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1. Introduction

According to the United Nations World Tourism Organization
(UNWTO), more than a billion of tourists traveled to other coun-
tries during 2012, which marks a new record for international
tourism.2 This trend supposes that the authorities must make a huge
effort in controlling the access at the border checkpoints in order to
prevent irregular immigration or to detect wanted persons. Although
new electronic passports are more difficult to forge [28], it seems
appropriate to introduce some biometric techniques which allow
verifying the identity of the subjects. On the one hand, well-accepted
techniques, such as face recognition, have low accuracies. On the
other hand, techniques based on fingerprint [35] and iris [65] pro-
vide higher accuracies by the cost of the possible reticence of the
subjects to offer these personal biometric features [25]. Advances
in technology have made possible the advent of sensors capturing
the body odor, so non-invasive biometric techniques based on this
information are being developed [17].

The human identification from body odor is not a new idea,
bloodhounds have been used to identify people for more than a
century by the police. The well-known ability of these specially
trained dogs to follow tracks of a person from just an odor sample
shows the viability of using the body odor as biometric identifier
[51,26]. These animals are so accurate that some studies have
shown that they are able to guess the author of a bomb with a suc-
cess of 60%, even with only a small fragment of the original device
[53]. This ability has also been observed in humans but in a lesser
extent. For example, the study [32] indicates that some people are
able to identify the odor of their relatives.

Identification from body odor is not a trivial task since the scent
can vary considerably by diverse factors. Curran et al. [9] propose
to classify the body odor in three different categories depending
on the permanence of the odor. The primary odor is our individual
fragrance generated by our body. The relation among the chemi-
cals compounds that produce this scent remains constant over
time even with changes in the diet or other transitory factors.
Some studies [9,31] suggest that this primary odor depends on ge-
netic factors thus, these compounds allow people identification.
Furthermore, this genetic propensity by every individual to pro-
duce specific compounds has been reported even in studies with
monozygotic twins [31], in which high correlations between the
compounds of both siblings are found. The compounds belonging
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to secondary odor are also stable over time but are produced by a
specific diet or other internal factors. For example, the emotional
mood, such as a period of depression, may affect our body odor
[7]. In women, the different phases of the menstrual cycle have
shown to change the body odor [24]. What is more, some medical
works have identified some compounds in the odor that indicate
the presence of certain diseases as skin cancer [11]. Finally, tertiary
odor compounds are due to the external application of different
cosmetics as lotions, soaps, perfumes, etc. and therefore, they are
not produced by our own body.

In addition to this intra-personal variability, some studies re-
port some differences in the odor generated by people of diverse
ethnic groups as European or Japanese [52]. The relation between
the concentration of some compounds and the gender of the per-
son is also analyzed in [12,44]. Although some studies found some
differences in the odor due to the aging, these differences may be
caused by the specific diet of the studied population [16]. Finally,
other environmental factors as the humidity or the temperature
of the acquisition room have shown to affect considerably the com-
position of our body odor [63].

Previous studies [2,3] to identify those compounds of our scent
that attract yellow fever mosquitoes have found many common
compounds in human body odor. Our odor is composed of chemi-
cals known as volatiles which include hydrocarbons, alcohols, car-
boxylic acids, ketones and aldehydes [50]. In particular, some
works analyzing axillary odor [61,62,42] identify these compounds
as mainly linear chains C6–C10, normal, branched, hydroxy- and
unsaturated acids. These authors also suggest that the main con-
tributor to human body odor is acid (E)-3-metil-2-hexanoic,
although other compounds as acids 2-metil C6–C10 and acids 4-etil
C5–C11 are also abundant.

