hand,

sampling-based motion planning approaches such as the Probabilistic Roadmap

(PRM) [36] consider a discrete state space or a set of controls. As a result, it can

only guarantee probabilistic completeness for returning ε−safe configurations

since the PRM motion planner is probabilistically complete [37], that is the

probability of failure decays to zero exponentially with the number of samples

used in the construction of the roadmap. As a result, for sampling-based BSP

approaches [6, 3], the failure to find an ε−safe configuration might be because

such a configuration indeed does not exist or simply because there are not

enough samples. On the other hand, continuous state and action space BSP

approaches [4, 38, 39, 40] do not always guarantee ε−safe configurations. This

is merely because there might not be enough measurements to localize the robot

or to estimate obstacle locations or both and hence this may preclude computing
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(a) (b) (c)

Figure 4: Comparison of our approach with [20, 19, 18, 17]. (a) The robot state (in

blue) is known perfectly, however the obstacle location (in green) is uncertain. The

green ellipses denote the Gaussian uncertainty contours. (b) Robot state uncertainty

is considered and the uncertainty contours are shown as blue ellipses. The approaches

in [17, 18, 19] computes higher values. (c) Point-like robot and obstacle considered.

The values computed with [17, 18] are much lower than expected while that of [19] is

very high.

appropriate control commands.

4.5. Comparison to Other Approaches

[20] compute the collision probability by performing MCI. The joint distri-

bution between the robot and the obstacle p(xk, sk) is simplified as the product

of the individual distributions. This MCI approach results in an expression

with double summation for computing the probability of collision. [20] approx-

imate this to a single summation expression to decrease computational com-

plexity. Though this approximation compute values closer to the actual col-

lision probability, it can either be bounded from below (when uncertainty is

too large) or above. The approches in [17, 18, 19] compute upper bounds for

collision probability. [19] compute an upper bound using Gaussian chance con-

straints. [18] compute the collision probability by finding the xk that maximizes

p(xk, sk) and formulate the problem as an optimization problem with a La-

grange multiplier. Unlike in [18], which computes the maximum density, [17]

use the density associated with the center of the robot. Yet, [17, 18] compute
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Table 3: Comparison of collision probability approaches.

Case Algorithm Collision probability Computation time (s) Feasible

(a)

Numerical integral 4.62% 0.8648 ± 0.0418 Yes

[20] 4.41% 0.0272 ± 0.0023 Yes

[17] 5.84% 0.0017 ± 0.0002 Yes

[18] 33.26% 0.2495 ± 0.3093 No

[19] 9.60% 0.0021 ± 0.0003 No

Our approach 4.61% 0.0254 ± 0.0034 Yes

(b)

Numerical integral 8.25% 1.1504 ± 0.0318 Yes

[20] 7.87% 0.0325 ± 0.0024 Yes

[17] 14.20% 0.0011± 0.0002 No

[18] 36.31% 0.2156 ± 0.4068 No

[19] 16.73% 0.0013 ± 0.0003 No

Our approach 8.22% 0.0216 ± 0.0023 Yes

(c)

Numerical integral 14.82% 1.1341 ± 0.0211 No

[20] 15.26% 0.0287 ± 0.0059 No

[17] 0.46% 0.0015 ± 0.0007 Yes

[18] 0.61% 0.3233 ± 0.5405 Yes

[19] 50.00% 0.0018 ± 0.0007 No

Our approach 14.83% 0.0280 ± 0.0093 No
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lower values when the joint robot and obstacle covaraince is very small. We

formulate the problem as exactly given in each of the works mentioned above

to compare it with our approach4. The MCI approach of [20] is evaluated using

10, 000 samples. The numerical integration of the expression in (16) gives the

exact collision probability value. Thus to validate the value computed using

our approach, we perform the numerical integration of (16), using Monte Carlo

method with 10, 000 samples.

Three different cases are considered as shown in Fig. 4. The solid green

circle denotes an obstacle of radius 0.5m and its corresponding uncertainty con-

tours are shown as green circles. The solid blue circle denotes a robot of radius

0.3m with the blue circles showing the Gaussian contours. We define a collision

probability threshold of 0.09, that is, a 0.91−safe configuration. The collision

probability values and the computation times are summarized in Table 3. In

Fig. 4(a), the robot position is known with high certainty. The numerical in-

tegration of (16) gave a value of 4.62% and hence the given configuration is

a 0.91−safe configuration. Our approach computes the collision probability as

4.61%, corroborating the exactness. The approach of [20] gave a close value of

4.41% but is a lower bound for the actual value. The other three approaches

compute upper bounds as discussed previously. [17] estimates the configura-

tion to be feasible, giving a collision probability value of 5.84%. The collision

probability computed as given in [18] is 33.26% (not a 0.91−safe configuration).

Moreover, the value computed is almost seven times higher than the one com-

puted using our approach. Similarly, the value computed using the approach

in [19] is 9.60%, predicting the configuration to be unsafe. The higher values

are due to the overly conservative nature of the estimates as loose upper bounds

are computed. In Fig. 4(b), there is robot uncertainty along the horizontal axis

and the numerical integration gave a collision probability value of 8.25%. As

4For comparison, the computation of other approaches have been reproduced to the

best our understanding and the reproduced codes can be found here- https://bitbucket.org/

1729antony/comparison/src/master/
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compared to the previous case, the probability has almost doubled. This is quite

intuitive as seen from the robot location uncertainty spread and hence there is

greater chance for intersection between the two spheres. The collision probabil-

ity computed using our approach is 8.22%. The increased chance for collision

is also rightly communicated by the values computed using other approaches.

The value computed using the approach in [18] gave a much higher value of

36.31%, an increase by 342% as compared to our approach. As in the previous

case, the approaches in [17], [19] also gave higher values of 14.20% and 16.73%,

respectively, while [20] gave a feasible value of 7.87% but a value lower than the

actual.

The approaches in [17, 18] assume that the robot radius is negligible and that

the obstacle size is relatively small compared to their location uncertainties. We

also compute the collision probabilities for a robot and an obstacle with radius

0.05m each, where the robot and the obstacle are touching each other (Fig. 4(c)).

