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Abstract

Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas 

segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a 

single estimate of the underlying segmentation. In the multi-label case, typical label fusion 

algorithms treat all labels equally – fully neglecting the known, yet complex, anatomical 

relationships exhibited in the data. To address this problem, we propose a generalized statistical 

fusion framework using hierarchical models of rater performance. Building on the seminal work in 

statistical fusion, we reformulate the traditional rater performance model from a multi-tiered 

hierarchical perspective. The proposed approach provides a natural framework for leveraging 

known anatomical relationships and accurately modeling the types of errors that raters (or atlases) 

make within a hierarchically consistent formulation. Herein, the primary contributions of this 

manuscript are: (1) we provide a theoretical advancement to the statistical fusion framework that 

enables the simultaneous estimation of multiple (hierarchical) confusion matrices for each rater, 

(2) we highlight the amenability of the proposed hierarchical formulation to many of the state-of-

the-art advancements to the statistical fusion framework, and (3) we demonstrate statistically 

significant improvement on both simulated and empirical data. Specifically, both theoretically and 

empirically, we show that the proposed hierarchical performance model provides substantial and 

significant accuracy benefits when applied to two disparate multi-atlas segmentation tasks: (1) 133 

label whole-brain anatomy on structural MR, and (2) orbital anatomy on CT.
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Introduction

Multi-atlas segmentation represents a powerful generalize-from-example framework for 

image segmentation (Heckemann et al., 2006; Rohlfing et al., 2004c). In multi-atlas 

segmentation, multiple labeled examples (i.e., atlases) are registered to a previously unseen 

target-of-interest (Avants et al., 2008; Klein et al., 2009; Ourselin et al., 2001), and the 

resulting voxelwise label conflicts are resolved using label fusion (Asman and Landman, 

2012a; Asman and Landman, 2012c; Coupé et al., 2011; Sabuncu et al., 2010; Wang et al., 

2012; Warfield et al., 2004). Since its inception, multi-atlas segmentation has exploded in 

popularity and has been used across a wide range of potential applications – including, but 

not limited to, whole-brain (Aljabar et al., 2009; Artaechevarria et al., 2009; Asman and 

Landman, 2011; Asman and Landman, 2012a, b; Heckemann et al., 2006; Klein and Hirsch, 

2005; Sabuncu et al., 2010; Weisenfeld and Warfield, 2011; Wolz et al., 2010), 

hippocampus (Cardoso et al., 2011; Coupé et al., 2011; Wang et al., 2012), head and neck 

(Asman and Landman, 2012a, b; Chen et al., 2011), cardiac (Bai et al., 2013; Depa et al., 

2010; Isgum et al., 2009), prostate (Langerak et al., 2010), and abdomen (Wolz et al., 
2012). Herein, we focus on the problem of label fusion – a critical component of multi-atlas 

segmentation that has a substantial impact on segmentation accuracy.

Over the past decade, interest and research into the label fusion problem has grown in 

popularity and significant improvement across a vast range of applications has been shown. 

Broadly speaking, there are two primary perspectives on the problem of label fusion: The 

first perspective builds on voting-based methods in which the underlying segmentation is 

modeled through the selection of appropriate atlases (e.g., (Aljabar et al., 2009; Cao et al., 

2011; Rohlfing et al., 2004a)) or, through a local, semi-local, or non-local weighted 

combination of the provided atlas information (e.g., (Coupé et al., 2011; Iglesias et al., 2013; 

Sabuncu et al., 2010; Wang et al., 2012)). The second perspective, based on the 

Simultaneous Truth and Performance Level Estimation (STAPLE) framework (Warfield et 
al., 2004), is commonly referred to as statistical fusion – an approach in which the problem 

is cast from a Bayesian inference perspective and generative models of rater/atlas 

performance are maximized through expectation-maximization (EM) (Dempster et al., 
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1977) (e.g., (Akhondi-Asl and Warfield, 2013; Asman and Landman, 2012a; Asman and 

Landman, 2012c; Cardoso et al., 2013; Commowick et al., 2012; Rohlfing et al., 2004b)).

Regardless of the fusion approach, fusion algorithms typically treat all of the considered 

labels equally. As a result, the complex anatomical relationships that are often exhibited in 

multi-label segmentation problems are neglected. To illustrate, consider a typical whole-

brain segmentation problem in which there are often upwards of 100 unique labels that are 

estimated. Within those structures there are known anatomical and hierarchical relationships 

which could be leveraged – e.g., one such relationship might be medial frontal cortex → 

frontal cortex → cerebral cortex → cerebrum → brain (where “→” could be interpreted as 

“is part of”). While generalized hierarchical segmentation frameworks have been around for 

almost two decades (e.g., (Beucher, 1994; Najman and Schmitt, 1996)) and recently 

considered for an application-specific voting fusion approach (Wolz et al., 2012), a 

generalized hierarchical fusion framework has not been considered in the statistical fusion 

context.

