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Abstract

Traditional Reinforcement Learning (RL) supposes a complex but single task to be solved. When a RL

agent faces a task similar to a learned one, the agent must relearn the task from the beginning because it

doesn’t reuse the past learned results. This is the problem of quick action learning, which is the foundation

of decision making in real world. In this paper, we suppose agents that can solve a set of tasks similar to

each other in multiple tasks environment, where we encounter various problems one after one, and propose

a technique of action learning that can quickly solve similar tasks by reusing previously learned knowledge.

In our method, a model-based RL uses a task model constructed by combining primitive local predictors for

predicting task and environmental dynamics. To evaluate the proposed method, we performed a computer

simulation using a simple ping-pong game with variations.

keywords: Model-based reinforcement learning; Multiple tasks; Task model; Reuse of knowledge
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1 Introduction

In the field of machine learning, various learning methods have been proposed for each learning task to

enable effective learning even for complex tasks. However, for each learning task, the setting of learning

procedures, including input information, a priori knowledge, and the procedure are decided and embedded in

the learning program by human engineers depending on the current task’s requirements, not autonomously

by the learning machine.

As researchers tend to work to solve a current problem, many machine learning models are assumed

to be applied to difficult but single tasks. This causes the resulting knowledge from task learning to be

specialized to the task and prevents knowledge acquired from similar but different tasks to be reused in new

learning task situations. But in the real world we encounter many different tasks one after one and the exact

same task or situation rarely happens: this is the definition of a multiple tasks environment. Though people

may feel that reusing an experience in task solving is easy for different tasks, human engineers are actually

reusing their own experiences, not the learning machine. Of course occasionally acquired knowledge can be

reused, but it usually requires the intervention of human engineers who design and set the reuse process. In

principle, current machine learning methods themselves are relatively inflexible for multiple task learning.

These considerations suggest that the important factors that enable application of a learning model to

various learning tasks are the analysis of target tasks and the setting of learning procedures by human

engineers before learning. Then it is humans who really exhibit real intelligence in divergent process of

problem solving and current learning machines are not so flexible for autonomous setting to new problems.

However, regarding possible future situations, where intelligent machines such as robots will play active

roles in everyday life, robots will probably encounter various learning tasks in a changing real world for

which they are unprepared. Under these conditions, a robot has to autonomously decide what and how to

learn and then conduct the learning. Rather than making learning models more efficient for a single task,

it becomes crucial to develop a method that autonomously finds and sets learning procedures for new tasks

in the multiple tasks environment.

In contrast, humans can choose suitable actions when facing various new tasks in their daily lives. In

particular, humans exhibit very quick learning ability for tasks similar to past experiences. This ability

reflects the results of human functions that find and identify learning tasks in everyday life, decide learning

methods for them, and quickly setup learning/action-decision brain networks based on past experiences
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autonomously. We call this ”task setting ability.”

We will realize an intelligent learning machine in multiple tasks environment when we can clarify infor-

mation processing of human task setting and embed the process in machine learning algorithms. In this

study, we aim to achieve a learning machine that autonomously sets up its learning tasks and quickly learns

its actions for new tasks that resemble past experiences.

We approach this problem through a framework of model-based reinforcement learning (MBRL), which

is a kind of reinforcement learning that realizes effective action learning using a model of environmental

dynamics. The environmental model has such functions as next state prediction from current state and

action and prediction of reward acquisition for a given state. In MBRL the construction of an environmental

dynamics model necessary for task solving shares major parts of the task setting process.

In conventional MBRL methods, the environmental dynamics model is learned slowly through a large

amount of interactive experiences with its environment or is given by human engineers who already got it

by another method. The latter is beyond the scope of this study. The former requires a long learning time

with conventional methods. So an autonomous and quick task setting method that reuses knowledge from

past similar experiences is a fundamental solution to the problem.

In the field of multiple task learning in robotics, some people advocate autonomous task representation

setting through experiences [S. Thrun and L. Pratt 1998; J. Weng et al. 2000; K. C. Tan et al. 2005].

For such realization, methods are proposed in which a robot acquires behavior knowledge through a set of

similar tasks and reuses the knowledge for other similar new tasks [S. Thrun and J. O’Sullivan 1996; S.

Thrun and L. Pratt 1998; J. Weng et al, 2000; K. C. Tan et al. 2005]. In these methods, tasks are classified

into clusters based on their similarity. For all clusters, a set of proper features are defined, extracted, and

used for action learning, and the learning result is reused for new tasks belonging to the same cluster.

But since this knowledge is dependent on both the task and the learning algorithm, its applicable range is

narrow. Though those researches succeeded in multiple task learning, their methods don’t contain effective

techniques for task setting when viewed from the human task setting ability being discussed in this paper.

Mixture of experts model [R.A.Jacobs and M.I.Jordan et al. 1991] is known as a learning system

using modular architecture, and has been applied to nonlinear or nonstationary control tasks. However,

success of such modular architecture depends strongly on a capability of gating network to decide which

of given modules should be recruited at any particular moment. In general, gating network requires long

learning time to acquire all of necessary input-output relations, and is difficult to realize human like quick
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adaptation. MOSAIC model [D.M.Wolpert and M.Kawato. 1998; M.Haruno and D.M.Wolpert 2001] is

composed of multiple modules in which a forward model and an inverse model are forming a unit. This

system decides output of each module and learns each module in proportion as a prediction error of the

forward model. MOSAIC model is categorized into supervised learning that desired output is given in

advance. However, in many problems of the real world, desired input-output relation is often unknown. The

multiple model-based reinforcement learning (MMRL) [K.Doya and K.Samejima et al. 2002] can be applied

for this case. MMRL is composed of multiple prediction models and reinforcement learning controllers.