The obstacle location is also much more certain, with the uncertainty reduced

by 97% as compared to cases in Fig. 4(a),(b). The numerical integration gave

a collision probability value of 14.82%. The probability of collision computed

using our approach is 14.83%, whereas, using the approach in [18], the computed

value is 0.61%. A lower value of 0.46% is obtained using the approach in [17]. As

noted before, the lower values are a consequence of the covariance being very

small. The approach of [19] gave an overly conservative estimate of 50%. The

value computed using [20] is 15.26% , an upper bound to the actual value. To

get a sense of the actual value, we compute the area of the covariance matrix,

which is 6.28×10−4m2. This clearly indicates that 0.61%, 0.46% and 1.69% are

too small values while 50.00% is a very high value. Our approach computes the

exact probability of collision and outperforms the approaches in [20, 17, 18, 19].

We now provide a comparison in simulation using a scenario shown in Fig. 5(a).

The robot has to reach the goal position (black star) by avoiding the obstacles in-

between. To make the implications of overly conservative estimates [17, 18, 19]
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explicit, we make the following assumptions. During each planning session5, the

robot can choose from a restrcitive set of nine different actions. A description

of the motion and observation models can be found in Section 7. An action

is chosen based on an additive cost of distance to the goal and the collision

probability value. If the collision probability for an action is greater than 0.01,

then the collision probability value for this action is penalized by redefining the

value to be equal to a large number M . In this way, if all the actions lead to

configurations with collision probability greater than 0.01, these actions are as-

signed a cost M . In reality this would mean that there exist no feasible plan

and the robot would not proceed ahead. Thus if all actions are assigned a col-

lision probability value of M, all these actions lead to collision and therefore

we mark the trajectory as stopped. The trajectory executed by the robot us-

ing our collision probability computation approach is shown in blue (Path 1)

in Fig. 5(b). The robot footprint (bounded circle) is also shown as the robot

curves past the obstacle. The goal was reached in seven planning sessions. For

the approaches in [17, 18, 19] the trajectory is stopped (Path 2) before the ob-

stacle since all actions are assigned a value of M due to collision probability

values greater than 0.01. As noted before, the action set from which the robot

can choose an action is restriced and each action from this restricted set gives

configurations with collision probability greater than 0.01. This is due to the

fact that these approaches compute loose upper bounds and hence the values in

the collision cost are redefined to M . The restrictive action set does not affect

our approach as the exact value is computed and hence the robot reaches the

goal safely. We now remove the restriction on the action set and all the other

approaches are able to compute a path with a greater curve than Path 1. One

such trajectory is shown in cyan (Path 3), with the collision probabilities com-

puted using the approach by [19]. The planner is now able to choose an action

5By a planning session we mean an L look-ahead step planning at the current time and

choosing an optimal control. Thus if n planning sessions are required to reach a goal this

means that the control action was executed n times.
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(a) (b)

Figure 5: Comparison to other approaches in simulation: (a) Top view of the envi-

ronment in gazebo. (b) Path 1 is the trajectory executed by the robot following our

approach. The trajectory is executed in seven planing sessions. The robot footprint

can be seen as it navigates past the obstacle. Path 2 leads to collision as upper bounds

are computed by other approaches deeming the plans infeasible– robot is hence halted.

The action set is extended and a longer trajectory is executed by the robot using the

approach of [19]. The goal is reached in 15 planning sessions.

with collision probability less than 0.01. Thus it is seen that loose upper bounds

for collision probability can lead to longer trajectories or in some cases deem all

plans to be infeasible.

4.6. Non Circular Geometry

Given two objects (represented as convex polygons), in this Section we derive

the collision constraint as a measure of the distance between the mid points of

the objects. As before, let us consider two objects, R ⊂ R2 and S ⊂ R2.

Let us assume that S is static and R can perform translational motions and

is approaching S. Then, subtracting R from S gives a convex polygon P such

that for any c ∈ P, then R ∩ S 6= {φ} ([41]), that is, the convex polygon P is

the set of configurations of R that leads to collision with obstacle S. Note that,

R and S are essentially two sets whose elements are the (x, y) pairs belonging

to the respective polygons that they represent. Therefore, P is essentially the

Minkowski difference between the two sets R and S.
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(a) Convex objects (b) Minkowski sum (c) Minkowski dif-

ference

Figure 6: (a) Two convex objects and the object formed by considering the (b)

Minkowski sum and (c) Minkowski difference.

Definition 3. The Minkowski sum of two sets S, R ⊆ Rd is

S +R = {s+ r | s ∈ S, r ∈ R} (55)

Definition 4. The Minkowski difference of two sets S, R ⊆ Rd is

S −R = {s− r | s ∈ S, r ∈ R} (56)

The Minkowski sum and difference of two objects are visualized in Fig. 6.

The Minkowski difference between the two sets S and R, also called the con-

figuration space obstacle, is the set of (translational) configurations of R that

brings it into collision with S ([41, 42]). However, we would like to obtain a

collision constraint of the form (24). In order to obtain such a constraint, we

first compute the Minkowski difference between the set S and the mid-point

of R. This gives a new convex set P ′ whose elements are formed by subtract-

ing each element of the set S by the mid-point of object R. In other words,

the set P ′ is the set of all configurations of the mid-point of −R6 obtained by

shifting/translating this point by each element in the set S.

Lemma 5. The maximum distance from a point P to any other point on a

polygon Q is obtained by computing

sup {PVi | Vi is the vertex of Q} (57)

6It holds that −R = {−r | r ∈ R}
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where PVi denotes the line segment from point P to the vertex Vi.

Proof. Given a point inside (or outside) a polygon, farthest distance to any

other point on the polygon is obtained when this point lies on the boundary

of the polygon. It is known that the maximum distance from a point to a line

segment occurs at the end-points of the line segment. Hence it is only sufficient

to compute the distances to the vertices of the polygon and the maximum among

them is the required distance.

For convex polygons R and S, the boundary configurations of the Minkowski

difference represents configurations that lead to contact between R and S ([42]),

that is, the configurations where R and S touch each other. Also note that the

polygon P ′ obtained by computing the Minkowski difference between the mid-

point of R and the set S is fundamentally the set of all translated configurations

of the mid-point of −R in the set P = S − R. Thus the collision constraint

is obtained by computing the maximum distance between the mid-point of the

obstacle S and the polygon P ′.

