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Abstract

We present an approach for safe motion planning under robot state and envi-
ronment (obstacle and landmark location) uncertainties. To this end, we first
develop an approach that accounts for the landmark uncertainties during robot
localization. Existing planning approaches assume that the landmark locations
are well known or are known with little uncertainty. However, this might not be
true in practice. Noisy sensors and imperfect motions compound to the errors
originating from the estimate of environment features. Moreover, possible occlu-
sions and dynamic objects in the environment render imperfect landmark esti-
mation. Consequently, not considering this uncertainty can wrongly localize the
robot, leading to inefficient plans. Our approach thus incorporates the landmark
uncertainty within the Bayes filter estimation framework. We also analyse the
effect of considering this uncertainty and delineate the conditions under which it
can be ignored. Second, we extend the state-of-the-art by computing an exact
expression for the collision probability under Gaussian distributed robot mo-
tion, perception and obstacle location uncertainties. We formulate the collision
probability process as a quadratic form in random variables. Under Gaussian
distribution assumptions, an exact expression for collision probability is thus
obtained which is computable in real-time. In contrast, existing approaches ap-
proximate the collision probability using upper-bounds that can lead to overly
conservative estimate and thereby suboptimal plans. We demonstrate and eval-
uate our approach using a theoretical example and simulations. We also present

a comparison of our approach to different state-of-the-art methods.
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1. Introduction

Robots have become more pervasive and are being increasingly used in close
proximity to humans and other objects (both static and dynamic) in factories,
living spaces, elderly care, and robotic surgery. Planning for collision free tra-
jectories in real-time is imperative for robots to operate safely and efficiently in
such realistic conditions. However, uncertainties often arise due to insufficient
knowledge about the environment, imperfect sensing or inexact robot motions.
In these situations, it is indispensable to employ approaches that perform safe
motion planning under motion and sensing uncertainties. Planning is therefore
performed in the belief space, which corresponds to the set of all probability
distributions over possible robot states and other variables of interest. How-
ever, at the planning time, future observations are yet to be obtained. Thus,
for efficient planning and decision making, it is required to reason about fu-
ture belief distributions due to possible actions and the corresponding expected
future observations. The corresponding problem, known as Belief Space Plan-
ning (BSP), falls under the category of Partially Observable Markov Decision
Processes (POMDPs) [1].

Uncertain environments are such that they often preclude the existence of
collision free trajectories [2]. In the presence of noisy sensors, both the robot and
the environment state cannot be estimated precisely and one can only reason in
terms of the corresponding belief states. Moreover, in case of dynamic obstacles,
their future states have to be predicted and they are not known exactly due
to the lack of perfect knowledge of their motions. As such, providing safety
guarantees is difficult and for safe navigation, both the robot state uncertainty
and the uncertainty in obstacle estimates need to be considered while computing
collision probabilities.

Most robotic tasks require the knowledge of where the robot is with respect

to the environment. Localization is therefore one of the most fundamental prob-



lem in robotics and significantly impacts planning and decision making. As such,
localization is therefore a key aspect for safe and efficient navigation. However,
existing approaches assume that the landmark locations are known precisely or
with little uncertainty. For example, given the map of the environment, while
planning for future actions the standard Markov localization does not take into
account the map uncertainty (that is, landmark locations are assumed to be
perfect). This means that given the map and the sensing range, there exists a
region from which the landmark can be observed. This however, might not be
true in practice. For example, let us consider a Simultaneous Localization and
Mapping (SLAM) session. Wrong data association or dynamics objects pre-
venting loop closures could lead to wrongly estimated landmark locations and
thereby the corresponding map. Thus landmark estimates arising out of such a
SLAM session might not be known precisely. It is noteworthy that due to this
landmark location uncertainty the regions from which the landmark can be ob-
served are also uncertain. This is visualized in Fig. [l We define the pose space
as the set of all possible poses the robot can assume. The blue blob denotes
the object which when viewed from a pose z produces an observation z. Dif-
ferent observations are produced when the object is viewed from distinct poses
such that the object falls within the sensing range and there are no occlusions.
The set of all such poses is a subset of the pose space and is defined to be the
viewpoint space (green region in the figure). We note that the viewpoint space
is sensor-dependent and is determined by the sensing range and other aspects
such as occluding objects. Intuitively, the viewpoint space is object depended
and this set changes for each object. However, a pose ' that falls outside the
viewpoint space does not produce an observation. Consequently, as seen on
the left hand side of the figure, when the object location is known precisely,
there exists a subset of the pose space from which the object can be observed.
On the right hand side of the figure, the light-blue shaded region denotes the
uncertainty in object location. Thus in practice the object can be anywhere
within the uncertainty region. As a result, given a pose, it cannot be said with

certainty that the object can be observed. Subsequently, the cardinality of the
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Figure 1: The blue blob denotes an object in the environment. The green region
is the viewpoint space corresponding to the set of poses from which the object can
be observed. Robot pose x produces an observation z however z’ does not produce
an observation. On the right hand side, the light-blue shaded region denotes the
uncertainty in object location. In practice the object can be anywhere within the
uncertainty region. As a result, depending on where the object really is, it can be

observed from either = or 2’ or both the poses.