MMRL adaptively switches and combines pairs of prediction model and controller based on prediction error

of prediction models. However, all state variables are used for input of the prediction model, and it causes

difficulty for reusing the prediction models to other tasks in which environment and state variables change.

Additionally, MOSAIC and MMRL deal with problems of motor control but we deal with more cognitive

problem solving situations.

In this paper, we propose a new method of autonomous and quick task model construction for new

problems based on reusing knowledge from past experiences. The task model is a model of environmental

dynamics in MBRL that can be used to predict the change of environmental status from a current one to a

rewarded one. By using the task model, we can predict how the task state develops from an action in the

current state and predict potential reward acquisition before the action execution. Its use in MBRL results

in drastic acceleration of learning.

To construct the task model, we must find causalities, such as the physical rules for objects and state

and action relations for reward acquisition, embedded in the task and represent them as a reusable form of

knowledge. For that purpose, we assumed the following two hypotheses about task environments: (a) Regu-

larity exists based on physical laws and/or causalities between variables representing the task environment.

(b) Possible variations of tasks share those regularities.

Based on these hypotheses, we assumed that humans construct the task model for a task by following

procedures and realize action learning using them. (1) Perceive sensory information from the current task

scene and extract possible features. (2) Select a subset of the features necessary for task processing. (3)

Find regularity and causality between the features. (4) Construct the task model by combining them online.

(5) Learn proper actions for the task using the task model.

The following two information processing functions were necessary to realize these procedures in a

learning program. (i) Finding local regularity between variables in each task scene and setting prediction
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learning between them. (ii) Construction of the task model representing the entire task process by a dynamic

combination of those local predictions.

We used a local prediction model to represent causalities between subsets of variables. In our study,

the knowledge of causal relations in the environment is acquired through local prediction learning and is

accumulated in as a local predictor corresponding to each causality. In our model, each local prediction

model is composed of a Predictor for local prediction and a Selector that encodes the Predictor’s application

conditions. After the Selector and Predictor sets are learned, we can select applicable knowledge by observing

the current environmental state and predict changes in the state by applying local prediction models. The

system automatically selects and combines the local prediction models bottom-up and dynamically predicts

the state of task related part of the environment. When Predictors and Selectors are shaped by previous

experience, this process is the autonomous construction of the task model for new task reusing knowledge

of an environment.

In this study, we conducted a computer simulation on simple TV games that included causal relations

and evaluated the effectiveness of the proposed method. In the experiments, the system first acquired

knowledge of regularities in the task environment by learning a standard game. Next, the system tackled

action learning on variations of the standard game. Through the experiments, we expected the appearance

of the quick construction of task models and quick action learning of a new task by the reuse of knowledge.

Though this experiment is merely a case study on a toy environment, it still poses a challenging problem

whose realization is difficult without human intervention for current machine learning task setting strategies.

In this paper, explanations proceed as follows. In section two, we give a conceptual explanation of the

proposed method. After a detailed description of its implementation in section three, we show computer

simulation results in section four. Then we discuss the results in section five and conclude this study in

section six.

2 Dynamic construction of task models in reinforcement learning

2.1 Structure of model-based reinforcement learning

Model-based reinforcement learning (MBRL) accelerates the learning of simple reinforcement learning (RL)

using simulated virtual action and learning through an internal environment model in addition to the usual

RL in which an agent actually interacts with its environment. The simulation function can be realized by
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adding a prediction model of an environment to the components of a simple RL.

Figure 1 shows the basic structure of DYNA architecture as a typical example of MBRL (Sutton 1990;

Sutton 1991). In DYNA, two RL methods are included in parallel. One is a direct action and experience

based RL, as shown on the left side of Figure 1. Another is an RL using virtual action and simulated

experience by an environmental model on the right side of Figure 1. By learning the environmental model

through direct experience, the agent begins to use the simulated RL, which reduces the number of actual

interactions with the real environment that are time-consuming and high in processing load costs. It enables

quicker learning and simplified application of RL to the real world

The environmental model in DYNA is learned through direct interaction with the environment. Consider

environmental model acquisition in maze tasks that are often used as a benchmark of RL. As the initial

state, the agent doesn’t have any knowledge about the environment. It tries an action based on the current

state and perceives the next state and the acquired reward caused by the action. By using conventional RL,

the agent evaluates the expected reward value of the action from the actual reward and decides its action

with the value. Parallel to the actual RL process, the agent memorizes its experience as a set of Current

state, Applied action, Next state, Acquired reward. Through trial and error in the RL, it accumulates

sufficient information in its environmental model so that it can work as an environment map and be used

as an environmental model. Next, the agent tries a simulation based state update and action search using

the environmental model to realize action value evaluation without actual interaction with the physical

environment.

In DYNA architecture, the agent stores the current and next states of its environment as all channels of

the sensory information it perceives, or it is given. Then, the accumulated knowledge of the environment is

difficult to reuse when the agent encounters new but similar tasks in which channels of sensory information

are partially modified. Sensory information for RL is often modified depending on the task. It causes

changes in the state space and corresponding learned RL results that directly depend on the given sensory

channels and environment. In this case, the agent has to reconstruct the state space and relearn the entire

environmental model for the new task. When the state space is large, learning of the environmental model

itself takes a long time, and DYNA is actually not applicable because the environmental model just covers

the part of state space that the agent actually experienced. Realization of such deft adaptation as humans in

multiple tasks environment is not easy using an environmental model construction method with immediate

experience and accumulation method like DYNA.
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Figure 1: DYNA architecture: example of model-based reinforcement learning. Two RL methods are

included in parallel. One is direct action and experience based RL, as shown on the left of Figure 1.