Theorem 3. Given a convex polygonal set R and an obstacle set S, the collision

constraint is given by

sup {SVi | Vi is the vertex of P ′} (58)

where S is the mid-point of S and P ′ is the set obtained by computing the

Minkowski difference between S and the mid-point of R.

Proof. We saw above that the collision constraint is obtained by computing

the maximum distance between the mid-point of the obstacle S, that is S and the

polygon P ′. From Lemma 5, the maximum distance is achieved at the vertices

of the polygon. Hence, it follows from Lemma 5 that the collision constraint is

sup {SVi | Vi is the vertex of P ′}.

Thus, if R and S correspond to the set of points occupied by the robot

and the obstacle, respectively, the collision constraint in (24) can be written as

‖xk − sk‖2 ≤
(
sup {SVi}

)2
.
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The Minkowski sum or difference are not invariant to rotations and hence

rotation about a reference axis elicits different sets. The resulting sets are ob-

tained by pre-multiplying the starting configuration with the standard rotation

matrix of the corresponding angle. This renders different collision constraints

for the two given sets. However, while planning for future control commands,

the robot pose is often estimated using the motion model and by simulating

possible future observations. As a result, an estimate of the robot orientation

is computed. Moreover, for static obstacles, both in known and unknown envi-

ronments, the geometry of the obstacle is a constant7. In the case of dynamic

obstacles, the orientation of this geometry changes. Thus, assuming that the

orientation of the obstacle is known and using the estimated robot orientation,

the collision constrained is obtained as elucidated in Theorem 3.

4.7. Complexity Analysis

Finding a trajectory to the goal requires performing Bayesian (EKF) up-

date operations. This involves performing matrix operations, that is, matrix

multiplication and inversion of matrices. For a state of size n, the covariance

matrix is of size O(n2). Therefore, each step of the Bayesian update has a com-

plexity of O(n3). Let L denote the number of time steps in the trajectory or

the look-ahead horizon, then the overall computational complexity is O(n3L).

Note that this is the complexity while computing the objective function at each

time step. The number of times the computation is to be performed cannot

be expressed beforehand as it depends on the specific application and objec-

tive to be achieved. Let us now analyze the complexity of collision probability

computation. From (53) we see that for each iteration, the truncation error

varies with (y/2ρ). Therefore, to achieve E(N) ≤ δ, for an ε−safe configura-

tion, k = O
(

log δρ
y(1−ε)

)
iterations are required. We note that for each obstacle,

the runtime is increased by this factor.

7In this work we assume non-deformable objects.
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Figure 7: True obstacle trajectories plotted along with the estimated obstacle tra-

jectories. In all the cases the linear velocity of the obstacle is greater than or equal

to 0.5m/s. A laser rangefinder is placed at the origin pointing towards the north-east

direction. The green ellipses show the estimated covariances. Initial large ellipses

correspond to the prior uncertainties. The prior uncertainties shrink as measurements

are obtained due to obstacle detection.

5. Obstacle State Estimation

We adapt the approaches in [43, 18] and describe below the process for

estimating future obstacle states. Let us consider that at time instant k, the

robot at state is xk and the estimated obstacle location is s. Since the obstacle

is following an unknown trajectory, the robot receives a series of measurements

z1
k, . . . , z

n
k . Note that since the obstacle is moving, then each measurement zik

corresponds to a different location of the dynamic obstacle. Given the robot

pose xk and the measurement zik, the obstacle location si can be estimated
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using the Bayesian approach,

p(si|xk, zik) = η p(zik|xk, si) p(si|xk) (59)

where η = 1/p(zik|xk) is the normalization constant. Since the obstacle state si

is independent of the robot state xk, we obtain

p(si|xk, zik) = η p(zik|xk, si) p(si) (60)

where p(si) is the prior density. Given the current robot belief b[xk] and the

measurement zik, the expression p(zik|xk, si) is computed using the measurement

model (2). Therefore, the mean of the obstacle state si is obtained as

s̄i = arg max
si

p(si|xk, zik) (61)

with the covariance matrix defined accordingly. Once n measurements are ac-

quired at time k, we use it to estimate future obstacle states within in Model

Predictive Control (MPC) strategy, where the robot plans for an optimal se-

quence of controls for L look-ahead steps. At each look-ahead step, the second

term in (60), that is the obstacle belief has to be updated as per the obstacle

motion model which is unknown. Given the state sn obtained from the last

measurement znk , the new state s′ can then be predicted as

p(s′) =

∫
sn
p(s′|sn) p(sn) (62)

whose state space form is given by

s(t+ 1) = As(t) +Bu(t) + ν(t) (63)

where u(t) is the control and ν(t) is the process noise and A, B are matrices

which will be defined later. Now we discuss how this prediction can be achieved.

From each estimated location si we can then compute the approximate velocities

in the x and y directions using the forward difference method. Note that we

assume that the obstacle does not change its velocity very drastically and that

any two consecutive velocities differ by an ε� 1m/s. Therefore, given s1, . . . , sn

40



we obtain the sets

∆x

∆t
=

{
x̄2 − x̄1

∆t
, . . . ,

x̄n − x̄n−1

∆t

}
=

{
∆x̄2

1

∆t
, . . . ,

∆x̄nn−1

∆t

}
∆y

∆t
=

{
ȳ2 − ȳ1

∆t
, . . . ,

ȳn − ȳn−1

∆t

}
=

{
∆ȳ2

1

∆t
, . . . ,

∆ȳnn−1

∆t

}
(64)

where x̄i, ȳi are the two components of s̄i and ∆t is the time between two

measurements. In a similar way we also compute the rate of change of the

velocities in the x and y directions. From this computed sets, we choose the

maximum change in velocities in both directions and denote the corresponding

covariances8 as Σxv and Σyv. From the Taylor series, each component of s′ can

be written as

x′(t′) = xn(t+ ∆t) ≈ xn(t) +
∆x̄nn−1

∆t
∆t+

1

2

∆2x̄nn−1

∆t2
∆t2

y′(t′) = yn(t+ ∆t) ≈ yn(t) +
∆ȳnn−1

∆t
∆t+

1

2

∆2ȳnn−1

∆t2
∆t2 (65)

Note that the above equation is in the form of (63). The process noise is hence

defined as

ν(t) ∼ N

0,

 1
4Σxv(∆t)4 0

0 1
4Σyv(∆t)4


 (66)

We use a 2D laser scanner to estimate the state of dynamic obstacles. It is

assumed that the geometry of the obstacle is spherical and is known beforehand.