The body odor production is a complex process that has not
been still completely understood. Most of the odor is thought to
be generated by the epithelial cells detached from our epidermis,
body secretions and the bacteria fed with them [9]. The skin sur-
face has about 2 billion of cells and 1/30 of them are daily de-
tached, i.e., the human body emits about 667 cells per second.
Each cell is usually accompanied by about four bacteria and secre-
tions from apocrine, eccrine and sebaceous glands. The conjunction
of these three components is considered characteristic of each per-
son [9]. Nevertheless, other works do not support this hypothesis
since, from their point of view, the production process is quite fast
and cannot be due to the complex action of the bacteria [61]. In
addition, a study performed by National Institute for Medical Re-
search of London [13] discovered the existence of a cloud that sur-
rounds our body. This cloud, which is possibly produced by the
action of the bacteria over dead skin cells, presents four times more
germs than the room air and it has a width from 1 to 4 cm and
flows through our body at a velocity of 38 m/min.

The different types of glands are not distributed uniformly
through the body, therefore the composition of our odor is differ-
ent depending on the part of the body where it is captured. This
difference is reported in studies with dogs [26] and in recent works
analyzing the composition of the odor in the back and the arm of
the same person [16]. Eccrine sweat glands are distributed all over
the body, but they are specially concentrated in the palms, fore-
head and soles [19]. The sweat produced by these glands is quite
abundant, even two or four liters per hour in a normal person
doing exercise. Although, the main component of this fluid is water
(up to 98%), it also contains glicoproteins, lactic acid, sugars, amino
acids and electrolytes. This sweat is originated from the extracellu-
lar fluid so it reflects the compounds present in the blood plasma
[41]. In turn, apocrine glands are only present in the armpit, pubic
area and areola. These are the typical sources of the bad body odor
and even some authors suggest that they are also responsible of
some chemical signals as pheromones [60]. Sebaceous glands are
concentrated in body parts with hair such as breast, back or head.
The secretions of these glands are commonly named sebum and
they are rich in lipids as cholesterol, ester cholesterol, fatty acids,
squalene and triglycerides. Due to the fact that the sebum is liquid
at room temperature, it can flow through the whole body reaching
zones without these glands like palms. The hydrolysis of these lip-
ids produces a mixture of fatty acids which is unique for each indi-
vidual [43].

Penn et al. [44] propose to capture the body odor from the
sweat of the axillary region since this fluid presents a high variety
of compounds. Nevertheless, other work [9] suggests that the body
odor captured from the hand is much more stable since this part of
the body presents a lower number of apocrine glands, whose secre-
tions are more affected by different factors as diseases, states of
mind, etc. In this work, we decided to capture the odor from the
hand because its vapors are relatively easy capture as the hand is
less invasive for the subject than other body parts.

This paper is organized as follows: Section 2 describes the
experimental setup carried out to capture hand’s odor. Section 3
identifies our odor identification system with the different stages
involved in a supervised classification task, namely: pattern con-
struction, dimensionality reduction and classification. This section
also presents the methods and criteria used at each phase. Section 4
describes the evaluation methodology. Section 5 shows and ana-
lyzes the experimental results obtained by the different systems
proposed in the preceding section. Finally, Section 6 states the con-
clusions derived from this work.
2. Hand odor capture

Sweat is usually collected by means of pads which have been
previously sterilized in order to avoid a possible contamination
of the sample. After these pads are left to rest during several hours
to favor the bacteria action, the emitted vapors are captured. Nev-
ertheless, this process needs a long time to obtain the odor profile
so other works are proposing new techniques to capture the body
odor in real time. In [63], the authors present a technique in which
the person places the hand into a device in which air flows collect-
ing the volatile compounds of the odor. Although this technique
considerably decreases the acquisition time since it is not neces-
sary to wait for the bacteria action, the acquisition time is about
30 min which is still high taking into account that the person must
remain with his/her hand inside the device during this time.