Another is an RL using virtual action and simulated experience by environmental model on the right.

Situated in this state of the MBRL study, many past MBRL researches focused on the simultaneous

learning of environmental model and their action, or on its effective use for the acceleration of RL learning.

But to acquire the environmental model itself, most used conventional methods or given by other methods,

not by experience based learning. However, quick construction of an environmental model is one unavoid-

able yet critical problem for intelligent machines behaving in the real world where environment changes

dynamically and multiple tasks exist.

Therefore, in this study, we discuss a method that quickly and autonomously acquires an environmental

model for MBRL. For an RL method that exploits environmental models, we use a conventional one because

known methods are sufficiently effective.

2.2 Dynamic construction of environmental model by knowledge reuse in a

ping-pong game

To consider environmental model acquisition for MBRL, we use a simple ping-pong game (Fig. 2) that

features a ball and a paddle in the play panel and rewards for players who return the ball by controlling a

paddle’s motion.

For this game a typical strategy acquired by RL machines is the left or right paddle motion that chases

the ball’s current horizontal position. But learning takes a long time because the game’s state space is
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large, including the variables of the ball’s 2D position, speed and motion direction, and paddle position. Of

course, human intervention is necessary to set the state space, actions, and learning procedures.

In contrast, humans play the game well after observing or practicing it for a short time. In many cases,

human strategy involves waiting for the ball by moving the paddle to its predicted trajectory. Within the

process, human brain must analyzing the game and seeking a strategy. The brain process should be very

similar with the brain process when the same person is setting RL processing for the game learning program.

However, it is evident from observed behavior that human action decision strategy differs from RL.

Using predictions for the current state is a big difference between RLs and humans. People have talent

of insights to find possible strategies for reward acquisition in a short time task analysis and discover a

strategy of moving the paddle to the ball’s anticipated falling position, predicted by applying physical laws.

Humans construct a neural network that actually conducts the learning procedure in his/her brain based

on the discovered strategy. Humans become able to play the game without conscious intervention in the

action decision process: automatization.

An RL can also learn the same behavior with prediction based action decisions of humans when tuning

RL parameters. But such a result of optimization after numerous trials and errors is not a result of strategy

discovered by task analysis and insight as humans do.

In this paper, we model the task analysis and learning procedure setting ability shown by human behavior

when learning new tasks. Humans find the process of action learning and generation for problem solving

based on causal insights within the task acquired through observation and analysis of the task. We assume

that the prediction of target tasks by humans occupies an important role in the process. Humans construct

Predictors in their brains by finding causalities through analysis. By observing the effects of virtual action

on Predictors, they discover the relationship between actions and reward and a proper action strategy from

them. Of course, predicting a phenomenon unrelated to rewards has no connection to strategy finding.

What is necessary is a prediction starting from the current state that moves to the reward acquisition state.

In this study’s ping-pong game, the necessary factors for reward prediction include such physical laws

of the ball as moving straight ahead or deflection off the wall, laws of environmental state change by agent

action, for example, a paddle moving rule by actions that control left or right, and knowledge about the

state under which rewards are given. As long as we manipulate the ping-pong game and its variations, we

can obtain prediction ability rather easily by combining such knowledge.

After learning the standard game shown in Fig. 2, we learn its variations more quickly than the first
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Figure 2: The ping-pong game used for this study. There are a ball and a paddle in play panel and a player

gets a reward by returning the ball by controlling the paddle’s motion.

game. This phenomenon can be modeled as the effect of reusing local causality knowledge, which, as the

ball or paddle motion or reward conditions, is acquired by learning the first standard game. The knowledge

is reused in variation games to construct a prediction model without learning.

But knowledge from the first task by a conventional RL method may not be applied to the next task.

Humans may reuse it when extracting the reusable parts of the knowledge from the first one and adapting

them to the new task. But the work is not easy even for humans; the knowledge differs from task to task, and

the adaptation process requires task analysis and is time-consuming. After all, current learning machines

are inferior to humans in the ability to quickly adapt to new but similar tasks by applying past experiences.

In this study, we focus on the human abilities of task analysis, prediction and learning procedure setting,

and then try modeling. We also evaluate the model by computer simulations. The ability corresponds to

the quick and autonomous construction of environmental models in MBRL. We call the task predicting

environmental scheme a ”task model.” In the next section, we give a more detailed explanation of a task

model in MBRL.

2.3 What is the task model?

The task model we propose is for task state prediction from the current to the rewarded state that functions

as a task simulator. It is constructed online by a combination of local causality representing submodules

selected from a pool of submodules and knowledge by observing the actual phenomena of the target world.

Figure 3 shows the relation between the usual RL part and the proposed task model. The task model

receives the current state of the task and the agent action, predicts the next state of the task by dynamically
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selecting local causality from a set of knowledge, and realizes state prediction until reward acquisition. Then

the task model outputs the predicted reward and the corresponding predicted state of the task to the RL

part. Then the RL part learns the proper action by TD learning with those predicted rewards and states.