From each scan of the laser rangefinder, the ray with the minimum distance

rj and the corresponding orientation is computed to form a measurement zik.

This is repeated to obtain n distinct measurements. Given these measurements

and the current robot state estimated using the standard EKF, the x and y

components of the obstacle location are estimated. These estimated values are

then used to compute the respective velocities using (64). The location estimates

of the last scan znk is then used as the prior in (62) to estimate future obstacle

8Note that since each variable is Gaussian, their differences are also Gaussian and the

corresponding covariances can be computed trivially.
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states. The respective mean and covariance are computed using (65) and (66).

To illustrate our approach, in Fig. 7 we plot the true and estimated locations

for different obstacle trajectories.

The approach is readily extended to estimate the state of all obstacles de-

tected by the laser scanner. We note here that advanced strategies exits in

the literature to efficiently segment laser rangefinder’s scans, but it is not the

main focus of the current paper. We therefore employ a rather simpler method

sufficient to demonstrate the approach discussed herein. The laser rangefinder

returns a sequence of distance measurements and these distances are less than

the maximum range when obstacles are encountered. We assume that the ob-

stacles are not too close, that is, there is a least one distance measurement

between two obstacles that gives the maximum range. This discontinuity in the

distance measurements between two obstacles allows us to separate the laser

scanner measurements into different clusters belonging to different obstacles.

From each cluster, we estimate the state of the corresponding obstacle. Note

that it does not guarantee estimating the state of all the obstacles since some of

them could be completely occluded by the others. It is also worth mentioning

that estimating the location of static obstacles is a special case of the approach

discussed here since for static obstacles both ∆x
∆t and ∆y

∆t equate to zero.

6. Objective Function

At each time instant k, the robot plans for L look-ahead steps to obtain a

control policy u?k:k+L−1 given by

u?k:k+L−1 = arg min
uk:k+L−1

Jk(uk:k+L−1) (67)

where Jk(uk:k+L−1) is the objective function. As per the standard MPC, at

each time step the first control command u?k is then applied. At each time step,

the robot is required to minimize its control usage and proceed towards the

goal xg avoiding collisions, while minimizing its state uncertainty. We quantify

the state uncertainty by computing the trace of the marginal covariance of the
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robot position. As a result, we have the following objective function

Jk(uk:k+L−1)
.
=

L−1∑
l=0

∥∥ξ(uk+l)
∥∥2

Mu
+tr

(
‖MΣ‖2Σk+l

)
+MCP (Cxk+l,sk+l

)

+ E
zk+L

[
‖xk+L − xg‖2Mg

+ tr
(
‖MΣ‖2Σk+L

)]
(68)

where‖x‖S =
√
xTSx is the Mahalanobis norm, Mu,Mg,MC are weight matri-

ces and ξ(·) is a function that quantifies control usage. The choice of weight ma-

trices and the control function vary with the application. The term tr
(
‖MΣ‖2Σk

)
=

tr
(
MT

Σ ΣkMΣ

)
returns the marginal covariance of the robot location. There-

fore, MΣ = τM̄Σ, where τ is a positive scalar and M̄Σ is a matrix filled with

zero or identity entries. MC penalizes the belief states with higher collision

probabilities. Since future observations are not available at planning time and

are stochastic, the expectation is taken to account for all possible future obser-

vations.

Our approach is summarized in Algorithm 1. At each time instant, the

robot state is estimated using EKF (lines 4, 7). As described in the previous

Section, obstacles are detected using a laser rangefinder. For the j−th detected

obstacle, its future state is then estimated (line 8) using the approach discussed

in Section 5. The total collision cost is then computed by adding the collision

cost with each obstacle (line 10). Please note that if no ε−safe configuration

exists then the algorithm terminates. Finally the total cost is computed as given

in (68). This is repeated for each horizon step to obtain the optimal control

policy u?k:k+L−1. The control command u?k is then applied and the process is

repeated till the goal is reached.

7. Experiments

In this Section we describe our implementation and then illustrate and ex-

plore the capabilities of our proposed approach. First, we present a theoretical

example to conceptually understand the proposed approach. Next, we consider

both single and multi-robot experiments, which are performed using different
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Algorithm 1: Safe motion planning.

input : b[xk], L, ε,N, radii, z1
k, . . . , z

n
k

1 Jk = 0, l = 0

2 compute p(si|xk+l, z
i
k+l) ∀i, 1 ≤ i ≤ n and ∆x

∆t ,
∆y
∆t

3 while true do

4 b[x−k+l+1]← b[xk+l]p(xk+1+l|xk+l,uk+l)

5 {zk+l+l} ← simulate future observations

6 for each {zk+l+l} do

7 compute b[xk+l+1]

8 predict obstacle state sk+l ( using (65) )

9 compute
∑
j P (Cxk+l+1,sk+l

)

10 compute total cost ( using (68) )

11 end

12 Jk ← Jk+ total cost

13 end

14 u?k:k+L−1 ← arg minuk:k+L−1
Jk(uk:k+L−1)

15 return u?k:k+L−1

Gazebo-based realistic simulations. For all the experiments we use a TurtleBot3

Waffle robot with a radius of 0.22m. The robot is equipped with a Laser Dis-

tance Sensor LDS-01 and we use the same to acquire obstacle range and bearing.

The performance is evaluated on an Intel® Core i7-6500U CPU@2.50GHz×4

with 8GB RAM under Ubuntu 16.04 LTS. In all the Gazebo based experiments,

the initial uncertainty in robot pose is Σ0 = diag(0.1m, 0.1m, 0.02rad). The

LDS detections/measurements are only from the obstacles whose motion is un-

known and the EKF is employed to predict the robot state at each time step.

The ground truth odometry from Gazebo is used to measure the pose of the

robot, mimicking a motion capture system. This measurement is then cor-

rupted with noise to perform state estimation. However, this estimation is not

performed at each time step and we randomly select the times steps to carry out
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the same. In this way we explore the robustness of our approach to localization

uncertainties.