For this work, a new sensor with a low acquisition time devel-
oped by Sociedad Europea de Análisis Diferencial de Movilidad SL
(SEADM) was used. The system comprises (i) a vapor collector,
which drives the skin emanations from the hand toward the ion-
izer, (ii) an ionization stage, where the vapors are put in contact
with the cloud of ions produced by a corona discharge, and (iii)
and Atmospheric Pressure Interface (API) Mass Spectrometer
(MS) that collects the ions, transfers them from the atmospheric
region toward the vacuum side of the MS, and finally analyzes
them. The new system, which is schematically depicted in Fig. 1,
resembles that described in [37], but it uses clean gas to reduce
background levels, and a corona instead of the electrospray that al-
lows the temperature of the system to be increased so as to pre-
vent vapor deposition and the subsequent memory effects. The
MS (a Qstar XL from Sciex) provides a full spectrum (number of
ions detected as a function of their mass to charge ratio) every
0.1 s. The combination of high speed and high sensitivity provided
by the new system allowed the analysis of the samples to perform
in real time (on-line). The raw data analyzed in this study is a ser-
ies of spectrum (each being a snapshot) that describes the time
evolution of the concentration of the different species. More details



Fig. 1. Scheme of operation of the analysis system.
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Fig. 2. Number of detected ions of lactic acid for one subject.

Fig. 3. Diagram of the design of a machine learning system. Figure adapted from
[14].
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describing the vapor ionization systems developed by SEADM can
be found in [56,57].

During the campaign, the following protocol was applied: first,
the subject washed and dried their hands with water, non-per-
fumed soap, and laboratory quality handkerchiefs (Kimwipes) in
order to reduce cross contaminations effects. Then, the subject
put on a sterile nitrile glove in his/her left hand cleaned with high
purity methanol. The left hand was used to determine the back-
ground level of the system. To do this, the subject placed his/her
left hand (wearing the cleaned glove) onto the vapor collector for
40 s. Once the background levels were collected, the subject chan-
ged hands, now putting its nude left hand onto the vapor collector.
In this step, in order to prevent non-gaseous depositions from
being transferred from the skin to the vapor collector, a disposable
Viton O-ring was used to separate the hand from the vapor collec-
tor. The vapors released by the right hand were then analyzed in
real time during 30 s, after which hands were switched again. In
order to validate the repeatability of the measurements, the right
hand was measured twice. Between the first measurement and
the second measurement, the left hand was placed onto the vapor
collector to provide a null input into the system so as to return to
the original background level. An example of the results of these
measurements is depicted in Fig. 2, where the signal of ions per
second detected for a particular specie (lactic acid in this case) rises
when the right hand is placed onto the vapor collector (seconds 40
and 95) and returns to the background levels when the left hand
wearing a clean glove is analyzed (seconds 0, 70 and 125).
The total acquisition time was longer than the time of placing
the hand on the sensor because it also comprises the background
measurements. However, in order to minimize the time for classi-
fication, in this work we have only used the data captured just be-
fore and during the positioning of both hands. This experiment was
performed by 13 individuals (8 males and 5 females) in 28 differ-
ent sessions conducted in different days to ensure the permanence
of the analyzed features. Although in some works the participants
of the experiment must wear special clothes [10] or perform phys-
ical activity to increase their production of sweat [9,63], in this
work the participants were not asked to do any previous exercise
or wear any special clothes.
3. Identification system

Once the samples are collected, the problem of odor identifica-
tion can be tackled from the point of view of machine learning
[36,20]. In particular, the problem of subject identification from
their body odor can be identified with a supervised multi-class
classification task [4] in which each class corresponds to a subject
and the classification algorithm (also known as classifier or learn-
ing algorithm) must find the dependences between the input data
and the classes. After training the system with several samples of
each individual, the classification model can be used to determine
the discriminatory information to be used to predict the class of
unlabeled samples. The performance of the system is calculated
by means of the recognition rate (or classification accuracy), which
indicates the percentage of the testing samples correctly classified
that is, the number of subjects correctly identified. This is not the
first attempt to tackle mass-spectrometry data from the point of
view of machine learning and several works are published in this
line as pointed out in the review of Saeys et al. [49].

Any supervised classification system is composed of different
stages as the ones shown in Fig. 3. The data acquisition phase cor-
responds to the process described in Section 2 that gave as result
the hand odor of both hands from 13 subjects captured in 28 ses-
sions carried out in different days. The adaptation of the remaining
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stages to our identification system will be presented in the follow-
ing subsections.