We propose a generalized statistical fusion framework using hierarchical models of rater 

performance. Building on the seminal STAPLE algorithm, we reformulate the rater 

performance model to utilize hierarchical relationships through a multi-tier performance 

model (Figure 1). The proposed model is built on the simple concept that the performance of 

a rater at the higher levels of the hierarchical model (e.g., brain vs. non-brain or cerebrum 

vs. cerebellum) is indicative of the rater's performance at the lower levels of the hierarchy 

(i.e., the individual labels-of-interest). Thus, the performance at the higher levels of the 

hierarchy should propagate to lower levels of the hierarchy in a theoretically and 

probabilistically consistent manner.

This manuscript is organized in the following manner. First, the theory for the generalized 

hierarchical statistical fusion framework is derived and the pertinent details for extension to 

state-ofthe-art statistical fusion are provided. Second, we demonstrate superior performance 

on both simulated and empirical multi-atlas segmentation data – herein, whole-brain and 

orbital data. Finally, we conclude with a brief discussion on the optimality of the approach 

and the potential for improvement. The research presented in this manuscript is an extension 

of a previously published conference paper (Asman et al., 2014). Herein, we (1) provide 

additional theoretical derivations for the hierarchical model, (2) explicitly define the 

extension to state-of-the-art statistical fusion algorithms, (3) provide additional insights 

through a reformulated simulation, and (4) include two distinct empirical experiments to 

more clearly highlight the benefits of hierarchical performance estimation.

Theory

Problem Definition

Let T ∈ LN×1 be the latent representation of the true target segmentation, where L = {0, ... , 

L − 1} is the set of possible labels that can be assigned to a given voxel, and N is the number 

of voxels in the target image. Consider a collection of R raters (or registered atlases) with 

associated label decisions, D ∈ LN×R. The goal of any statistical fusion algorithm is to 
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estimate the latent segmentation, T, using the observed labels, D, and the provided 

generative model of rater performance.

Hierarchical Performance Model

Consider a pre-defined hierarchical model with M levels. At each level of the hierarchy, let 

Sm ∈ S = {D0 , ... , DM−1} be a mapping vector that maps a label in the original collection of 

labels, s ∈ L, to the corresponding label at the mth level of the hierarchy, Sms ∈ Lm, where 

Dm = {0, ... , Dm − 1} is the collection labels at the mth level of the hierarchy. Additionally, 

let the performance of the raters at hierarchical level m be parameterized by 

(i.e., Lm × Lm confusion matrix for each rater). Specifically,  is the probability that 

rater j observes label s′ given that the true label is s at the mth level of the hierarchy. 

Additionally, let  be a collection of exponential normalization values that ensure 

that the generative model is properly normalized. Thus, the generative model is described by

(1)

which can be directly interpreted as the probability that rater j observes label s′ given the 

true label, hierarchical model, and the corresponding model parameters. To directly estimate 

this distribution we propose a formulation in which the complete model of hierarchical 

performance (Eq. 1) is unified through a constrained geometric mean across the multi-tier 

estimate of rater performance.

(2)

where, βjs is an exponent that maintains the following constraint:

(3)

In other words, βjs ensures that the model in Eq. 1 is a valid discrete probability mass 

function. Note, given the constraints on each individual  (i.e., that it is a valid confusion 

matrix) a unique value for βjs is guaranteed to exist and can easily be found using a standard 

searching algorithm (e.g., binary search, gradient descent).

In summary, the constrained geometric mean model of hierarchical performance provides a 

mechanism for enforcing consistent performance across the pre-defined hierarchical model. 

Specifically, in order for a given rater (or atlas) to make a positive impact on the final 

segmentation, the performance parameters for that rater must be indicative of high quality 

performance at all levels of the hierarchy. Alternatively, if a given rater performs poorly at 

the highest levels of the hierarchy, then this poor performance will automatically propagate 

to the lower levels of the hierarchy through the multiplicative model. As a result, the 
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hierarchical performance model provides two primary advantages over the traditional 

performance model: (1) the final estimate of performance is guaranteed to be consistent with 

the provided hierarchical representation (i.e., a high quality rater exhibits this quality 

throughout the hierarchy), and (2) poor performance at high levels of the hierarchy will 

automatically propagate to all sub-labels – providing a natural framework for consistently 

penalizing raters who exhibit globally poor performance. Regardless of the interpretation, 

given the model in Eq. 2 and constraint in Eq. 3, it is possible to utilize the provided 

hierarchical model within the statistical fusion EM framework. See Figure 1 for a graphical 

representation of the newly proposed generative model of hierarchical performance.