The local causality relations included in the ping-pong game (Fig. 2) are: (1) such physical laws of

the ball’s motion as straight moving and wall deflection; (2) paddle motions following agent action; and (3)

conditions for rewards. The actual form of these causality relations are represented as regularities between a

subset of variables that represent the task state. We assume the relation can be learned and represented as

a Predictor between related variables. First, the task model is given state [Ball x position, Ball y position,

Ball moving direction, Ball moving speed, Paddle position], and agent action [Left, Right, Stay] at that

moment. Next, the task model predicts the game state in one time step by selecting one Predictor using

the Selectors. The predictor selection of the moment and one step prediction are iterated on the current

predicted state until the predicted state reaches the rewarded state. Finally, the task model outputs the

predicted reward and the ball’s state to the RL part.

In the RL part, the agent learns its action for task solving using the predicted results from the task model.

It learns the paddle’s action using an actor-critic learning method in [Current ball state, Current action,

Predicted reward, Predicted ball state] state space. Its learning is different from usual actor-critic methods

because it uses a multiple steps forward predicted state instead of a single step future state. Previously, we

showed that using the multiple steps forward predicted state realized drastic acceleration of action learning

in the ping-pong game (Ohigashi et al. 2003).

A large effect on learning performance by combining task model and RL has been shown in many past

MBRL studies. However, in most of them, the task model is realized by analysis of human engineers and

embedded in RL by hand. As far as we continue this strategy of solving problems by hand, we will eternally

have to continue the setting work of the learning procedure every time we encounter a new problem. If we

achieve a learning system that can autonomously construct the task model, we may take a large step toward

an actual intelligent system that resembles humans. What kind of framework and function are necessary

for such achievement? We explain our model in the next section.

2.4 Construction of task models

For the autonomous construction of a task model, we must find and represent knowledge about the task

environment. For that purpose, we assume the following two constraints on the real world: (a) There are
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Figure 3: Task model that represents causal relations by a set of local predictors. Given a task model, we

can predict acquisition of reward starting from a current task state and an action sequence.

local regularities between the task representing variables posed by physical laws and causalities. (b) These

local regularities are shared by similar but different tasks. Now the task environment can be represented

by a set of local physical laws, the causalities for reward acquisition, and the relations between the agent

and the environment, and each task is composed by a combination of these regularities(Fig. 4).

To realize the autonomous setting of learning procedure and quick, immediate adaptation to various

tasks in this local regularity dominated world, we introduce the following two functions: (i) Finding the

local causal relations between variables and learning predictions between them. (ii) Construction of the

entire task prediction model, the task model, by the dynamic combination of predictors.

As the concrete form of knowledge representation for regularities, we used the local prediction of variables

by other variables within the task representing variable set, the Predictor. Since the agent only observes

the world by perceived value, causality or the physical laws representing regularity must be constructed

through perception. A Predictor that receives variables to predict other causally related values is a possible

candidate for knowledge representation. Multiple Predictors correspond to various regularities in the world.

To realize the task model, we prepared three types of Predictors: those that predict the automatic state

changes of the environment, those that predict rewards, and those that predict the state changes caused by

the actions of the agent.

Each of these Predictors was paired with a Selector that predicts the occurrence of causality from the
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environmental state. We detected the occurrence of causalities by speculatively predicting the next state

with Predictors and comparing the prediction results with the actual perceived data. If the causality

represented by a Predictor happened, the Predictor’s prediction matched actual data; but it didn’t match

if the causality did not happen. This process is the competitive selection of best Predictor from a pool of

Predictors based on the actual experience of the phenomenon. Then we could use the detected causality

occurrence to train the corresponding Selector, which learned the relationship between the sensory input

and Predictor selection. If no Predictor correctly predicted the actual data in one moment, a new causality

must be happening, and a new Predictor and Selector were created to learn the current causal relation.

The incremental acquisition of Predictor and Selector pairs corresponded to the accumulation of knowledge

about the environment.

After the learning of Predictors and Selectors, the proper Predictor is selected and applied to the

environmental state of each moment. Given the perceptual input of a moment, the Selectors competed for

its activation and the Predictor that corresponded to the highest activated Selector was used to predict the

moment. The selected Predictor changed time by time depending on the state of the task, which represented

the regularities of the world. By iteratively applying the Predictor selection process to the predicted state,

we realized longer term prediction of the environment from the current state without specific modeling.

Then, we realized the autonomous construction of task models by dynamically choosing Predictors in a

perceptually driven way.

The same Predictors acquired in previous tasks could be used for new but similar tasks. The application

of Predictor to new tasks with a different state space is possible because each Predictor only uses a subset,

not all the variables for the task, to represent the local relation. Even when the new task has a partially

different state space, Predictors and Selectors could be applied if the subset of the variables was contained

in the new state space. The application range of Predictor and Selector was wider when the subset size

was smaller. So, after additional learning of newly required Predictors and Selectors in the new task, they

could be combined with previous learned ones and used to construct the new task model by observing the

environmental state. By experiencing new tasks one by one, we expect the system to start covering a range

of possible variation tasks in an incremental way.

Then after the task model was constructed, a prediction based RL method could be applied to realize

quick action learning based on the current state and the predicted rewarding state (Ohigashi et al. 2003).

This is the entire image of our dynamic task model construction model. In the next section, we show the
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Figure 4: Construction of task model by dynamic combination of local predictors of environment

results of the ping-pong case.

3 Construction of task model by combination of local predictors

3.1 Acquisition of local predictors

At the beginning of learning, our model had three different kinds of local prediction models (LPM): one

for the state transition of the environment, one for expected rewards, and one for the state transition by

selected action. Each LPM consisted of a Predictor and a Selector corresponding to the Predictor.