subset of the pose space from which the object can be observed is increased, that
is, the viewpoint space has increased (green region in the figure). As seen in the
figure, depending on the object really is, it can be observed from either = or z’
or both the poses. As a result, one can only reason in terms of the probability
of observing the object from the considered pose or the viewpoint. Therefore, a
probability distribution function for the viewpoint space is obtained where the
mean viewpoint corresponds to observing the object with highest probability.
Not accounting for this uncertainty can cause localization errors, leading to in-
efficient plans. In this paper, we will use the term object uncertainty to refer to

this notion of uncertainty in landmark location.

1.1. Related Work

Much research activities about planning under robot state uncertainty have
been carried out in the past few years, with applications spanning a variety of
areas [3|, [, Bl [6, [7, 8, @, 10]. Yet, most approaches assume that the landmarks
are fairly well known or are known with little uncertainty. However, in practice,

the environment is seldom known with high certainty and hence providing for-



mal guarantees for safe robotic tasks under environment uncertainty is of vital
importance. In this work we explicitly consider uncertainties in the landmark
locations and derive the resulting Bayes filter.

Several methods exist in the literature to compute collision probability and
they differ from one another in different aspects such as (1) the formulation of
the collision constraint, (2) assumptions in the shape of the robot and the ob-
stacle, (3) modelling the associated uncertainties. The approach of truncating
Gaussian distributions is leveraged to compute risk-aware and asymptotically
optimal trajectories by [I1]. [I2] truncate [I3] the estimated a priori Gaussian
state distributions to consider only the collision free samples. Thus propagating
these truncated distributions enable them to compute collision free trajecto-
ries. However, it must hold that the propagated distributions are Gaussians and
therefore the truncated distributions are approximated to be Gaussian distri-
butions. Though we model uncertainties using Gaussian distribution, we do
not truncate them. Bounding volume approaches enlarge the robot by their 3-
o uncertainties. Rectangular bounding boxes for robot and the obstacles are
used in [I4] to compute an approximate upper bound. In [I5] the future state
distributions are predicted and the uncertainties are used to compute bounded
collision probabilities. [I6] use sigma hulls for bounding robot links and com-
pute the signed distance of these hulls to the obstacles to formulate the collision
avoidance constraints. These approaches typically overestimate collision proba-
bilities and the computed values tend to be larger than the actual values.

The joint distribution between the robot and the obstacle is used to de-
rive the collision constraint in [I7] and [I8] , giving bounded collision proba-
bilities. The probabilities are obtained by marginalizing the joint distribution.
However, since there is no closed form solution to this formulation, an approx-
imate formulation is computed in [I7], [18]. Assuming that the robot radius
is negligible the joint distribution can be approximated as the product of the
volume occupied by the robot and the conditional distribution of the obstacle
evaluated at the robot location. However, as identified by [19], both the ap-

proaches produce tight bounds only when the sizes of objects are relatively very



small compared with their position uncertainties. In contrast, we do not assume
any approximation and derive an exact expression for collision probability com-
putatation. [20], an approximation is computed using Monte Carlo Integration
(MCI), which is nonetheless computationally intensive. Another related work
that uses a Monte Carlo approach and is real-time compatible is Monte Carlo
Motion Planning (MCMP) [2I]. They first solve a deterministic motion plan-
ning problem with an inflated obstacle and later adjust the inflation to compute
the desired safe path.