Remark 1. We note here that comparison to other approaches have been pro-

vided in Section 4.5 and the computation of collision probability with these ap-

proaches have been reproduced to the best our understanding. While this may be

accurate for static scenarios as demonstrated in 4.5, we believe that extending

this comparison to online planning scenarios would not be an accurate portrayal

of these works. For example, the work in [18] finds the position with the maxi-

mum probability by formulating it as an optimization problem. [19] require lin-

earizing the collision constraint and computation of the inverse of the standard

error function. There are a number of ways to perform the optimization, the

linearization or the computation of the error functions. So unless we know the

exact methods used by these approaches, extending the comparisons to online

planning would lead to an inaccurate depiction of these approaches. We thus

limit the comparison to these approaches to static scenarios presented in Sec-

tion 4.5. The approaches in [17, 18, 19] compute upper bounds for collision

probability and if these methods are employed, we expect them to produce longer

paths than the ones depicted in this section.

7.1. Theoretical Example

We consider the case of a mobile robot navigating in a 2D environment of

20m× 40m. Fig. 8 shows the underlying PRM graph (sampled nodes in green,

connected by edges) with 90 nodes. In this domains, the robot (radius 0.3m),

starting from its initial belief state (mean pose denoted by S in the figure)

has to reach the node xg (G in the figure), minimizing its cost function (68).

The blue/magenta triangles denote the landmarks in the environment and the

solid black blobs represent the obstacles in the environment. The red ellipses

denote the 3σ covariances (only the (x,y) portion is shown). Unless otherwise

mentioned, in all the experiments, 0.99−safe configurations are solicited and the

total planning time is the average time for 25 different runs.
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(a) (b) (c)

Figure 8: Trajectory and the covariance evolution for single planning for the 2D

environment. (a) Plan obtained when object uncertainty is not considered. (b) The

planned trajectory when object uncertainty is considered (c) Planned trajectory with

true landmark locations.

The state xk
.
= (xk, yk, θk) is the robot pose (position and orientation) at

time k. The applied control vector uk
.
= (δrot1, δtrans, δrot2) consists of an

initial rotation δrot1, followed by a translation of δtrans and a final rotation of

δrot2, orienting the robot in the required direction. As a result, the following

non-linear dynamics is obtained ([31])

xk+1 = xk + δtrans cos(θk + δrot1)

yk+1 = yk + δtrans sin(θk + δrot1)

θk+1 = θk + δrot1 + δrot2

(69)

For robot localization, we consider a landmark based measurement model that

returns the range and bearing. The measurement model with noise is thus
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(a) (b)

Figure 9: Execution traces of robot’s true state across ten simulation with initial state

drawn from the known initial belief. (a) Computed control when object uncertainty not

considered is followed. (b) Traces of robot’s true state while following the computed

control considering object uncertainty.

obtained as

zk =


rik =

√
(Oik(1)− xk(1))2 +Oik(2)− xk(2))2

φik = arctan(
Oi

k(2)−xk(2)

Oi
k(1)−xk(1)

)− xk(3)

+vk , vk ∼ N (0, Qk) (70)

where rik and φik are the range and bearing of the i-th object Oik (at time k)

relative to the robot frame.

The mean landmark locations are (0, 18), (8, 28), (20, 18), (18.9, 13.5). The

landmarks at (20, 18), (18.9, 13.5) are not precisely known and has an associ-

ated uncertainty of diag(0.02, 0.02) in each of their locations. We first neglect

the uncertainty and plan using the mean landmark locations. The planned tra-

jectory is seen in cyan in Fig. 8(a) and the associated beliefs are seen in red.

The overall planning time is 0.0041s(±0.0003s). We note here that the overall

planning time also includes the collision probability computation time. Next,
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(a) Scenario A (b) Scenario B

(c) Scenario C (d) Scenario D

Figure 10: Top view of robot and obstacle trajectories are plotted with the starting

locations marked as round blobs. The robot trajectory is shown in blue. (a) Single

obstacle with velocity of 0.5m/s. (b) Obstacle velocity is 1.0m/s. (c) Obstacle velocity

is 2.5m/s and the zoomed figure is shown in the inset. (d) Four obstacles with different

velocities.
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(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4

Figure 11: Top view snapshots of the robot and the obstacle at four different stages

(from left to right) of the experiment in scenarios A (row 1), B (row 2) and C (row

3) shown in Fig. 10. Positive x-axis is vertically downwards.
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(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4

(e) Stage 5 (f) Stage 6 (g) Stage 7 (h) Stage 8

Figure 12: Top view snapshots of the robot and the obstacles in the Gazebo envi-

ronment at different stages of the experiment in scenario D shown in Fig. 10.

we consider the landmark uncertainty during planning. The planned trajectory

and the associated beliefs are seen in Fig. 8(b). We note here that there is a

significant change in the planned trajectory. The total planning time in this

case is 0.0042s(±0.0008s). Finally, we plan using the true landmark locations

of (0, 18), (8, 28), (20, 17.5), (18.9, 13) which are seen in magenta in Fig. 8(c).

The overall planning time is 0.0044s(±0.0011s). As seen in the figure, the

planned trajectory is similar to the case when landmark uncertainty is consid-

ered. However, executing the plan synthesized by not considering the landmark

uncertainty (scenario in Fig. 8(a)) would lead to collision and larger goal state

covariance. This is visualized in Fig. 9. The traces of true robot state across

ten simulations while executing the plan synthesized by neglecting object uncer-

tainty (scenario in Fig. 8(a)) is shown in Fig. 9(a). The initial state is sampled

from the known initial belief (plotted as red circle in figure) and 60% of the

executions lead to collision. Fig. 9(b) shows the traces of true robot state across

ten simulations while executing the computed control policy by considering ob-
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ject uncertainty (scenario in Fig. 8(b)). Therefore, not considering the object

uncertainty lead to localization errors and thereby synthesize inefficient plans.