The LPM predicted statest+1 of an event at next time step t + 1 from statest at current time t. Input

st for each LPM was different subset of state variables concerning the event. Each of the LPM may not

predict all events but just a part of events concerning the object. A model may learn to predict the ball’s

movement by the causality of its straight movement by the law of inertia, for example, and another model

may learn to predict the ball’s movement by another causality of its deflection off the wall. Each LPM is

specialized to local laws, and the state transition of the target is predicted by a set of LPMs. For example,

in the ping-pong game, ball movement is described with two LPMs, one for straight movement and one for

deflection off the wall.

We define notation here. P i and Si represent the Predictor and Selector for each LPM i. Predictor and

Selector are learned according to the following procedures.
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1. Predictors of acquired all LPMs predict next state st + 1 from current state st. Here i is an index of

LPM.

P i(st) = si
t+1

2. Calculate a prediction error errori
t of each predictor P i using state st+1 at the next time t+1.

errori
t = st+1 − si

t+1

3. Select the predictor that has minimum prediction error.

winner = arg mini errori
t

4. If the prediction error of the winner predictor didn’t reduce even after learning, a new LPM is added

to learn the state transition. If not, Predictor Pwinner learns by using st + 1 as teacher signal and

Selector Swinner learns by using 1 as a teacher signal and Selectors other than the winner Selector

learn by using 0 as a teacher signal.

if errorwinner
t − errorwinner

t−1 > threshold then add new LPMi

else Predictor and Selector learns.

5. Return to 1.

By iterating the addition and learning of LPM, we got a group of LPMs specialized to relations between

local variables that existed in the given task. When more than one LPM exists, all Predictors predict the

current input and a LPM with minimum prediction error is chosen as the winner of the competition and

learns. When the above conditional applied to the prediction error of the winner, a new LPM is added.

The number of local predictor modules (LPM) changes according to value of threshold. If the value is

raised, coverage of each LPM extends and its reusability decreases. If the value is lowered, the coverage of

LPM narrows and its reusability increases. We set the threshold by experience so that the reusability might

increase and the performance might improve.

Selector learned whether its corresponding Predictor correctly predicted the state transition of the input

state. Specifically, Selector learned to output 1 if the Predictor won the competition, and Selector learned

to output 0 if the Predictor lost the competition. The input variables for Selector were not necessarily

the same as the inputs variables for Predictor. The input variables to Selector must be selected from all

the task’s variables to facilitate correct prediction. The selection of input variables strongly influenced the

reusability of Predictor and Selector. If input variables that depend on specific tasks were included in the

selected variables, LPM reusability decreased. If input variables that didn’t depend on specific tasks were
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selected, reusability increased. In later simulations, we selected input variables for Predictors and Selectors

by hand to maintain high reusability. However, the autonomous selection of input variables is an important

problem for the discovery of regularity from sensory information, a problem for future work.

3.2 Dynamic construction of task model by selection of local prediction models

We define notation here. Symbols e, r, and a represent LPMs that predict state transition, the expected

reward, and the state transition by selected action, respectively. For example, the Predictor that predicts

expected rewards is described as Pr. The task model was constructed according to the following procedures.

1. Action a was decided randomly.

2. Select Predictor for action P i
a by competition between corresponding Selectors; the winner predicted

the state transition. i is the index of the local predictor．

wina = arg maxi Si
a(st), Pwina

a (st, a) = st+1

3. Select a Predictor for environmental change P i
e by competition between corresponding Selectors; the

winner predicted state transition.

wine = arg maxi Si
e(st), Pwine

e (st) = st+1

4. The predicted state was given to LPM to know expected reward. If the acquisition of a reward was

predicted, predicted state st+1 is considered goal state ŝ. If not, return to 3. If reward acquisition

was not predicted within a predefined amount of prediction iteration, the predicted state was not

outputted.

winr = arg maxi Si
r(st)

if Pwinr
r (st+1) �= 0 then st+1 = ŝ

else returnto3.

The constructed task model works as an environment simulator and predicts state transition of current

task. In the simulation, the reward predictor predicts appearance of reward in each of predicted states.

The predicted reward is used as reward term of TDerror equation of reinforcement learning (see sec 3.3).

The output of reward predictor is used also as a condition which stops the prediction of state transition by

LPM. So, the reward predictor exists outside of reinforcement learning and its output is used as similar as

actual reward.
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Our proposed method didn’t keep a combination of LPMs corresponding to a task. So, it must repeat

the Selectors’ competition process whenever it is used, and such calculation cost is not small. This problem

can be solved by keeping a combination of LPMs for each task. However, the solution requires a model of

higher level task understanding, which includes task identification and top-down task model construction

based on the evaluation of similarity between tasks and reusing a combination of LPMs. It remains as future

work.

However, the dynamic combination of LPM realized fast adaptation for similar tasks. This is a distinctive

feature of our model, and the effect is large enough even if the above disadvantage is ignored.

3.3 Reinforcement learning based on task model

The constructed task model was used to predict state transition in a task. Predicted reward state st+1 is

considered as goal state ŝ. A suitable action for a pair of current and goal states is learned by a TD-learning

method based on predicted rewards. The update equation is described as follows:

TDerror = reward + γ ∗ V (ŝ) − V (st)

The state value and selection probability of actions were updated based on the value of TD error. When

the task model couldn’t give prediction output, next time step state st+1 was used, as in TD learning.

This learning method is identical to the PRL model (Ohigashi et al. 2003) that we proposed before. It

realized faster learning than the actor-critic RL model because it decided action based on the current and

predicted states expected to acquire rewards.

3.4 Applications to ping-pong game

Our model was applied to a ping-pong game in which an agent operated a paddle with left, right, and stay

actions and returned the ball to acquire rewards. The behavior of our model in the ping-pong game was as

follows.