Chance-constrainedﬂ approaches compute approximate upper bounds by lin-
earizing the collision conditions. In contrast, we compute the exact collsion
probability value. [22] employs chance-constraints to ensure that the probability
of collision is below a specified threshold. This approach is leveraged to compute
bounded collision-free trajectories with dynamic obstacles by [19], wherein the
dynamic obstacles follow a constant velocity model with Gaussian noise. In [2],
a Gaussian Process (GP) based approach is used to learn motion patterns (a
mapping from states to trajectory derivatives) to identify possible future obsta-
cles trajectories. [23] focus exclusively on obstacle uncertainty. They formalize a
notion of shadows, which are the geometric equivalent of confidence intervals for
uncertain obstacles. The shadows fundamentally give rise to loose bounds but
the computational complexity of bounding the collision probability is greatly re-
duced. Uncertain obstacles are modelled as polytopes with Gaussian-distributed
faces by [24]. Planning a collision-free path in the presence of risk zones is con-
sidered by [25] by penalizing the time spent in these zones. Risk contours map,
which take into account the risk information (uncertainties in location, size and
geometry of obstacles) in uncertain environments are used by [26] to obtain safe
paths with bounded risks. A related approach for randomly moving obstacles is

presented by [27]. Formal verification methods have also been used to construct

LA chance-constrained approach finds the optimal sequence of control inputs subject to
the constraint that the collision probability must be below a user-specified threshold. This

constraint is known as a chance constraint.



safe plans [28] 29].

Most of the approaches discussed above leverage Boole’s inequality to com-
pute the collision probability along a path by summing or multiplying the prob-
abilities along different waypoints in the path. However, the additive approach
assumes that the probabilities along the waypoints are mutually exclusive and
the multiplicative approach treats them as independent. Such approaches tend
to be overly conservative and rather than computing bounded collision proba-
bilities along a path, the bound should be checked for each configuration along
the path itself. In this work we perform this check for each configuration along
the path. Moreover, in most approaches, the collision probability computed
along each waypoint is an approximation of the true value. For example, the
MCT approach of [20] approximates the resulting double summation expression
for collision probability to a single summation. [I9] compute an approximate
upper bound for collision probability by linearizing the collision condition. [I8]
and [I7] assume the volume occupied by the robot to be negligible. On the one
hand, such approximations can overly penalize paths and could gauge all plans
to be infeasible. On the other hand some approximations can be IOWQIH than

the true collision probability values and can lead to synthesizing unsafe plans.

1.2. Contributions

This paper makes three main theoretical contributions. First, we incorporate
object uncertainties in BSP and derive the resulting Bayes filter in terms of the
prediction and measurement updates of the Extended Kalman Filter (EKF). We
also analyse the effect of incorporating object uncertainty while computing the
posterior robot belief state.

The second is the computation of the collision probability under robot state
uncertainty and the uncertainties in estimated obstacle locations. We formulate

the collision avoidance constraint as a quadratic form in random variables under

2For example, the approach of [I7] computes a lower value than the actual when the robot

state covariance is small.



the assumption of spherical geometries for robot and obstacles. Unlike previous
approaches that compute an upper bound or derive conservative estimates for
the probability of collision, we derive an exact expression for computing it. The
convergence of the obtained expression is proved and an upper bound for the
truncation error is also derived. We also formalize a notion of safety in order to
compute configurations that satisfy the required collision probability bounds.
Moreover, we employ a Bayesian framework to predict future states of dynamic
obstacles when their motion model is unknown. The current state of dynamic
obstacles is estimated given the measurements, and the estimated states are
used to predict future trajectories. The approach is not limited to a single
obstacle and can be used to estimate the states of all obstacles detected by the
robot.

The third is the derivation of collision constraints for convex shaped polygo-
nal objects. Note that we derive the collision avoidance constraint by assuming
robot and obstacles to be spherical objects. This is a reasonable assumption
for most practical purposes since the robot and obstacles may be enclosed by
minimum volume spheres. However, in the case of 2D mobile robot collision
avoidance planning, most often it is enough to consider the robot footprint.
Due to the minimum volume spheres considered, the footprints are thus circu-
lar. Yet, this assumption can lead to overly conservative estimates and while
deriving the collision constraint and therefore we go a step beyond previous
approaches by considering the exact convex footprints of the robot and the
obstacles.

This paper is an extension of the preliminary work presented by [30]. Com-
pared with [30], a more rigorous treatment of object uncertainty is presented by
introducing viewpoint and pose spaces. We also provide the derivations for the
mean and covariance of the posterior belief when incorporating object uncer-
tainty and further discuss the impact of object uncertainty under varying object
location uncertainties. We further derive the collision constraint for non-circular
geometries and provide a rigorous comparison of our approach with other state-

of-the-art methods. Collision computation is extended to dynamic obstacles



by estimating the state of all the obstacles perceived by the robot. Further,
the offline planning approach is extended to real-time online planning. Finally,
we discuss the limitations of our approach and delineate suitable extensions to
overcome them. We also present new results with static and dynamic obstacles

in both single-robot and multi-robot settings.