E-Step: Estimation of the Voxelwise Label Probabilities

Let , where  is represents the probability that the true label associated with 

voxel i is label s at iteration k of the algorithm given the provided information and model 

parameters

(4)

Using a Bayesian expansion and the assumed conditional independence between the 

registered atlas observations, Eq. 4 can be re-written as

(5)

where f(Ti = s) is a voxelwise a priori distribution of the underlying segmentation. Note that 

the denominator of Eq. 5 is simply the solution for the partition function that enables W to 

be a valid probability mass function (i.e., ). Using the simplified generative 

model in Eq. 2, the final form for the E-step of the EM algorithm can be written as

(6)

M-Step: Estimation of the Hierarchical Performance Level Parameters

The estimate of the performance level parameters (M-step) is obtained by finding the 

parameters that maximize the expected value of the conditional log likelihood function (i.e., 

using the result in Eq. 6). Unlike the traditional STAPLE approach, however, the parameters 

for each level of the hierarchy are maximized independently.
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(7)

We can then perform a simple substitution using the hierarchical performance model defined 

in Eq. 2

(8)

Finally, using the properties of logarithms we obtain the final form of the conditional log 

likelihood function that we need to maximize in order to find the updated hierarchical 

performance parameters

(9)

Noting the constraint that each row of the rater performance level parameters must sum to 

unity to be a valid probability mass function (i.e., ), we can maximize the 

performance level parameters at each level of the hierarchical model by differentiating with 

respect to each element and using a Lagrange Multiplier (λ) to formulate the constrained 

optimization problem. Following this procedure, we obtain

(10)

where s′′: Sms′′ = Sms is the collection of all labels that map to the true label of interest, and i: 

SmDij = Sms′ is the collection of all voxels in which the observed label, Dij, maps to the 

observed label of interest, Sms′. At this point, it is important to note: (1) the performance 

model formulation in Eq. 2 allows for each level of the hierarchy to be maximized 

independently when maximizing the log-likelihood function, and (2) the result in Eq. 10 

uses  which can then be updated,  following the constraint:
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(11)

Extension to state-of-the-art Statistical Fusion Approaches

Recently, there have been several advancements to the statistical fusion framework, for 

instance (1) characterizing spatially varying performance – Spatial STAPLE (Asman and 
Landman, 2012a), (2) incorporation of non-local correspondence models – Non-Local 

STAPLE (NLS) (Asman and Landman, 2012c), and (3) a combination of the two – Non-

Local Spatial STAPLE (NLSS). In the interest of brevity, we only fully derive the 

hierarchical version of STAPLE in this manuscript. However, we will briefly describe the 

extension to each of the above advancements to the statistical fusion framework. Note, while 

this is certainly not an exhaustive collection of advancements to the statistical fusion 

framework, the point is demonstrating the amenability of the proposed hierarchical 

reformulation to the new advancements to the STAPLE framework.

Hierarchical Spatial STAPLE

Background—Spatial STAPLE (Asman and Landman, 2011; Asman and Landman, 

2012a) is an extension to the original STAPLE formulation to allow for smooth voxelwise 

estimates of rater performance. As a result, the confusion matrix describing rater 

performance, θj, becomes a function of the location in the image, θij, defined over a pre-

defined window surrounding the voxel of interest, Bi. Where Bi is the set of voxels that are 

part of the window (or “pooling region”) for the current voxel of interest, i.

E-Step:

(12)

M-Step:

(13)

(14)

where σis is a scale factor that regularizes the local performance estimate to be closer to the 

global estimate of rater performance (Eq. 8). We formulate σis to be equal to relative amount 
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that the current label of interest, s, is estimated to be the correct answer over the pooling 

region, Bi:

(15)

where |Bi| is the number of elements in the pooling region centered at voxel i. Using this 

formulation, σis allows consistent estimates of rater performance despite the fact that only 

certain labels may be estimated in a given local region of the image – see (Asman and 
Landman, 2012a) for further details.

Note, while Spatial STAPLE uses a non-parametric regularizing function to prevent 

instabilities in the local performance estimates, alternative techniques could be used. For 

instance, one could use a maximum a posteriori (MAP) approach and assume a prior Beta 

distribution on the performance parameters – e.g., (Commowick et al., 2012; Commowick 

and Warfield, 2010). It is straightforward to see that the hierarchical formulation using a 

MAP formulation would remain valid. Regardless, the optimal framework for characterizing 

spatially varying performance remains an open problem and outside the scope of this 

manuscript.

Hierarchical Non-Local STAPLE (NLS)

Background—NLS (Asman and Landman, 2012b; Asman and Landman, 2012c) is 

another alternative to the original STAPLE algorithm in which the rater performance model 

is reformulated from a non-local means perspective. Briefly, using the intensity image 

provided for the target image, , and the corresponding registered intensity images 

from the atlases, , the goal is the estimate the likelihood that Ai′j is the true 

corresponding voxel to the target image Ii, where i′ is an element in the search neighborhood 

defined for voxel . Mathematically, we estimate this likelihood as f(Ai′j|Ii)

(16)

where Δ(Ai′j, Ii) is a generic similarity model,  is the spatial compatibility model, and 

Zα is a partition function that ensures that . For the similarity model, there 

are many different techniques that could be used (e.g., Gaussian difference model (Asman 

and Landman, 2012c; Isgum et al., 2009; Sabuncu et al., 2010), locally normalized 

correlation coefficient (Asman et al., 2013b; Cardoso et al., 2013), mutual information 

(Artaechevarria et al., 2009)). In the spatial compatibility model, εii′ is the Euclidean 

distance between voxels i and i′ in image space and σd is the corresponding standard 

deviation. For additional information on NLS see (Asman and Landman, 2012c).

E-Step:
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(17)

M-Step:

(18)

where , and the update of β(k) → β(k+1) is the same as 

Eq. 9.