• Acquisition of LPM

Predictor Pe(st) for environmental state changes predicted the ball’s position at the next time step

from the current position. P 1
e (st), prepared before the learning, usually concentrated on predictions

of the ball’s straight movement, which occupied a majority of the ball’s movements. Since P 1
e (st)

couldn’t predict the ball’s deflection from the surrounding walls, new predictors P i
e(st) were added
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that concentrated on predicting ball rebounds. Corresponding selector Si
e(st) learned whether P i

e(st)

correctly predicted the current state using the distance between the ball and the wall and the direction

of its movement.

Reward predictor Pr(st) learned to output value 1 when the paddle returned the ball. In this game,

only one Pr(st) was acquired because the conditions for reward acquisition were only one. If there

were multiple reward conditions and the first P 1
r (st) couldn’t predict its occurrence, new P i

r(st) were

added and learned.

The state change predictor by action P i
a(st) predicted the paddle position of the next time step from

the current paddle position. As paddle operations were limited and simple, one predictor was enough

in this case.

• Dynamic construction of task model

The task model was dynamically constructed by combining the acquired LPMs. First, the task model

predicted paddle position at time t + 1 using Pa(st) from the current paddle position and selected

action a. Second, the task model predicted the ball’s trajectory using Pe(st) from the current ball

position. Finally, Pr(st) predicts reward acquisition when the predicted paddle position was identical

to the predicted ball position. We obtained game state st+1 from the current state st by applying

related LPMs, each of which represented regularities of the environment. Then, iterating single time

step prediction from time t to t+1, we realized longer time prediction as long as each local prediction

worked correctly. In short, we could realize the task model that predict whether the ball fell at the

paddle position in the near future of the game.

• Reinforcement learning based on the task model

The action learning for the current state and the state predicted by the task model enabled the agent

to learn an action strategy that predicted the ball’s falling position from its current position and to

move the paddle into the predicted ball position. This efficient strategy is often adopted by humans

when playing the game.
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4 Computer simulation

4.1 Game variations

We performed computer simulations using the ping-pong game (Fig. 2: Normal task) and variants (Fig. 5:

Two-ball task, and Fig. 6: Wall-change task) to confirm that reusing knowledge leads to quick construction

of task models for similar tasks. On the game panel, players saw the paddle and the ball in a two-dimensional

field. From the panel, a set of state variables was extracted for learning. The x/y-coordinates of the space

were defined within a range of [0, 1]. The direction of the ball’s movement was represented by an angle

between −π and π, and a zero designated a down direction. At each time step, the paddle could perform

one of three actions: staying, moving left, or moving right.

The ball complied with the physical laws of moving straight at a constant speed and rebounding off the

wall. A sensor perceived the collision between the ball and the wall or the paddle in following order [Up,

Left, Right, Down, Paddle]. For example, we encoded the sensor input with a bit sequence like [1, 0, 0, 0, 0]

when the ball collided with the upper wall or [0, 0, 0, 0, 1] when the ball collided with the paddle. The

game’s goal for the agent was returning the ball by operating the paddle. By hitting the ball, the agent got

a positive reward. A negative reward was given when the agent missed the ball because of incorrect paddle

operation. We defined an epoch of game play as a ”ball traveling time” in which the ball moves up from

the bottom line until it reaches the bottom line again through deflection at the top line. The agent decided

an action at every step of the ball movement simulation according to its velocity. One epoch corresponds

to about 20 to 40 steps depending on the direction of the ball’s movement.

In two-ball and wall-change tasks, the conditions of reward acquisition and the rules of ball or paddle

movement were identical to the normal task. In the two-ball task, the initial movement directions of the

two balls were different, and collisions between them were ignored.

4.2 Setting of local prediction models and RL parts

While the agent was playing or observing the game, he received information on the ball’s x/y-coordinates,

bx, by, the ball’s velocity, vx, vy, the paddle’s x-coordinate, dx, and the sensor value around the ball. The

agent generated and learned the local prediction models using these inputs.

We used a three-layered neural network with backpropagation to realize Predictor and Selector. Pe

predicted the ball’s velocity at the next step (vx, vy)t+1 from the ball’s current velocity (vx, vy)t. Pr
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Figure 5: Two balls task. An additional ball was added to normal task. The balls moved around without

collision and paddle chased the lower ball.
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Figure 6: Wall change task. Shape of wall was changed from normal task.

predicted the reward (1 or 0) from sensor values. Pa predicted the paddle’s position at the next step

from its current position and selected action. Se and Sr received the sensor values and predicted whether

the corresponding predictor could predict the state of the next step from the current state. Sa received the

selected action and predicted whether the corresponding predictor could predict the state of the next step

from the current state. The number of prediction steps was limited to 100. If reward acquisition was not

expected from the predicted state until the maximum number of prediction steps was reached, the agent

performed a soft max action selection rule with current state s(t), which is commonly used as an action

selection rule for conventional actor-critic based RLs.

In the RL part that actually learned the actions using the task model, we prepared a lookup table for

the value function by dividing all current paddle positions and the goal paddle positions predicted into ten

equal parts; thus a total of 10 ∗ 10 = 100 grid entries were prepared in the state space. The agent learned
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proper actions for each entry.

After the agent acquired the necessary LPMs for the current game, it constructed a task model by

combining LPMs, thus becoming able to predict the entire game’s transition using the task model. In this

prediction phase, the agent updated bx, by, vx, vy, Px to the value of the next step using Predictors for the

current step.