1.8. Organization

The rest of the paper is organized as follows. We introduce the notations,
define the considered problem and the assumptions in Section [2] In Section
we derive the posterior belief parameters incorporating object uncertainty. We
formulate the collision constraint and derive an expression for the collision prob-
ability in Section[d In this section, we also provide a rigorous comparison of our
approach to other approaches. State estimation for dynamic obstacles is then
discussed in Section [5} In Section [7] we evaluate our approach in simulation
under different mobile robot scenarios. In Section [§] we outline the limitations

and discuss possible extensions. Conclusion are drawn in Section [J]

2. Notations and Problem Definition

We shall denote vectors by bold lower case letters, that is x and its compo-
nents by lower case letters. The transpose of x will be denoted by x” and its
Euclidean norm by ||x|| = vxTx. The the expected value of a random vectox
will be denoted by E(x). Matrices will be denoted by capital letters, that is M.
The trace of a square matrix M will be denoted by tr(M) and its determinant
by det(M). The identity matrix will be denoted by I or I,, when the dimension
needs to be stressed. A diagonal matrix with diagonal elements Aq, ..., A, will
be denoted by diag(A1,...,A,). Sets will be denoted using mathcal fonts, that
is S. Unless otherwise mentioned, subscripts on vectors/matrices will be used
to denote time indexes and (whenever necessary) superscripts will be used to

indicate the robot or the object that it refers to. For example, x}, represents the

3By a random vector we refer to a vector random variable.



state of robot ¢ at time k. The notation P(-) will be used to denote the proba-
bility of an event and the probability density function (pdf) will be denoted by
p(")-

We now formally define the problem that we tackle in this paper. Let us
consider a mobile robot operating in a partially-observable environment. The
map of the environment is either known a priori or it is built using a standard
Simultaneous Localization and Mapping (SLAM) algorithm. At any time k,
we denote the robot pose (or configuration) by xix = (xk, yk, 0r), the acquired
measurement from objects is denoted by z; and the applied control action is
denoted as uy. It is noteworthy that by objects we refer to both the landmarks
and the obstacles in the environment. We also make the following assumptions:
(1) the uncertainties are modelled using Gaussian distributions, (2) the robot
and obstacles are assumed to be non-deformable objects.

To describe the dynamics of the robot, we consider a standard motion model

with Gaussian noise
Xpr1 = f(Xp, u) +wi , wr ~ N (0, Ry) (1)

where wy, is the random unobservable noise, modeled as a zero mean Gaussian.
Objects are detected through the robot’s sensors and assuming known data

association, the observation model can be written as
zi = h(xk, O}) + v, ve ~N(0,Qr) (2)

where O} is the i—th detected object and vy is the zero mean Gaussian noise.
We note here that the motion (I}) and observation ([2)) models can be written
probabilistically as p(xg11|xx, ug) and p(zx|xy, O} ), respectively.

Given the models in (1)) and , in this paper we compute safe plans, wherein
the probability of collision of the robot with any obstacle is guaranteed to be
less than a specified bound while navigating to the goal. To this end, we con-
sider the object uncertainties while localizing the robot. Further, we employ a
Bayesian framework to estimate the current state of dynamic obstacles and use

the estimated states to predict future obstacle states. The estimated states are
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then used for non-myopic collision avoidance planning. Given the robot and
obstacle locations, we compute the exact probability of collision under motion,

sensing uncertainty, and the uncertainty in obstacle location.

3. Object Uncertainty

As discussed in Section most localization approaches assume that the
landmark locations are known precisely or with little uncertainty. This however,
might not be true in practice due to noisy measurements and/or imperfect
sensors. Thus, it is pertinent that landmark uncertainties are considered within
the localization and planning framework. Below, we delineate the incorporation

of object uncertainty within the Bayes filter.

3.1. Object Uncertainty Model for BSP

We define the collection of all objects in the environment to be the object
space O = {00 is an object, and 1 < i < |O|}. Let us posit that at time
k the robot received a measurement z; which was originated by observing the
object O%. Given an initial distribution p(x), and the motion and observation
models in and , the posterior probability distribution at time k is the

belief b[xy] and can be written as
b[xk] = p(xk|2zk, O, Zo:k—1, Wo:k—1) (3)

where O}, is the object observed at time k, zo.x—1 = {Zo, ..., Zg—1} and ug—1 =
{uo, ...,ug_1}. This posterior is thus a multivariate Gaussian, that is, b[x] ~
N (pi, Xk), where py, 3 are the mean and covariance of xy, respectively. We
note that this posterior belief is computed after incorporating the measurement
at time k, that is, z.