7.2. Single-robot Scenarios

In this Section, we discuss our collision avoidance approach considering

single-robot scenarios in the Gazebo simulator. Dynamic obstacles are simu-

lated using different robots whose motion model is unknown to the considered

robot. The robot kinematics is as follows

xk+1 =


xk − Vk

ωk
sin(θk) + Vk

ωk
sin(θk + ωk∆t)

yk + Vk

ωk
cos(θk)− Vk

ωk
cos(θk + ωk∆t)

θk + ωk∆t

+ wk (71)

where the applied control uk = (Vk, ωk)T is made up of the linear and angu-

lar velocities and wk is the noise as defined in Section 1. We define the prior

uncertainty in the obstacle location as diag(0.1m, 0.1m) and corrupt the range

data returned by LDS with varying noise with variance 0.1 × rand(1)m2. By

default, 0.99−safe configurations are solicited and we use a look-ahead hori-

zon of L = 7. Since the TurtleBot3 robot is used, the collision constraint is

‖xk − sk‖2 ≤ (0.22 + 0.22)2. In each experiment, we consider a robot starting

from the location (0, 0) and having to reach the goal location of (3, 0), subject

to minimizing the objective function in (68).

First, we consider three scenarios (A,B and C) where the robot has to avoid

head-on collisions with dynamic obstacles. The obstacle linear velocities in each

scenario are 0.5m/s, 1.0m/s and 2.5m/s, respectively. This is however unknown

to the robot and at each time step obstacle states are estimated using the

approach detailed in Section 5. The robot and obstacle trajectories for the three

scenarios are shown in Fig. 10(a)-(c). Note that evading a collision is the main

focus of these experiments and hence only the relevant trajectories are plotted.

Snapshots of four different stages during each the trajectory execution are shown

in Fig. 11. The first row corresponds to scenario A, the second to scenario B

and the third row displays snapshots of scenario C. For all the scenarios, stage 1
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shows the initial configuration of the robot and the obstacle. Once the obstacle

is detected, a control command for evading the obstacle is computed to move

towards a 0.99−safe configuration. The beginning of execution of such a control

command is seen in stage 2. Stage 3 shows the snapshot when the obstacle

and the robot are very close to each other with the robot evading the obstacle

to avoid collision. In stage 4 it is seen that the robot has successfully avoided

collisions. The video accompanying this paper demonstrates these results. For

each scenario, the experiment is performed 50 times and the average time for

computing the associated collision probability is shown in the first three rows

of Table 4. The last row corresponds to Scenario D, a multi-obstacle scenario

which will be described soon. As a safety metric, the minimum distance between

the two robots is also measured and the results are shown in Table 4. For all the

scenarios a success rate of 100% is achieved, that is, in all the 50 experiments,

there were no collisions. However, lower look-ahead horizon, that is, L < 7 did

not give 100% success rate as most often the obstacles were too close before

executing the appropriate control command. Another parameter that affects

the success rate is the value of ε. For example, a 0.4−safe configuration always

resulted in collision for scenarios B and C.

In scenario D, we consider four obstacles, each with different velocities. The

robot successfully evades collision with all the four obstacles and the results

are shown in the last row of Table 4. The trajectories of the robot and the

obstacles can be seen in Fig. 10(d). Aerial snapshots at different time instants

are shown in Fig. 12. Stage 1 corresponds to the initial configuration of the robot

and the obstacles. Stages 2 and 3 show the robot moving to evade a head-on

collision with obstacle 2 (obstacle numbers in Fig. 10(d)). Stages 4 through 7

show different instances while the robot tries to evade the remaining obstacles.

Finally, in stage 8, the robot has successfully avoided potential collisions. The

mean computation time for collision probability is 0.3682s and the computation

time of the entire framework is 0.4230s. The entire framework time includes

the time for collision probability computation, uncertainty propagation, and

obstacle state estimation.
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(a) Scenario I (b) Executed trajectory

(c) Scenario II (d) Executed trajectory

(e) Scenario III (f) Executed trajectory

(g) Scenario IV (h) Executed trajectory

Figure 13: Different multi-robot scenarios and the corresponding trajectories exe-

cuted by the robots. 53



Table 4: The minimum distance between the robot and the obstacles and the collision

probability computation time for four different scenarios. The minimum distance

corresponds to the minimum among all the distances between robots and the obstacles.

Scenario Minimum distance (m) Collision probability

computation time (s)

A 0.16 0.0267 ± 0.0078

B 0.31 0.0189 ± 0.0074

C 0.12 0.0191 ± 0.0072

D 0.20 0.0368 ± 0.0023

7.3. Multi-robot Scenarios

In this Section we demonstrate our approach with multi-robot planning sce-

narios. In this setting, each robot considers all other robots as dynamic obsta-

cles. However, there is no communication between the robots and the obsta-

cle/robot states are estimated using the approach described in Section 5.

We first consider different scenarios with two robots. The initial pose of

the robots are (0, 0, 0) and (3, 0,−π) and the goal for each robot is to navigate

towards the starting location of the other robot. The starting configuration and

the executed trajectory of scenario I can be seen in Fig. 13(a), (b). Scenario II,

which includes a cube and a cylinder as static obstacles, is shown in Fig.13(c),

(d). It can be seen that the robots evade collision with each other and the

static obstacles and navigate between the obstacles. The locations of the static

obstacles are unknown to the robots and they are estimated using the approach

discussed in Section 5. However, we assume known data association and we

apply the collision constraint derived in Theorem 3. The obstacles in scenario

II are pulled closer in scenario III (Fig. 13(e),(f)) to prevent the robots from

passing between the obstacles. This is rightly estimated by the robots and they

navigate around the obstacles to reach the goal. However it was seen that for

L < 7, both robots turned to the same side and 20% (10 out of 50) of the time

this leads to collision. This is so because, as the robots turn to the side of the
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Table 5: Minimum distance between the robot and the obstacles in four scenarios

and the corresponding collision probability computation time.

Scenario Minimum distance (m) Collision probability

computation time (s)

I 0.33 0.0117 ± 0.0044

II 0.08 0.0137 ± 0.0123

III 0.51 0.0099 ± 0.0013

IV 0.10 0.0211 ± 0.0052

cube, the cube occludes one robot from the other. By the time each robot turns

around the cube and see the other, they are already too close to avoid collision.

In scenario IV (Fig. 13(g),(h)), we consider four robots, where the robots facing

each other are required to swap their positions. The initial poses of each robot

are (0, 0, 0), (1.5,−1.5, π2 ), (3, 0,−π) and (1.5, 1.5,−π2 ), respectively.

Table 5 shows the statistics for the four scenarios discussed above. The min-

imum distance between the robot and the obstacle and the average computation

time for evaluating the collision probability are reported. In scenario IV, it was

seen that ε < 0.99 leads to collision in 80% of the experiments. For the other

scenarios, ε < 0.9 successfully evaded collision in all the experiments.