However, the current version of our model still has some parts in which we have to ask the intervention

of human engineers. The agent can’t update the sensor value input because the LPM for sensor values is not

prepared. Se and Sr need sensor values as input. In this simulation, we assumed that the agent can observe

the game panel in the prediction phase and receive the sensor value corresponding to the ball’s predicted

position. In two-ball tasks, we gave prior knowledge that the laws of ball movement are the same for both

balls and designed the agent to select and predict the ball that has a lower by value because we knew that

the ball would reach the bottom line faster than the other one. In fact, the normal and two bal tasks are

essentially the same.

4.3 Procedure of computer simulations

In the simulations, the learning agent initially played the normal task for 10,000 epochs and acquired LPMs.

Next, it learned two-ball tasks for 10,000 epochs. Finally, the learning agent learned the wall-change task for

10,000 epochs. At every change of tasks, we flushed the action table of agent to compare the improvements

of the learning performance. Here, we expect drastic improvement of the action learning performance at

the beginning of the second and third tasks. We evaluated the performance of our model by monitoring its

success rate for every 100 learning epochs and observed task model reconstruction process after the change

of tasks.

4.4 Results of task model construction for similar tasks

Figure 7 shows the changes of the success rate in every 100 learning epochs and the total prediction error

of acquired LPMs. The learning agent didn’t learn efficiently with the task model during the initial phase

of the normal task learning because it had to acquire LPMs. After LPMs were acquired, learning was

immediately accelerated. When tasks were changed after 10,000 and 20,000 epochs, the success rate fell

to initial state levels because the action table was initialized. However, the success rate rose very rapidly

because the LPMs acquired in the initial normal task learning were reused and the task models were quickly
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constructed leading to the realization of quick action learning. The upper limit of the success rate in the

two-ball task was lower than the other tasks, caused by the paddle’s slow moving speed. The learning agent

couldn’t return the ball with the paddle when two balls came down simultaneously.

Figure 8 shows initial 3000 trials in figure 7. X axis of figure 8 corresponds to x axis of figure 7 from 0

to 30. Figure 8 shows the changes of the success rate in all 100 learning epochs and the prediction error of

acquired LPMs respectively. In the learning stage ”A”, the agent learned Pe which predicted such physical

laws of the the ball’s motion as straight moving and wall deflection. In the learning stage ”B”, the agent

learned Pr mainly. It took longer time to learn Pr than the learning of Pe. Because Pr needed too many

trials than Pe to have an amount of experience of returning the ball by controlling paddle’s motion and

acquiring the reward for its learning. When the learning of Pe and Pr converged, the agent started to

predict by task model. In the learning stage ”C”, the agent updated the action table by MBRL based on

task model.

Figures 9 and 10 show the process of task model reconstruction after the task changed to two-ball and

wall-change tasks, respectively. The horizontal axis of the figures shows the number of simulation steps

after task changes. The vertical axis shows the number of selected prediction module used for the new task

after task change. The value is average of five trials.

In both Fig.9 and 10, most LPMs clearly began to be used in initial tens of steps, that is, a few epochs.

Average of 31.2 epochs and 15.6 epochs were required until the last LPMs for task model construction were

selected in Fig. 9 and in Fig. 10 respectively. This speed of task model construction was so fast that the

time didn’t reach even to the one notch of horizontal axis in Fig. 7. These results show that task models

were constructed quite rapidly compared to normal task learning.

5 Discussion

5.1 What has been realized for autonomous task learning?

In the previous section, we showed that we could construct a task prediction model for the ping-pong game

by a dynamic combination of LPMs and realize quick action learning in combination with a prediction

based RL. In this study we sought model of human processes for analyzing tasks and realizing a task

processing procedure that leads to autonomous task learning. We revealed the importance of local knowledge

accumulation in daily experiences and knowledge selection in new tasks. Though the problem is important,
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Figure 7: Success rate transition for every 100 learning epochs and total prediction error of local predictors
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Figure 8: Success rate transition and prediction error of each local predictors

in this paper we only realized a part of our case study on specific tasks.

A MOSAIC model has a similar structure and function to our proposed model [D.M. Wolpert and

M.Kawato 1998]. MOSAIC model features pairs of a forward model and an inverse model for each control

target, and a model pair is chosen and used at each moment to control the target motion. Though the

detailed function and learning method differ from our model, the concept of model pair is similar to the

LPM that we used as parts of the task model. But in this study, we use model pairs as parts for the

macroscopic function of dynamic task model construction that is essential in multiple tasks environment.

What is important in our model is the dynamic nature of the task model formation; we don’t insist on its

implementation method. When we focus on the modeling of a target with complicated operation modes,

such forward and inverse type architecture as MOSAIC and ours appear to have wider application ranges

that are not limited to motion control.
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Figure 9: Accumulated number of selected prediction module after task change from normal to two balls

task. Average of five trials.
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Figure 10: Accumulated number of selected prediction module after task change from two balls task to wall

change task. Average of five trials.

5.2 Autonomous problem solving based on knowledge reuse

The ping-pong game and its variations in this study were just toy problems and too simple as tasks in

multiple tasks environment. But the performance of the proposed method is clear, and we could observe

the utility of knowledge reuse acquired from past experience. What mechanism of the proposed method

enabled such performance?

First is the high reusability of LPM. Predictors and Selectors functions were defined in the subspaces of

large task state spaces by selecting the input and output variables. They learned the local relation between

those limited variables. Prediction could be applied to the new tasks that have different state variables when

the new task space included the subspace variables. The learning of Predictor and Selector also became
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easier because the range of input-output relation was limited.

Second is the quick construction of task models. By choosing previously learned regularities by observing

target tasks, rapid construction of task models is realized that enabled quick action learning within the

domain of task variations. Solving the long learning time problem in MBRL will increase new applications

for machine learning.