Given the belief b[x;] and an action uy, the belief before incorporating a

measurement will be called the propagated belief and can be written as

] = / (41X k)bl (1)
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Now let us consider that a measurement zp,; is obtained that corresponds
to observing the object O};H. The posterior distribution b[xj41] can then be
computed using Bayes rule and the theorem of total probability. This expansion
is obtained in terms of the belief at the previous time step since the Bayes filter

is recursive. Thus we have

p(Xk+1|Zk+17 02+17Z0:k7 Uo:k) =

np(zk—&-l‘xk-&-laO}i+1)p(01ig+1‘xk+1)/ P(Xpg1|Xp, up)bxi]  (5)

Xk
where 7 = 1/p(2x+1|20:k, o:x) is the normalization constant. The term p(O}, 1 [Xx+1)
denotes the probability of observing the object O} 41 from the pose xj41. In
other words, this term models the fact, how likely it is to observe O} 41 from
Xj+1 and thus models the object uncertainty. The term p(Oj, [xx+1) also ad-
ditionally model aspects such as occlusions due to static obstacles that hinder
the observation, occlusions that results due to dynamic obstacles, faulty sensors
or other aspects that impedes observations of objects of interest. Thus, given
an object one can only reason probabilistically about observing it to obtain
the corresponding measurement. However, when the object uncertainty and
other additional aspects are ignored an object is observed whenever the robot
is within the viewpoint space (see left hand side of Fig. [1). Thus, in the case
of such an assumption, for poses within the viewpoint space the term is equal
to unity, that is, p(O}H_l\XkH) = 1. For poses that lie outside the viewpoint
space, p(O},1|Xk+1) = 0 and hence no measurement can be obtained. As such,
when the object uncertainty is ignored, the term p(O}, 41/Xk+1) can be removed
from and the posterior belief parameters can be computed using the standard

EKF update equation as
Kps1 = Spn H (Hk+12k+1Hg+1 + Qk+1)_1
Pyt = i1 + Ko (2e01 — b(eg)) (6)
Sit1 = (I — Kpp1Het1) St

where Hj,11 is the Jacobian of h(-) with respect to xxy1, and K1 is the Kalman

gain.
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The exposition so far has been agnostic to the actual model of p(O}, , ;[Xp41).
In general, this term can be modeled given the environment map, the sensing
capabilities and the robot objectives. These aspects should hence be incorpo-
rated to obtain the actual object uncertainty model. However, in this work we

approximate the object distribution as a Gaussian distribution:

p(012+1|xk+1) ~N(po Yoi ) (7)

i, i
k41 k41

where roj is the viewpoint/pose that corresponds to the maximum probabil-
ity of observing O,i 41 and EOE » is the associated uncertainty in the observation.

We will now consider the object uncertainty term p(Of , |Xx+1) and derive
the Gaussian belief parameters by expanding . Expanding the right hand
side of (5)) using the probability density function (pdf) of multivariate Gaussian
distributions, we have b[xj+1] = 1’ [exp(—Tk4+1), where 1’ contains the non-

exponential terms and Jj1 is given by

1

_ _ T
Jer1 =5 (k1 — P (Bry1) = Higr (Xep1 — Bry1))

Qi1 (Zes1 — b (frs1) — Hier (Xeq1 — frs))

1 _
+ §($k+1 - Mo;+1)TEO£+1(Xk+1 - Ho;‘cﬂ)
1 Y — i 8
+ 5 (1 = M) B (K — Aesn) - (8)

where Hjy; is the Jacobian of h(-) with respect to xi4+1. As shown in [31], the
covariance Y41 is obtained as the inverse of the second derivative of Ji1 with

respect to xx11. The expression for the second derivative is obtained as

0? Tis1

T —1 —1 s —1
oxz,, Qe t Yo, ¥ ©)
+

Therefore the posterior covariance is obtained as
-1 T -1 -1 S—1
Yt = Ho1 Qi Hiepr + Eo;c+1 + X (10)

The mean of b[x41] is the value that maximizes b[x;41] and hence is obtained

by equating the first derivative of Jr4+1 to zero. The expression for the mean
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Wrt1 is obtained as (see Appendix A for derivation)

Pt = frpr + Kipr (21 — h () + Zk+125£+1 (uoi - ﬁk+1) (11)

k+1

where Ky 11 = EkHHkTHQ,:il is the Kalman gain. We note that when no object
uncertainty is considered the update step of the standard EKF gives pp1 =
L1+ Kipa (zk+1 —h (ﬁk+1)). The additional term in rightly adjusts the
mean p1 accounting for the fact that the object location is uncertain.