Hierarchical Non-Local Spatial STAPLE (NLSS)

Background—NLSS is a unified statistical fusion algorithm that combines the 

formulations of Spatial STAPLE and NLS into a single unified framework that (1) allows 

for smooth spatially varying estimates of rater performance, and (2) reformulates the local 

performance estimates from a non-local means perspective.

E-Step:

(19)

M-Step:

(20)

where all of the mathematical formulations are the same as described above for Spatial 

STAPLE and NLS.

Initialization, Detection of Convergence and Implementation

Given an a priori hierarchical model, there are no additional parameters in the proposed 

approach when compared to the non-hierarchical implementations of the statistical fusion 

framework. As a result, the hierarchical statistical fusion algorithms can be initialized in 

exactly the same was their traditional counterparts. Specifically, for all of the statistical 
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fusion approaches, the performance parameters were initialized by setting the on-diagonal 

elements to 0.95 and randomly setting the off-diagonal elements to fulfill the required 

constraints. The voxelwise label prior, f(Ti = s), was initialized using the label probabilities 

from a “weak” log-odds majority vote (i.e., decay coefficient set to 0.5 voxels) (Sabuncu et 
al., 2010). For Spatial STAPLE, NLSS, and their hierarchical implementations, the pooling 

region, Bi, was set with a half window radius of 5mm along all of the principal directions. 

For NLS, NLSS, and their hierarchical formulations, a Gaussian difference metric (using an 

intensity standard deviation of 0.1) was used with a half-window radius of 2mm along all of 

the principal directions for both the patch neighborhood and search neighborhood and the 

spatial standard deviation, σd, was set to 1.5mm

Detection of convergence in the hierarchical statistical fusion framework is slightly different 

than the traditional approach as we utilize all levels of the hierarchy. Thus, convergence is 

detected when the normalized trace of the raters’ performance parameters at each level of 

the hierarchy falls below some arbitrary threshold (herein, ε = 10 −4) between consecutive 

iterations of the EM algorithm.

(21)

For all of the presented experiments, the hierarchical implementations of the statistical 

fusion algorithms consistently converged in fewer than 15 iterations.

In terms of computational complexity, the hierarchical performance estimation has a 

marginal effect on the overall computation time of the algorithms. For example, for the 

whole-brain multi-atlas experiment presented below, estimation of the hierarchical 

performance parameters consistently added between 2-3 minutes to each of the 

corresponding statistical fusion algorithms. Moreover, this difference is largely negated by 

the substantial computational impact of estimating spatially-varying performance models 

(e.g., Spatial STAPLE), and/or non-local correspondence models (e.g., NLS).

Finally, the implementation of all of the considered statistical fusion algorithms presented in 

this paper are publicly available as part of the Java Image Science Toolkit (JIST) -- (Lucas 
et al., 2010), http://www.nitrc.org/projects/jist.

Methods and Results

For all of the presented simulations and experiments, the segmentation accuracy is measured 

using the Dice similarity coefficient (DSC) (Dice, 1945). Additionally, any claims of 

statistical significance refer to the results of a Wilcoxon signed-rank test (Wilcoxon, 1945) 
with a p-value threshold of 0.01.

Motivating Simulation

Before assessing the empirical performance, we present a motivating simulation to 

demonstrate the manner in which hierarchical models can be integrated into the statistical 

fusion framework (Figure 2).
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Experimental Design

A single 2D slice model (300 × 300 voxels, with 7 unique labels) was constructed to loosely 

approximate the types of relationships that are exhibited in the brain. Given the provided 

truth model, a collection of 15 labeled observations were constructed by randomly applying 

boundary errors of varying strength (see Figure 2A for the best/worst observations). 

Additional details on the simulation model can be found in (Asman and Landman, 2012a; 

Asman and Landman, 2012c). As a baseline, a representative STAPLE result is presented. 

For incorporating hierarchical models into the statistical fusion framework, a single 

reference hierarchical structure was established (Figure 2B). Given, this structure, all unique 

trees (630 in total) were constructed via label permutation, and the resulting segmentation 

was estimated using hierarchical STAPLE.

Experimental Results

The quantitative results, measured by the mean DSC across 10 Monte Carlo iterations, for 

each of the considered hierarchical representations can be seen in Figure 2C. Here, it is 

evident that the hierarchical label representation plays a substantial role in determining 

overall segmentation accuracy. For reference, the accuracy of the traditional STAPLE 

framework and the accuracy using a “logical” hierarchical representation (Figure 2D) are 

highlighted. The qualitative results (Figure 2D-2F) support the quantitative assessment of 

accuracy. Specifically, the accuracy of the “logical” (Figure 2D), “best” (Figure 2E), and 

“worst” (Figure 2F) hierarchical label representations are presented. While not the absolute 

optimal representation in terms of overall mean DSC, the “logical” hierarchical 

representation: (1) results in a substantial qualitative improvement over the traditional 

STAPLE estimate and (2) results in a quantitatively superior segmentation estimate than 

more than 99.5% of the considered hierarchical representations. The “best” hierarchical 

representation is extremely similar to and results in a very minor improvement over the 

“logical” representation. Meanwhile, the “worst” representation completely ignores the 

underlying relationships exhibited in the truth model, and, not surprisingly, results in a very 

poor estimate of the final segmentation.