3.1. Pattern construction

Once captured, the experimental samples should be expressed
in the correct format to be interpreted by the classifier. More pre-
cisely, the information related to each session will be a pattern and
each pattern will be defined as a set of variables (attributes or fea-
tures) created according to certain criteria. This way, a pattern can
be understood as a multidimensional vector, being each dimension
one of these variables. In our case, the acquisition system provides
a mass spectrogram for each session. This spectrogram reflects the
number of ions detected for each mass during the time each sub-
ject was placing the hand in the sensor and every compound can
be identified with a peak in the spectrogram. Therefore, our attri-
butes will be the different mass intervals corresponding to each
peak which provides information about a compound of the body
odor. Initially, only those mass intervals corresponding to fatty
acids were identified based on our previous work [37]; however,
these intervals showed to be insufficient to classify people accu-
rately. Peak detection was refined by performing a visual inspec-
tion of all the spectrograms, giving as a result 752 common
intervals for all the subjects. This means that each sample of body
odor captured by the acquisition system will be represented by a
vector of 752 dimensions, each of which indicates the number of
ions (intensity) that have fallen into the corresponding interval.

Having defined the configuration of the patterns, a numerical
analysis revealed that the acquisition system accumulated noise
coming from the previous captures. Thanks to the background sig-
nal measured just before and during both hands were placed, the
contribution of this noise was subtracted in order to obtain the
pure signal independent of previous samples and thus, characteris-
tic of each individual. Furthermore, due to the fact that the concen-
tration of the ions may depend on different environmental factors,
such as humidity, temperature or even the hour of capture, these
measurements were normalized. This normalization consisted in
dividing the measurement for each interval by the total number
of ions detected by the acquisition system along all the intervals
in the same session. Consequently, the entries of the vector corre-
sponding to each body odor sample represent the relative concen-
tration of each identified compound.

3.2. Dimensionality reduction

The characteristics of the identification system described in the
preceding sections are in line with those commonly appearing in
bioinformatics problems: large dimensionality and small sample
sizes. This kind of problems is known as small sample size problems
and much effort has been invested in bioinformatics, machine
learning and data mining areas to develop dimensionality reduc-
tion algorithms capable of dealing with the inherent risk of impre-
cision and overfitting [49]. Specifically, as described in Sections 2
and 3.1, in our identification problem the number of features
(752 mass intervals) is much larger than the number of samples
per class (56 samples per subject).

Two different approaches were evaluated for this identification
problem: feature selection and feature extraction. Feature selec-
tion techniques select the most relevant subset of features from
the original set of variables [22]. Among feature selection ap-
proaches, three groups can be found as a function of their depen-
dence on the classifier: (i) filter methods are independent of the
classifier and they are based on intrinsic characteristics of the data;
(ii) wrapper methods use the classifier as a black-box to evaluate
the goodness of a candidate subset of features, and (iii) embedded
methods are completely linked to the classifier as they incorporate
the feature selection task in the objective function of the classifier.
Additionally, feature selection algorithms can be divided into fea-
ture subset selection (FSS) methods and feature ranking ap-
proaches. FSS algorithms give as a result a closed subset of
features while feature ranking approaches provide a list of all the
original features sorted according to certain criterion of relevance.

According to the comparative study carried out by Saeys et al.
[49], filters are the most common algorithms in mass-spectrome-
try domains. In particular, univariate filter methods, which only
consider dependences between the attributes and the class, are
the most used approach. Though multivariate filters extend the
functionality of the univariate approach by taking also into account
interactions among features, they are not so widespread in the
mass-spectrometry domain. Wrapper algorithms have been suc-
cessfully applied in several influential works. Finally, embedded
approaches are emerging as a promising alternative. For more
information and a detailed review of feature selection in mass-
spectrometry domains, the reader is referred to Ref. [49].

Regarding feature extraction methods, they apply a transforma-
tion that projects the data into a lower dimensional space. These
approaches have also been successfully used in mass-spectrometry
data [58,33,38,46,1,34,39]. In the following sections, the applica-
tion of feature selection and feature extraction algorithms to our
problem is described in more detail.