As in the standard EKF based Bayes filter, the expression for the covariance
Y+ can also be derived in terms of the Kalman gain Kjy; and the predicted
covariance ¥ ;. Using the matrix inversion lemma on 7 the following ex-

pression is obtained (see Appendix B for derivation)
Ypt1 = — Kpy1Hgi1) 273k+1§~3k+120;;+1 (12)

where ¥y = (ikﬂ + EO};H)ﬂ'

When object uncertainty is not considered, the update step of the standard
EKF gives Xy 11 = (I — Kpr1Hpi1) Zgr1. The extra terms in account for
the object uncertainty and scale the posterior covariance accordingly. We note
that when object uncertainty is not considered, p(Oj,,|xx+1) = 1 and hence
the results in and reduce to that of the standard EKF case in @ The
method presented above is easily generalized to multiple objects observed at
any time instant. This is done by following the sequential-sensor method ([32]),
considering the fact that given the current state estimate, the observations are

independent of each other.

3.2. Implications

Let us now analyse the effect of object uncertainty. As discussed above when
object uncertainty is not assumed, p(O% 4+1/%k+1) = 1, and therefore the poste-
rior belief parameters reduce to that of the standard EKF case. However, in
practice, one should consider object uncertainty and the posterior belief param-
eters are as delineated in and . Yet, the impact of considering object

uncertainty in localisation depends on the covariance of the estimated object
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location. When the covariance of the object location is much larger compared
to the predicted robot belief state covariance, the impact of considering object

uncertainty is greatly reduced.

Lemma 1. When the covariance of the estimated object location is much larger
than the predicted robot belief state covariance, that is, when EOIiC_H > Yiaa,

then the object uncertainty has limited impact and can be ignored.

Proof. In order to prove the above lemma, it suffices to show that when
EOZ+1 > Y141, the posterior belief parameters reduce to that of the standard
EKF update case as given in @ Let us first consider the expession in .
Using the fact that Eoli+l > Y41, then ZB%H < i,all and hence it can be ne-
glected when compared to i;il. This gives X411 = (HkT+1Ql;+11Hk+1 + i;jl) *17
and is the expression for the posterior belief covariance when object uncertainty
is not considered. Again, using EO;H] > Y441, Lre1 can be neglected from the

sum (ik+1 + ZO;CH). The expression for Kalman gain thus reduces to
_ -1 T
K1 = Egk+1 (Eo;H) Yoi, Hiy

(Hk+12k+1 (Eogﬂ)

_ _ —1
= Sk Hilyy (Hk+12k+1HkT+1 + Qk+1) (13)

-1

1
T
Yop, Hipr + Qk+1)

Thus, as can be seen in @, the Kalman gain is exactly the gain obtained when
object uncertainty is not considered. Similarly, we have EkHEaiH < 1, thus
Uir1 = 1 + Kria (Zk+1 — h(ﬁk+1)). Following a similar argument, it is
easily seen that Yy = (I — Kpp1Hpi1) Zgr1. This completes the proof of
Lemma [1

Although the above result might seem counter-intuitive at first, we note
here that the viewpoint space, when object uncertainty is not considered, is the
space centred around the mean of the viewpoint space when the object uncer-
tainty is considered. When the covariance of the object location is very high,
then the probability values for viewpoints slightly away from the mean reduces

drastically. Consequently considering these viewpoints adds little impact.
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4. Exact Collision Probability

We denote by R the set of all points occupied by a rigid-body robot at any
given time. Similarly, let S represent the set of all points occupied by a rigid-
body obstacle. A collision occurs if there exits a point such that it is in both R

and S. Thus the collision condition is defined as

RNS #{¢} (14)

and we denote the probability of collision as P (R NS # {¢}). In this work we
assume spherical geometries for R and S with radii r; and s, respectively. We
assign body-fixed reference frames to both the robot and the obstacle located
at x; and sg, respectively in the global frame. By abuse of notation we will use
x; and si equivalently to R and S. The collision condition is thus defined in

terms of the body-fixed frames as

Carsr  ROS # {6} (15)

We recall here that the locations of the obstacles are in general uncertain. Let
us now consider an obstacle at any given time instant, distributed according
to the Gaussian s ~ N (usk,ZSk), where pg, represents the mean and X,
the associated covariance. Given the current robot state x; and the obstacle
state sy, the probability of collision can be formulated if the joint distribution
between the robot and the obstacle state is known. In such a case the collision

probability is given by

P (Cxys1) :/X /S Io(x, sk)p(Xk, Sk) (16)

where Cy, s, as defined above represents the fact that the robot configuration
x; and its collision with an obstacle at location s is considered, and I, is an