Whole Brain Multi-Atlas Segmentation

Data

For the empirical whole-brain experiments, a collection of 45 MPRAGE images from 

unique subjects are considered as part of the Open Access Series of Imaging Studies 

(OASIS, http://www.oasis-brains.org) (Marcus et al., 2007) with subjects ranging in age 

from 18 to 90. All images had a resolution of 1 × 1 × 1mm3. All images were labeled using 

the BrainCOLOR protocol (http://www.braincolor.org/) (Klein et al., 2010) and provided by 

Neuromorphometrics, Inc. (Somerville, MA, www.neuromorphometrics.com). Each labeled 

image contained exactly 133 unique labels (including background). For the purposes of 

evaluation, 15 of these images were randomly selected as training data, and the remaining 

30 were selected as testing data.
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Experimental Design

We consider two separate registration frameworks. First we consider an affine-only pairwise 

registration framework (Ourselin et al., 2001) (using “reg_aladin” as part of the “NiftyReg” 

package – http://sourceforge.net/projects/niftyreg/). Additionally, we consider a pairwise 

non-rigid registration framework in which the provided affine registrations are augmented 

with a non-rigid registration (Avants et al., 2011) (using the Advanced Normalization Tools 

(ANTs) package – http://stnava.github.io/ANTs/). For the non-rigid registration, the 

deformations were computed using the symmetric normalization (SyN) transformation 

model computed using a local cross-correlation cost metric with a 3mm isotropic radius. For 

both registration frameworks, all 15 training atlases were independently registered to all 30 

of the testing atlases – resulting in 450 registrations.

To evaluate fusion performance, we consider several label fusion algorithms. First, in order 

to provide a benchmark of algorithmic performance, we consider a majority vote 

(Heckemann et al., 2006), a locally weighted vote (as described in (Sabuncu et al., 2010)), 
and joint label fusion (Wang et al., 2012) (using the parameters described in (Wang and 
Yushkevich, 2013)). Additionally, we consider STAPLE (Warfield et al., 2004), Spatial 

STAPLE (Asman and Landman, 2012a), NLS (Asman and Landman, 2012c), and NLSS 

as well as the hierarchical versions of each, referred to as Hierarchical STAPLE, 

Hierarchical Spatial STAPLE, Hierarchical NLS, and Hierarchical NLSS, respectively.

For the hierarchical representation, we constructed a 12-level hierarchical model (manually 

constructed by an experienced neuroimaging analyst). The goal of this hierarchy was to 

group labels together that provide similar contextual information about the quality of the 

atlas observations. Specifically, the first level of the hierarchy grouped all non-background 

labels together to form a “brain” label. Next, the “brain” label was partitioned into cerebrum, 

cerebellum and brain stem labels. In the third level, the gray matter, white matter, and 

cerebrospinal fluid labels in both the cerebrum and cerebellum were grouped together. This 

process was then carried out until all of the 133 labels were uniquely represented. For 

additional information on the hierarchical representation used for the brainCOLOR labels 

see: https://masi.vuse.vanderbilt.edu/index.php/TR-MASI-14-01.

Experimental Results

To summarize the improvements exhibited through the use hierarchical performance 

estimation, the results of the whole-brain multi-atlas segmentation experiment are presented 

in Figures 3-7. First, to quantitatively summarize the overall improvement for both 

registration frameworks, the mean DSC (across the 132 non-background labels) is presented 

in Figure 3. It is evident that the registration framework has a substantial impact on overall 

segmentation accuracy; yet, regardless of the registration model, the hierarchical 

reformulation of the performance parameters provides significant improvement in overall 

accuracy across each of the considered statistical fusion algorithms. For the affine 

registration framework, the hierarchical implementations provided a mean improvement 

across the testing data of 0.0070, 0.0118, 0.0199, and 0.0152 for STAPLE, Spatial STAPLE, 

NLS, and NLSS, respectively. All improvements were statistically significant. Additionally, 

hierarchical NLSS provided significant improvement over joint label fusion (JLF), the 
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current state-of-the-art label fusion algorithm, for the affine registration framework. For the 

non-rigid registration framework, the hierarchical implementations provided a mean 

improvement across the testing data of 0.0104, 0.0049, 0.0048, and 0.0048 for STAPLE, 

Spatial STAPLE, NLS, and NLSS, respectively. Again, all improvements were statistically 

significant. Given the overall improvement in registration quality, the drop in improvement 

exhibited by the hierarchical implementations for the non-rigid registration framework is 

expected. Moreover, unlike the affine registration results, hierarchical NLSS and JLF 

reported statistically indistinguishable results when using the non-rigid registration 

framework. For both registration frameworks, there are two subjects that consistently appear 

as outliers. These subjects represent the two oldest subjects in the testing set (a 93 year old 

female and an 86 year old male) and are suboptimally represented by the demographics 

provided in the training set. In terms of fusion performance, the relatively low accuracy by 

STAPLE and Spatial STAPLE are not surprising considering the fact that they do not utilize 

the atlas-target intensity differences when estimating the final segmentation. Additionally, it 

is important to note that STAPLE and Hierarchical STAPLE are both out performed by 

majority vote for the non-rigid registration framework. This highlights the limitations of 

using a single global performance metric when estimating the final segmentation.