However, we must be careful about the proposed method’s generality. Though we tried not to introduce

task specific constraints in our model, we don’t deny the possibility because the application samples were

simple and limited. We have to evaluate our model’s generality by applying it to diverse and more realistic

tasks.

5.3 Reuse of action tables and task models

In our current model, we reused LPMs in new tasks, but didn’t reuse the acquired action tables that were

used to guide the task state from the current one to the desired one. Actually, we may be able to reuse the

action table acquired in the normal task in the two-ball and wall-change tasks to realize quicker, actually

immediate, learning. However, at least now, we don’t know the general mechanism of the action table

selection that evaluates the possibility of reuse without depending on human intuition.

Another unsolved problem is reusing the task model and the combination of LPMs. Since our current

model didn’t preserve the task model, it has to consume time to construct a new task model even when it

encounters previously experienced tasks and its variations. If the model could extract knowledge about the

combination of LPMs and modify it depending on new task performance, we might have realized quicker

adaptation to the task. For its realization, we need a method to extract the features of a task and calculate

similarity between them. Then we might be able to find a task model similar to the current task situation

and apply it in a top-down manner in addition to our current bottom-up manner.

5.4 Variable selection problem and real environment complexity

In the case study of this paper, we designed a subset of variables given to all Predictors and Selectors by hand.

For their reusability, input variables must be limited to necessary ones. And the inclusion of unnecessary

variables for the representation of the input-output relation disturbs learning speed and precision. The

proposed method actually presupposes a solution to the variable selection problem in the LPM construction

phase. But in this paper, we focused on the concept of the entire system and avoided the variable selection
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problem. Variable selection will be a key problem that decides the success of our model.

5.5 Choice of action learning method

The aim of this paper is the proposal of task model construction method. We used conventional MBRL as

an action learning method with a task model. But action learning methods are not limited to RL. We may

use other methods, including a symbolic tree search or Bayesian probabilistic inference, when exploiting the

task model as an environmental prediction method. In such cases, the information representation of the

task model must be changed depending on the action search method. Still, the essence of the task model is

its construction method. To discuss the possibility of task model use in different action search methods, we

may need to consider a more generalized mathematical description of the task model construction process.

5.6 Correspondence in the brain

Does the knowledge reuse mechanism in our model exist in actual brains? Evidence that the many cortical

areas in the brain are activated depending on the task is consistent with our concept of knowledge and its

reuse. But it remains unclear whether the activated areas are used for event prediction, as we suppose, or

whether they are used for different purposes. Many neurophysiologic researches are studying brains that are

trained on a specific task by training animals, and it will be difficult to reveal brain activity in multiple tasks

environment. We need neurophysiological evidence about a brain that learned many similar but different

tasks. Though the classical learning set paradigm matches this requirement well [Warren 1965], there are

few studies in the field.

What knowledge activation control mechanism corresponds to Selectors? A Selector’s function is sensory

signal driven neural circuit activation, which is identical to bottom-up attention. In contrast, Ogawa and

Omori proposed a neural network model for problem solving that searches for a combination of many neural

circuits in a top-down way [Ogawa A and Omori T]. The method can be regarded as top-down attention.

It is natural to think that task model construction and problem solving neural circuit construction in the

brain are realized by a combination of bottom-up and top-down attention systems.
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6 Conclusion

In this paper, we proposed a method of task model construction by a dynamic combination of LPMs. To

evaluate the method, we conducted a computer simulation on a series of task variations using the task

model and MBRL. The results showed the autonomous construction of task processing procedures and

quick action learning. We used RL as an action learning method, but we should not limit it to RL. The

dynamic construction of the task model may be a method that could be applied to a wider range of problems

including insight.

The specific feature of our proposed method exists in the online task model construction by the reuse of

knowledge acquired from past experiences. This is also a specific feature of human problem solving behavior.

However, to apply the method to real world, we will have to solve various problems including hidden variable

discovery, avoidance of conflict between LPMs and variable selection for predictors and selectors from plenty

of possible variables. These problems seem to have solved in human. We expect to bridge human cognitive

behavior and brain computational processing by developing an experimental paradigm that can be used to

evaluate human knowledge reuse by improving the proposed model through experimental studies.
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Figure 1: DYNA architecture: example of model-based reinforcement learning.

Two RL methods are included in parallel. One is direct action and experience

based RL, as shown on the left of Figure 1. Another is an RL using virtual

action and simulated experience by environmental model on the right.
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Figure 2: The ping-pong game used for this study. There are a ball and a paddle

in play panel and a player gets a reward by returning the ball by controlling

the paddle’s motion.

28



S(t+1)

action(t)

S(t+2)

Causality Causality

Chain of local causality

Task Model

Reinforcement Learning

: S(t)
Current 

state

S(t)

a(t)

rewardS(t+1)

action(t)

S(t+2)

Causality Causality

Chain of local causality

Task Model

Reinforcement Learning

: S(t)
Current 

state

S(t)

a(t)

reward
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Given a task model, we can predict acquisition of reward starting from a

current task state and an action sequence.
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Figure 5: Two balls task. An additional ball was added to normal task. The

balls moved around without collision and paddle chased the lower ball.
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Figure 6: Wall change task. Shape of wall was changed from normal task.
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diction error of local predictors
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Figure 9: Accumulated number of selected prediction module after task change

from normal to two balls task. Average of five trials.
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Figure 10: Accumulated number of selected prediction module after task change

from two balls task to wall change task. Average of five trials.
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