indicator function defined as

1 ifRNS
L(xus0) = neAl an

0 otherwise.
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and p(Xy, s ) is the joint distribution of the robot and the obstacle. [I9] compute
an approximate upper bound for the collision probability by linearizing the
collision condition. [20] use MCI to compute (16]). However, the resulting double
summation is approximated to a single summation to reduce computational
complexity. [I7], [I8] approximate the integral in as Vp(xg,sk), where V is
the volume occupied by the robot. For computing p(xg, si), they first assume
a distribution centered around the obstacle with the covariance being the sum
of the robot and obstacle location uncertainties. Then the density p(xg,sk) is
computed by assuming a constant robot location. Du Toit and Burdick use the
robot center, whereas in [18] the maximum of p(xj,si) on the surface of the
robot is used to obtain an upper bound. However, the approximation is valid
only when the robot radius is negligible. To demonstrate, let us re-write the

collision condition as

P (Cxpsi) = /Xk [/SkeRp(Sklxk)] p(xx) (18)

If the robot radius is negligible then it can be assumed that s, = xi, giving

P (Cxp 50 Z/x lp(sk :Xk|xk)/s GJ p(xk) (19)

Thus assuming a constant value of the obstacle evaluated at the robot location,

V= /SkeR (20)

where V is the volume occupied by the robot. The approximate collision prob-

we have

ability is thus
P(Copm) ~V / plsk = xclxi)p(x) (21)

Xk

Assuming that the robot and the obstacle locations are independent Gaus-
sian distributions with sy ~ N (ps,, s, ) and x; ~ N (px, , Ex, ), the collision

probability can be approximately written as

P (ka:sk) ~ Vp(Xk = Hxy» Sk = IJ’Sk) (22)
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where

1
2

p(xk = Mx;, Sk = H’Sk) = det (271— (Zsk + Exk))
1 _
exp (= ot — 1) i, 1)) (23)

Other existing approaches truncate the state distributions or compute approx-
imate upper bounds using chance-constraints. As such, these approaches com-
pute an approximation of the collision probability. In contrast, we formulate
the collision constraint as a quadratic form in random variables, allowing us to
compute an exact expression for the collision probability. In the remainder of
this section a rigorous treatment of the same is presented.

Since the robot and the obstacles are assumed to be spherical objects, the

collision constraint is written as
[k — skll* < (r1 + 1) (24)

where (as before) x; and sj are the random vectors that denote the robot and
obstacle locations, respectively. Let the current estimates of the two random
vectors be distributed according to si ~ N (s, Xs, ) and xj ~ N (px, , Sx,. ) -
Let us denote the difference between the two random variables by w = xj — sj.
Using the expression for the difference between two Gaussian distributions, we
have w ~ N (ka — Us, s Dx,, + Esk). The collision constraint in can now

be written in terms of w,
y=[w|® =w"w < (rn +s1) (25)

where y is a random vector distributed according to the squared Lo-norm of w.
Now, given the probability density function (pdf) of y, the collision constraint

reduces to solving the integral

(ri+s1)?
P (Crpar) = / p(v) (26)

where p(y) = Py(y = y) is the pdf of y. It is noteworthy that the above integral
is the cumulative distribution function (cdf) of y, that is, P (Cx,s,) = Fy(y),

18



where Fy(y) denotes the cdf. Thus the collision condition reduces to finding the

cdf of y such that y < (r; + s1)2. As a consequence, we have

P(Cepsy) =P (y < (rm + 31)2) —F, ((7«1 + 31)2) (27)

In the following Sections, we will first show that the collision constraint is a
quadratic form in random variables and later derive an exact expression for the

cdf of the quadratic from.

4.1. Quadratic Form in Random Variables

We define a quadratic form in random variables:

Definition 1. Let € = (21,...,2,)" denote a random vector with mean p =
(p1y- .- ,,un)T and covariance matriz 3. Then the quadratic form in the random
variables x1, ...,z associated with an n X n symmetric matriz A = (ai;), with
tandjinl,...,n, is

Q(x) = Q(x1,...,2,) = ' Az = Z Z Q3T T (28)

i=1 j=1

Let us define v = £~ 2z and define a random vector z = (v - E’%u). The
resulting distribution of z is thus zero mean with covariance being the identity

matrix. Therefore, the quadratic form becomes
1 T 1 1 1
Qz) = (z+2_5u) Y2 A%z (z—i—Z_fu) (29)
Let us suppose there exists an orthogonal matrix P, that is, PPT = I which
diagonalizes Z%AZ%7 then PTY2 AR P = diag (A1,...,A\n), where A1,..., A,
are the eigenvalues of $2A¥2. The quadratic form can now be written as
1 T 1 1 1
Q(x) = (z + 275[1/) Y2AX? (z + Eiiu)

= (u+b)  diag(A1,..., ) (u+b)

(30)

where w = PTz = (uy,...,u,)T and b = PTS 2y = (by,...,by)T. The

expression in (30)) can be written concisely,

Q(z) =xT Az = Zn: Ni(u; + b;)? (31)

i=1
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It is easily verified that the left hand side of , that is wT w, is in the
quadratic form Q(w) with A = I, that is, the identity matrix. Thus the collision

probability can be computed from the cdf of the quadratic form.