3.2.1. Feature selection
As pointed out in Section 3.2, feature selection algorithms can

be divided into different groups according to the dependence be-
tween the selector and the classifier. In this work, filter and wrap-
per approaches have been considered since the first one is the most
commonly used in mass-spectrometry domains [49] and the sec-
ond one generally achieves good recognition rates [22,49]. Embed-
ded algorithms were not taken into account as they do not provide
flexibility to be easily tested with different classifiers.

Filter methods are independent of the classifier since they are
based on intrinsic properties of the data such as correlations, mu-
tual information or distances. These approaches can be divided
into two subgroups: (i) univariate filters, which only consider
dependences between the attributes and the class label, and (ii)
multivariate filters that also model dependences among features.
The former group is computationally faster but it usually yields
poorer results, especially if there is high redundancy in the data
[22]. In this work, we considered a multivariate filter approach
as we expected our features to be highly redundant due to the
overlapping of mass intervals and the dependences among differ-
ent compounds, even when their mass intervals do not overlap.
In particular, we opted for ReliefF [29], a feature ranking algorithm
that evaluates the quality of a feature according to how well it dis-
tinguishes between instances that are near to each other. Specifi-
cally, the algorithm starts by identifying the closest samples of
the same class (nearest hits) and the closest samples from different
classes (nearest misses) of each training pattern and those features
that keep close samples in the same class while getting away sam-
ples from different classes are preferred. Therefore, ReliefF is an
appealing solution to our problem since it selects the characteristic
compounds of each user, rewarding those compounds that take
similar values among the samples of the user but different values
in the samples belonging to other individuals. Additionally, ReliefF
was chosen because (i) it has already been used in mass-spectrom-
etry domains [45]; (ii) it is a multivariate filter feature selection
algorithm which does not require many training samples to obtain
reliable estimations of the feature scores; (iii) it can be easily for-
mulated for multiclass classification problems; and (iv) it can be
applied before any classification algorithm.

Wrapper methods use the classifier performance to evaluate the
goodness of a subset of features. However, considering all the



possible subsets of features is an unapproachable task and differ-
ent approximations are suggested in the literature to address this
problem [22]. In this work, sequential forward feature selection
technique was considered as it is one of the most commonly used
algorithms. This is a greedy technique in which the search of the
best subset is performed by adding iteratively the most relevant
features to an initially empty subset. At each iteration, the most
relevant feature is that producing the highest recognition rate
and in case of tie, one of the candidates is randomly chosen. Due
to this randomly selection, the algorithm should be restarted sev-
eral times to explore different combinations of features. The inclu-
sion of new features stops when either the maximum recognition
rate is achieved (100%) or the classification rate converges. Thus,
the sequential forward feature selection procedure can be viewed
as a feature subset selection approach if the algorithm stops before
all the original features are added to the final subset of attributes,
but it also can be formulated as a ranking feature selection method
by considering the order in which the features have been incorpo-
rated to the final subset of variables.
3.2.2. Feature extraction
Among feature extraction techniques, Principal Component

Analysis (PCA) [14,27] was tested because it is particularly inter-
esting for our identification system as it allows ignoring those
compounds with a low variance and therefore, not helpful to dis-
criminate between different subjects. Furthermore, PCA has shown
good performance in a wide range of domains [54,64,47], including
mass-spectrometry problems [58,33,38,1,34,39]. Although PCA is
an unsupervised technique, it can efficiently complement a super-
vised classifier in order to achieve the objective of the system. In
fact, any classifier can be used in conjunction with PCA since it
does not make any kind of assumption about the subsequent clas-
sification model.