8. Discussion

In Section 4.5, we have compared our approach to other similar techniques [20,

17, 18, 19] and it is seen that our approach outperforms them. In this section we

outline few limitations and discuss how to overcome them by proposing suitable

extensions. These extensions would enhance the capability and robustness of

our approach in challenging scenarios.

In Section 5, we have modelled the object uncertainty as a Gaussian. The

assumption is justified in the case of Gaussian belief states, and works for all

practical situations. Yet, in general, the model might not be Gaussian and it

has to be determined based on the environment, sensing model and the robot
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task that needs to be achieved. Finding an appropriate model, especially for

non-Gaussian belief states is a work for the future.

The collision probability approach discussed in this paper is not restrictive to

mobile robots and is readily extended to any 3D rigid body robot. For example,

a quad-rotor can be approximated using a minimum volume enclosing sphere

and therefore our approach can be used directly. Similarly, in the a manipulator

robot each link is approximated by minimum volume bounding spheres that

tightly enclose the link. For such robots, the collision with an obstacle has to be

checked for each bounding volume. For example, let us consider a manipulator

robot with l bounding spheres. Then the collision condition for the i−th sphere

is given by Cxi
k,sk

, where xik is the center of the i−th sphere. Furthermore, an

alternative and more appropriate approach is to consider the minimum-volume

enclosing ellipsoid for each link [44]. For every convex polyhedron, there exists a

unique ellipsoid of minimal volume that contains the polyhedron and is called the

Löwner-John ellipsoid of the polyhedron [45]. Thus each link can be represented

by their corresponding Löwner-John ellipsoids. However, the collision condition

in (24) is no longer valid. The collision condition should be reformulated using

the distance between two ellipsoids. Please note that the representation using

Löwner-John ellipsoid is also extended to the 3D obstacles.

While formulating the objective function in Section 6, we assume that the

set of actions from which the robot can plan its future control is known a priori.

In other words, a finite action set is considered. This justifies the inclusion of the

collision cost term P (Cxk+l,sk+l
) in (68). However, our approach is not limited

to any specific set of actions or trajectories. The general approach would be to

include the set of all possible control actions. The objective function in (68)

is then reformulated as an optimization problem with the collision cost term

included as a constraint to keep the collisions within the 1− ε bound.

56



9. Conclusion

In this paper, we have presented an approach that incorporates reasoning

regarding the landmark uncertainties within the BSP framework. We consider a

Gaussian parametrization of the belief dynamics and derive the corresponding

mean and covariance of the belief state when the object uncertainty is con-

sidered. We also analyse the effect of adding the object uncertainty for belief

estimation and provide the conditions when the effect is negligible. Furthermore,

we present a novel approach to compute an exact expression for the collision

probability when the robot and obstacle states are uncertain. In contrast, ex-

isting works compute an approximation of the actual collision probability. The

collision condition is formulated as a quadratic form in random variable and

the associated collision probability is the cdf of the quadratic from. We derive

the cdf is derived as an infinite series and we prove its convergence and pro-

vide an upper bound for the truncation error. We further relax the spherical

geometry (of robot and obstacles) assumption by considering the exact convex

footprints of the robot and the obstacles and derive the collision constraints

for convex polygons. A method to estimate the states of dynamic obstacles

and further estimate its future states to enable non-myopic planning is also dis-

cussed. Gazebo based simulation using single and multi-robot scenarios with

both static and dynamic obstacles demonstrate the real-time online capability of

our approach. We further discuss the limitations of our approach and delineate

possible directions for future work.

APPENDIX A: Derivation of (11)

The mean of b[xk+1] is the value that minimizes Jk+1, and therefore it is

obtained by equating its first derivative to zero. The first derivative of Jk+1

with respect to xk+1 is obtained as

∂Jk+1

∂xk+1
= −HT

k+1Q
−1
k+1

(
zk+1 − h(µ̄k+1)−Hk+1(xk+1 − µ̄k+1)

)
+

Σ−1
Oi

k+1

(
xk+1 − µOi

k+1

)
+ Σ̄−1

k+1 (xk+1 − µ̄k+1) (72)
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Since we are evaluating an expression for the mean, we will substitute µk+1

for xk+1. Thus setting the first derivative of Jk+1 to zero, we have

HT
k+1Q

−1
k+1

(
zk+1 − h(µ̄k+1)

)
= HT

k+1Q
−1
k+1Hk+1 (µk+1 − µ̄k+1) +

Σ−1
Oi

k+1

(
µk+1 − µOi

k+1

)
+ Σ̄−1

k+1 (µk+1 − µ̄k+1)

= HT
k+1Q

−1
k+1Hk+1 (µk+1 − µ̄k+1) + Σ̄−1

k+1 (µk+1 − µ̄k+1) +

Σ−1
Oi

k+1

(
µk+1 − µ̄k+1 + µ̄k+1 − µOi

k+1

)
= HT

k+1Q
−1
k+1Hk+1 (µk+1 − µ̄k+1) + Σ̄−1

k+1 (µk+1 − µ̄k+1) +

Σ−1
Oi

k+1

(µk+1 − µ̄k+1) + Σ−1
Oi

k+1

(
µ̄k+1 − µOi

k+1

)
=

(
HT
k+1Q

−1
k+1Hk+1 + Σ̄−1

k+1 + Σ−1
Oi

k+1

)
(µk+1 − µ̄k+1) +

+ Σ−1
Oi

k+1

(
µ̄k+1 − µOi

k+1

)
(73)

From (10) we have Σ−1
k+1 = HT

k+1Q
−1
k+1Hk+1 + Σ̄−1

k+1 + Σ−1
Oi

k+1

. Also using the

fact that Kk+1 = Σk+1H
T
k+1Q

−1
k+1, (73) simplifies to

Kk+1

(
zk+1 − h(µ̄k+1)

)
= µk+1 − µ̄k+1 + Σk+1Σ−1

Oi
k+1

(
µ̄k+1 − µOi

k+1

)
(74)

Rearranging, we get the final expression

µk+1 = µ̄k+1 +Kk+1

(
zk+1 − h(µ̄k+1)