4.2. Series Expansion for the Quadratic Form

We describe below the most general method used to obtain a series expansion
for the pdf and cdf of the quadratic form in random variables. Various other
methods exists in the literature and we refer the interest readers to [33] for a
brief survey. The series expansion that we seek for the pdf of the quadratic form

is of the form

py(W) =ply =y) = Y ckhi(y) (32)
k=0

where ¢, is a sequence of complex number and {h;} is a known sequence of the
form y*. Let the Laplace transform of hy(y) be denoted by L(hy(y)). In the

expansion sought here, the Laplace transform is of the special form ([34])

L(hi(y)) = &(s)n"(s) (33)

where, for Re(s) > « and « being a real constant, {(s) is a non-vanishing
(non-zero everywhere) analytic function and 7(s) is an analytic function with
an inverse function n(¢(6)) = 0. Now we are interested in the case where the
series expansion is convergent, that is, Ziio crhi(y) < co. For any real number

B, let us define

S ehily) < 3 lenllhn ()] < ae, y € [0,0] (34)
k=0 k=0

If the above equation is satisfied almost everywhere, then computing the Laplace

transform, we have

/ e YaelV = a/ e~y < o (35)
0 0

if (s —a) > 0. Therefore, from Lebesgue’s dominated convergence theorem, we

have the following lemma.
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Lemma 2. Let {h;}5° be a sequence of measurable complex valued functions on
[0,00] and {ck}5° be a sequence of complex numbers such that almost everywhere

the following is satisfied

Z lek||he ()| < aeP?, y € [0, 00] (36)

o0

where «, 3 are real constants. Then when s > 0 and py(y) = > crhi(y), we
k=0
have

) = eLhi(y) (37)
k=0

The implications of the above lemma are twofold. The first is that the
series expansion is convergent. This however is rather straightforward from our
construction of the series expansion. The second is the fact that the Laplace
transform of the series py(y) can be obtained by taking the Laplace transform
of the individual terms of the series. This fact will be used below to derive the
pdf and the cdf of the quadratic from. We now state the following theorem
without proof. The proof may be found in [33].

Theorem 1. For Q(z) = y = ' Az with A = AT > 0,z ~ N (1, %), 3 > 0,
the moment generating function Mq(t) of Q is given by
Mg(t) = exp Zzﬂ exp ;ibm —2t\;)7! ﬁa —2tA;)"7 (38)

i=1

where the b;, \; are the parameters of the quadratic form as defined in Sec-

tion Let us now define the series M(6) such that
Lh(y) _ . gh
Ck— cx0 (39)
L T
where the infinite series is a uniformly convergent series for 6 in some region

with M(0) > 0, M(0) = ¢o and s = ((¢). We note here that if py(y) = 0 for
y < 0, then Mq(—t) represents the Laplace transform of py(y). Thus, from
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we have

1 ¢ I )
L (py(y)) = exp —521)? exp QZb?(l—l—Qs/\i)_l H(1+28)\i)_5
i=1 i=1

Using ¢(0) = 0!, we have

L(py(y)) = s~ 2 M(6)

Thus we obtain,

n

co = M(0) = exp %be ﬁ(mr%

i=1 i=1

Differentiating the natural logarithm of M (), we get the following form

where

do = —;Z}bf —i—lnl:[l(Q)\i)_%

dy = % > (1-m) x)

i=1

From , we have the following lemma.

Lemma 3.

L (py(y)) = i Ck(—l)k3_<%+k)

k=0

(44)

(45)

We now obtain the required expressions for the pdf and cdf of the quadratic

form of Q(x).

Lemma 4. The cdf of Q(z) = y = 2! Az with A = AT > 0,2~ N(u,3),~ >0

8

Byw) =ply<p) =3 (D L
v\ py_yfk:o Ckl“(%—kk—i—l)
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and its pdf is given by
24k—1

() = S (ke YT
py(y)—p(yfy)—kz:o( D8

where I' denotes the gamma function, ¢y and dy, dy, are the terms defined in

and 7 respectively. The expression for ¢ is given by (see Appendix C for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>