In addition to the overall results, the per-label accuracy for the non-cortical labels using the 

affine and non-rigid registration frameworks is presented in Figures 4 and 5, respectively. 

Here, for both registration frameworks, only the results using the NLS and NLSS and their 

hierarchical implementations are presented to avoid obfuscating the improvement provided 

by their corresponding hierarchical implementations. For the affine registration (Figure 4), 

Hierarchical NLS resulted in statistically significant improvement over NLS for 22 of the 

considered 34 non-cortical labels. Similarly, Hierarchical NLSS resulted in statistically 

significant improvement for 26 of the 34 non-cortical labels. NLS and NLSS were not 

significantly superior to their corresponding hierarchical implementations for any of the 

considered labels. For the non-rigid registration (Figure 5), Hierarchical NLS resulted in 

statistically significant improvement over NLS for 12 of the 34 considered labels, while 

Hierarchical NLSS resulted in statistically significant improvement for 19 of the 34 non-

cortical labels. As with the affine registration, NLS and NLSS were not significantly 

superior to their corresponding hierarchical implementations for any of the considered 

labels.

The quantitative improvement (in terms of the DSC) in the cerebral cortex is summarized in 

Figure 6. As with before, only the results using the NLS and NLSS and their hierarchical 

implementations are presented. Here, it is evident that the hierarchical implementation of 

each algorithm provides substantial improvement in cortical segmentation accuracy, 

particularly for the affine-only registration framework. To summarize, for the affine 

registration, Hierarchical NLS resulted in statistically significant improvement over NLS for 

57 of the 98 considered cortical labels and was statistically outperformed by NLS on 2 of the 

98 cortical labels. Similarly, Hierarchical NLSS resulted in statistically significant 

improvement for 52 of the 98 cortical labels; however, it was not statistically outperformed 

by NLSS for any of the considered cortical labels. For the non-rigid registration, 

Hierarchical NLS resulted in statistically significant improvement over NLS for 28 of the 

considered 98 cortical labels and was statistically outperformed by NLS on 3 of the 98 
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cortical labels; while Hierarchical NLSS resulted in statistically significant improvement for 

22 of the 98 cortical labels and, again, was not statistically outperformed by NLSS for any 

of the cortical labels.

The qualitative results (Figure 7) support the quantitative improvement. Using the affine 

registration framework, all of the considered statistical fusion algorithms exhibit substantial 

visual improvement for many of the considered labels. In particular, there appears to be 

marked improvement in the quality of the lateral ventricle labels and many of the cortical 

labels. While this improvement would almost certainly be smaller if a more complex, highly 

deformable registration model was used instead of a global affine registration, these 

qualitative results demonstrate the ability of the hierarchical performance parameters to 

enforce hierarchically consistent label estimations through constrained parameter estimation.

CT Orbit Multi-Atlas Segmentation

Data

A collection of 31 clinically acquired computed tomography (CT) images of the orbital 

region were retrieved in anonymous form under IRB supervision. The voxel size of the 

various images varied wildly, with in-plane resolution of approximately 0.5 mm and slice 

thickness ranging from 0.4 mm to 5 mm for the various target images. The “ground truth” 

labels were obtained from an experienced rater and were verified by multiple additional 

raters. In total, there were 5 considered labels on each dataset: background, left and right 

optic nerves, and left and right globe/orbital muscles.

Experimental Design

Using a leave-one-out cross-validation (LOOCV) we performed a multi-tier multi-atlas 

segmentation framework – see (Asman et al., 2013a) for additional details. Briefly, the 

images were affinely registered (Ourselin et al., 2001) and then cropped to form a 

reasonable region of interest surrounding the orbital area. After cropping, the images were 

non-rigidly registered (Avants et al., 2011), and the resulting label conflicts were resolved 

using label fusion. For the non-rigid registration, the deformation parameters were identical 

to the ones used for the previous whole-brain multi-atlas experiment.

Unlike the whole-brain segmentation experiments, the goal of this experiment was two-fold. 

First, we want to demonstrate the impact of reasonable and logical hierarchical 

representations of the orbital anatomy on the hierarchical statistical fusion accuracy. To 

accomplish this, we constructed three logical hierarchical representations (see Figure 8A). 

Each of these hierarchical representations could be considered a reasonable representation of 

the orbital anatomy (e.g., left optic nerve → optic nerves → non-background [“Hierarchy 2” 

in Figure 8A] or left optic nerve → left orbit → non-background [“Hierarchy 3” in Figure 

8A]).

Second, we assess the accuracy of the statistical fusion model compared to the “ideal” 

segmentation estimate (i.e., the segmentation estimate obtained using the “ideal” 

performance parameters that are directly calculated using the desired manual segmentation). 