)
+ Σk+1Σ−1

Oi
k+1

(
µOi

k+1
− µ̄k+1

)
(75)

APPENDIX B: Derivation of (12)

In this Appendix we derive the expression for Σk+1 in terms of the Kalman

gain Kk+1 and the predicted covariance Σ̄k+1. For convenience we write down

the matrix inversion lemma which states that for any invertible matrices B and

C and any matrix D with appropriate dimensions, the following holds true(
B +DCDT

)−1

= B−1 −B−1D
(
C−1 +DTB−1D

)−1

DTB−1 (76)

We note here that the Kalman gain Kk+1 = Σk+1H
T
k+1Q

−1
k+1 in (11) is a

function of Σk+1. Thus we first need to derive an expression for Kk+1 that

does not depend Σk+1. To obtain such an expression, we follow the approach
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for the standard EKF case presented in [31]. We begin by post-multiplying

Σk+1H
T
k+1Q

−1
k+1 with an identity matrix I = AA−1, where

A =

(
Hk+1Σ̄k+1

(
Σ̄k+1 + ΣOi

k+1

)−1

ΣOi
k+1

HT
k+1 +Qk+1

)
(77)

To avoid clutter, let us further define Σ̃k+l =
(

Σ̄k+1 + ΣOi
k+1

)−1

. The expres-

sion for Kk+1 can then be written as

Kk+1 = Σk+1H
T
k+1Q

−1
k+1

(
Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1+

Qk+1)
(
Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1 +Qk+1

)−1

= Σk+1

(
HT
k+1Q

−1
k+1Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1+

HT
k+1

)(
Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1 +Qk+1

)−1

= Σk+1

(
HT
k+1Q

−1
k+1Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1+(

Σ̄k+1Σ̃k+lΣOi
k+1

)−1

Σ̄k+1Σ̃k+lΣOi
k+1

HT
k+1

)
(
Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1 +Qk+1

)−1

(78)

We will now compute the inverse of the term Σ̄k+1Σ̃k+lΣOi
k+1

. This can be

done as follows:

(
Σ̄k+1Σ̃k+lΣOi

k+1

)−1

=

(
Σ̄k+1

(
Σ̄k+1 + ΣOi

k+1

)−1

ΣOi
k+1

)−1

= Σ−1
Oi

k+1

(
Σ̄k+1 + ΣOi

k+1

)
Σ̄−1
k+1

= Σ−1
Oi

k+1

Σ̄k+1Σ̄−1
k+1 + Σ−1

Oi
k+1

ΣOi
k+1

Σ̄−1
k+1 = Σ−1

Oi
k+1

+ Σ̄−1
k+1 (79)
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The expression in (78) simplifies to

Kk+1 = Σk+1

(
HT
k+1Q

−1
k+1Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1+(

Σ−1
Oi

k+1

+ Σ̄−1
k+1

)
Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1

)
(
Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1 +Qk+1

)−1

= Σk+1

(
HT
k+1Q

−1
k+1Hk+1 + Σ−1

Oi
k+1

+ Σ̄−1
k+1

)
Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1(

Hk+1Σ̄k+1Σ̃k+lΣOi
k+1

HT
k+1 +Qk+1

)−1

= Σk+1 (Σk+1)
−1

Σ̄k+1Σ̃k+lΣOi
k+1

HT
k+1(

Hk+1Σ̄k+1Σ̃k+lΣOi
k+1

HT
k+1 +Qk+1

)−1

(80)

where we have used the fact that Σ−1
k+1 = HT

k+1Q
−1
k+1Hk+1 +Σ−1

Oi
k+1

+Σ̄−1
k+1. Thus

we obtain

Kk+1 = Σ̄k+1Σ̃k+lΣOi
k+1

HT
k+1

(
Hk+1Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1 +Qk+1

)−1

(81)

Let us now define Ξk+1 = Σ−1
Oi

k+1

+ Σ̄−1
k+1. Applying the matrix inversion

lemma to the right hand side of (10), we have

Σk+1 = Ξ−1
k+1 − Ξ−1

k+1H
T
k+1

(
Qk+1 +Hk+1Ξ−1

k+1H
T
k+1

)−1

Hk+1Ξ−1
k+1 (82)

From (79), we have

Ξ−1
k+1 = Σ̄k+1Σ̃k+lΣOi

k+1
(83)

We note here that the expression Ξ−1
k+1 appears four times in (82). Substituting

for Ξ−1
k+1 using (83) in the second and third expression of Ξ−1

k+1 in (82), we get

Σk+1 = Ξ−1
k+1 − Σ̄k+1Σ̃k+lΣOi

k+1
HT
k+1(

Qk+1 +Hk+1Σ̄k+1Σ̃k+lΣOi
k+1

HT
k+1

)−1

Hk+1Ξ−1
k+1 (84)
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From (81) and (83), it is easily seen that the expression in (84) simplifies to

Σk+1 = Ξ−1
k+1 −Kk+1Hk+1Ξ−1

k+1 = (I −Kk+1Hk+1) Ξ−1
k+1

= (I −Kk+1Hk+1) Σ̄k+1Σ̃k+lΣOi
k+1

= (I −Kk+1Hk+1) Σ̄k+1

(
Σ̄k+1 + ΣOi

k+1

)−1

ΣOi
k+1

(85)

This completes the derivation.

APPENDIX C: Derivation of (48)

From (43), we have

lnM(θ) = d0 +

∞∑
k=1

dk
θk

k
(86)

For differentiable M(θ), we have

d

dθ
lnM(θ) =

1

M(θ)

d

dθ
M(θ) =

∞∑
k=1

ckθ
k−1 (87)

where we have used the definition of M(θ) given in (39). Also note that by

construction M(θ) > 0. Re-arranging (87), we obtain

M(θ)
d

dθ
lnM(θ) =

∞∑
k=1

ckθ
k−1 (88)

From (86), we have

d

dθ
lnM(θ) =

∞∑
k=1

dkθ
k−1 (89)

From (87) and (89), we thus obtain ∞∑
k=0

ckθ
k

 ∞∑
k=1

dkθ
k−1

 =

∞∑
k=1

ckθ
k−1 (90)

Comparing the coefficient of θk−1 on both sides of the equation, we get the

required expression for ck as

ck =
1

k

k−1∑
j=0

dk−jcj (91)
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