Obviously, in a typical empirical study, these ideal performance parameters are unknown, 
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and we rely on EM to optimally estimate them. Regardless, given the desired segmentation, 

obtaining the “ideal” performance parameters is straightforward. For STAPLE, the “ideal” 

performance parameters are computed as:

(22)

where  is the Kronecker delta function which is equal to 1 if Ti = s and 0 otherwise. 

Likewise, for Hierarchical STAPLE the computation of the “ideal” performance parameters 

is:

(23)

where the corresponding exponential normalization factors, , are then chosen based 

upon the following constraint

(24)

Experimental Results

The results from the LOOCV experiment for multi-atlas segmentation of the orbital region 

are summarized in Figure 8. The considered logical hierarchical label representations for this 

segmentation task are presented in Figure 8A. The quantitative comparison of STAPLE and 

the corresponding Hierarchical STAPLE estimates are presented in Figure 8B. Here, for 

each of the considered hierarchical representations, Hierarchical STAPLE estimates result in 

statistically significant improvement over the traditional STAPLE framework. Additionally, 

the “ideal” Hierarchical STAPLE estimates result in statistically significant improvement 

over the corresponding “ideal” STAPLE estimate. As a result, it can be directly inferred that 

empirically and theoretically, using a reasonable and logical hierarchical representation for 

Hierarchical STAPLE results in substantial improvement in overall accuracy. Interestingly, 

“Hierarchy 3” which utilizes the relationships between the left and right orbital regions, 

results in best overall performance when estimated using EM and using the ideal parameters. 

While not definitive, this illustrates the importance of hierarchically grouping labels that are 

(1) likely to be confused with one another, and (2) indicative of one another's performance.

The “ideal” performance parameters represent an upper bound on potential performance 

achieved by the statistical fusion framework. In addition to providing statistically significant 

improvement in overall accuracy over the other considered approaches (Figure 8B – left), 

Hierarchical STAPLE using “Hierarchy 3” results in segmentation estimates that are closest 

the “ideal” performance estimate (Figure 8B – right). This strongly implies that utilizing a 

logical representation of the hierarchical relationships exhibited in the data results in an 
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increased likelihood of converging to a local optimum that is closer to the ideal global 

optimum.

The qualitative results (Figure 8C) support the quantitative improvement exhibited by 

Hierarchical STAPLE. Here, it is evident that each of the proposed hierarchical label 

representations results in: (1) substantial improvement over traditional STAPLE and (2) 

segmentation estimates that are qualitatively closer to the upper bound provided by the 

“ideal” segmentation estimate. Again, Hierarchical STAPLE using “Hierarchy 3” results in 

the largest improvement in mean DSC across the considered labels with an improvement of 

0.0957, while “Hierarchy 1” and “Hierarchy 2” result in smaller, yet substantial 

improvement: 0.0752 and 0.0525, respectively.

Discussion

Herein, we propose a novel statistical fusion framework using a reformulated hierarchical 

performance model. Given an a priori model of the hierarchical label relationships for a 

given segmentation task, the proposed generative model of rater performance provides a 

straightforward mechanism for quantifying rater performance at each level of the hierarchy. 

The primary contributions of this manuscript are: (1) we have provided a theoretical 

advancement to the statistical fusion framework that enables the simultaneous estimation of 

multiple (hierarchical) confusion matrices for each rater., (2) we have shown that the 

proposed hierarchical formulation is highly amenable to many of the state-of-the-art 

advancements that have been made to the statistical fusion framework, and (3) we have 

demonstrated statistically significant improvement in overall segmentation accuracy on both 

simulated and empirical data

Specifically, through a motivating simulation we have demonstrated the substantial impact 

that hierarchical label representations have on segmentation accuracy (Figure 2). For a 133 

label whole-brain multi-atlas segmentation task, we have shown substantial and significant 

accuracy improvement in terms of overall accuracy (Figure 3), non-cortical segmentation 

(Figures 4 and 5), and cerebral cortex segmentation (Figure 6). These accuracy 

improvements are supported by qualitative inspection (Figure 7). Finally, using a multi-atlas 

segmentation framework for the orbital region on CT, we evaluated the accuracy of 

Hierarchical STAPLE using 3 different logical hierarchical representations of the orbital 

anatomy (Figure 8). Additionally, using the “ideal” performance parameters as an upper 

bound, the empirical and theoretical benefits of the hierarchical performance estimation 

framework is highlighted.

Despite the promise of the proposed framework, there are several potential advancements 

that require future exploration. For example, all of the presented experiments have relied 

upon an a priori model of the hierarchical relationships within the data. The ability to infer 

these hierarchical relationships directly from a provided training set would dramatically 

increase the potential applications for this type of framework, and provide an underlying 

foundation for estimating the optimal hierarchical formulation for a given application. With 

that said, using the model described in Eq. 2, there are certain qualities of optimal 

hierarchies that can be inferred from mathematical intuition. For instance, when estimating 
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the performance parameters for a given observed label, it is evident that the hierarchical 

parents that led to this observed label have a substantial impact on the final performance 

parameter representation. Thus, the quality of the rater (or atlas) at the hierarchical parent 

labels should be strongly indicative of the performance of the leaf label (i.e., the final label 

representation). This type of framework is largely supported by the results in Figures 1 and 

8. For example, in Figure 8, the worst performing “logical” hierarchy is the representation 

that groups the optic nerves together. This is not particularly surprising because the left and 

right optic nerves are spatially separated from one another, and, thus, the quality of an 

individual atlas observation will be more strongly tied to the intra-orbital labels (see 

“Hierarchy 3”) as opposed to the inter-orbital labels (see “Hierarchy 2”).

Additionally, we have derived this approach from the perspective of hierarchical 

relationships between labels. However, the same (or very similar) estimation framework 

could potentially be used to estimate rater performance using multiple labeling protocols. 

For example, if one had a collection of datasets that were labeled using two separate 

protocols (either manually or automatically) it may be possible to (1) estimate the 

relationships between the protocols, and (2) simultaneously estimate rater performance in 

terms of both protocols. With that said, these multi-protocol methods would inherently rely 

on an anatomical representation that can be accurately modeled through a hierarchy. For 

instance, while hierarchies provide a natural framework for capturing many intuitive 

anatomical relationships, they are limited by their very nature to relationships that can be 

represented as a tree. Unfortunately, many physical structures have heterogeneous 

composition (in terms of both tissue and function) that simply cannot be represented in this 

form.

In the end, we have presented a powerful theoretical advancement to the statistical fusion 

context for leveraging the complex inter-structure relationships. While traditional fusion 

approaches treat all labels equally, the proposed rater model more accurately infers the types 

of errors that raters (or atlases) make within a hierarchically consistent formulation. Most 

importantly, we have demonstrated the proposed hierarchical performance model is 

completely amenable to many of the state-of-the-art statistical fusion algorithms. As a result, 

the primary contribution of this manuscript is a foundational level improvement to statistical 

fusion theory that is applicable to the entire gamut of fusion-based applications.
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Highlights

• We provide a theoretical advancement to the statistical fusion framework to 

enable hierarchical performance estimation.

• Advancements are highly amenable to many of the state-of-the-art 

advancements to the statistical fusion framework.

• We demonstrate statistically significant improvement on both simulated and 

empirical data.
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Figure 1. 
Hierarchical representation of rater performance. Volumetric renderings of the brain 

anatomy at the various levels are shown. At each level, the rater performance is quantified 

using a representative confusion matrix. Each level is then unified through a complete 

hierarchical performance model.
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Figure 2. 
Motivating simulation data and results. A simple 2D simulated dataset was constructed with 

observations using a boundary error model (A). Given a pre-defined hierarchical structure 

(B), the accuracy of all possible unique hierarchies via label permutation was quantified (C). 

Representative estimates using the “logical” (D), “best” (E), and “worst” (F) hierarchies are 

also presented.

Asman and Landman Page 23

Med Image Anal. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Mean accuracy of the various benchmarks and their corresponding hierarchical 

implementations for both the affine and the non-rigid registration frameworks. The accuracy 

of a majority vote (MV), locally-weighted vote (LWV), and joint label fusion (JLF) are 

presented to provide a reference baseline. The hierarchical implementations for STAPLE, 

Spatial STAPLE (SS), Non-Local STAPLE (NLS), and Non-Local Spatial STAPLE (NLSS) 

provide consistent and statistically significant improvement over their non-hierarchical 

counterparts.
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Figure 4. 
Per-label accuracy for non-cortical labels for hierarchical implementations of NLS and 

NLSS using the affine registration framework. The hierarchical reformulations provide 

substantial and significant improvement for many of the considered labels. A “*” over the 

hierarchical NLS or NLSS results indicate statistically significant improvement over the 

non-hierarchical implementation.
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Figure 5. 
Per-label accuracy for non-cortical labels for hierarchical implementations of NLS and 

NLSS using the non-rigid registration framework. As with the affine-only registration 

framework (Figure 4), the hierarchical implementations provide substantial and significant 

improvement for many of the considered labels. A “*” over the hierarchical NLS or NLSS 

results indicate statistically significant improvement over the non-hierarchical 

implementation.
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Figure 6. 
Mean per-label accuracy improvement for cortical labels using the hierarchical 

implementations of NLS and NLSS for the both of the considered registration frameworks. 

Particularly for the affine registration framework, the hierarchical reformulations provide 

substantial improvement in mean DSC accuracy for many of the cortical labels.
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Figure 7. 
Qualitative improvement exhibited by several state-of-the-art statistical fusion algorithms 

with the reformulated hierarchical performance model for the affine registration framework. 

For each of the considered statistical fusion algorithms we see substantial visual 

improvement for many of the considered labels. In particular, there appears to be marked 

improvement in the quality of the lateral ventricle labels and many of the cortical labels. The 

ellipses highlight regions exhibiting particular qualitative improvement.
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Figure 8. 
Empirical evaluation of the impact of the various logical hierarchical representations on 

STAPLE applied to multi-atlas segmentation of orbital anatomy on CT. The three 

considered logical hierarchical representations are shown in (A). The quantitative 

comparison (B) demonstrates that Hierarchical STAPLE provides significant improvement 

using both the “ideal” performance parameters, and the parameters estimated via EM. The 

quantitative accuracy benefits support the qualitative improvement shown in (C).
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