The idea behind PCA is to find a set of orthogonal directions to
project the data into a lower-dimensional space while preserving
as much of the variance as possible. PCA does not take into account
the label of the data (in our case the owner of the body odor) but it
attempts to find a set of orthogonal directions that maximize the
data variance. The result of PCA is a list of orthonormal directions
ordered according to the percentage of explained variance, i.e., the
first component is that explaining the highest proportion of the
data variance, and so on. Thus, the dimension of the problem is re-
duced by selecting the first principal components and projecting
the data into the subspace defined by these directions. As PCA gives
as a result an ordered sequence of directions to project the data, it
can viewed as ranking feature extraction approach.
3.3. Classifier

In this work, different classifiers were considered to discrimi-
nate the body odor of each subject. It is fundamental to note that,
given the characteristics of the data we are working with, simple
models are preferred to avoid the overfitting phenomenon
[55,40]. Specifically, we have tested five types of classifiers, namely
k Nearest Neighbors (k-NN), Linear Discriminant Analysis (LDA),
Logistic Regression, Naive Bayes and linear Support Vector Ma-
chines (SVMs) [14,4]. Though different approaches motivated these
algorithms, all of them are simple, easily adaptable to the multi-
class scenario and they have already been used in the electronic
nose domain [21,5,59,18,15].

Note that LDA is commonly used for dimensionality reduction
before later classification but in our case, we have used it as a lin-
ear classifier since LDA formulation is ill-posed when applied to
our entire dataset and thus, it must be preceded by a dimensional-
ity reduction step. When used as classifier, LDA projects
samples into the subspace defined by LDA’s directions and then as-
signs to each pattern the class with the closest projected mean.

Nonlinear SVMs (RBF kernel) were also included in the further
experiments to give evidence of the inadequacy of more complex
models for our identification system.

Finally, observe that these classifiers play a different role
depending on the dimensionality reduction method to apply.
While in wrapper algorithms the classification and feature selec-
tion processes are completely linked, filters and PCA are com-
pletely independent of the classifier to be used.
4. Experimental setup

It is fundamental to define a rigorous evaluation method to
determine whether the requirements of the identification system
are fulfilled or not. A common practice to evaluate a machine
learning system consists in dividing the data into three disjoint
subsets: (i) a training set to learn the parameters of the classifica-
tion model, (ii) a validation set to tune meta-parameters of the sys-
tem – in our case, those associated with the classifier and the
number of features to retain, and (iii) a test set formed by unseen
data that have not been used to adjust any parameters or meta-
parameters and which allows us to reliably evaluate the perfor-
mance of the system when deployed in an operating environment.
Ideally, the classification system has to be specific enough to infer
the relation between the patterns and the classes, but general en-
ough to correctly predict the label of those patterns not seen dur-
ing the training phase.

Although there are different techniques to divide the total data-
set into these three subsets, in this case we adopted a variation of
the leave-one-out (LOO) strategy [4]. Taking into account that the
number of samples per subject (2 captures � 28 sessions) is not too
large, the LOO approach is appropriate since it maximizes the num-
ber of samples to be used during the training phase and each pat-
tern is used once as validation data. Specifically, given the entire
dataset, the LOO method keeps a single sample as the validation
data and the remaining samples are used to train the model. This
process is repeated as many times as the number of samples in
the data by leaving aside one of the patterns at each time.

The methodology here implemented can be viewed as a LOO
strategy at session level which is used in both validation and test-
ing phases as shown in Fig. 4. First of all, it should be noted that the
data coming from the same session (two captures per session)
were preserved in the same training/validation/test partition in or-
der to avoid artificially high recognition rates due to the temporal
dependence of both measurements. At the first level, one session
per subject was kept for the testing set. Ideally, all the possible
combinations coming from leaving one sample per subject should
be considered. However, this approach is computationally inten-
sive. Thus, each testing set was configured by taking the first ses-
sion for all the subjects, the second session for all the subjects,
etc. This way, 28 different test sets were obtained. The same strat-
egy was applied over the remaining 27 sessions (per subject): the
nth session of each subject was kept for validation while the
remaining 26 sessions were used to train the model and this pro-
cess was repeated 27 times. Note that strictly speaking we did
not apply LOO since both validation and test sets comprised 26
samples instead of the single pattern characteristic of the LOO
approach.

In particular, the training set was used to select/extract the
most relevant features and to train the classifiers. The validation
set was used to adjust the best number of features in each case
as well as the classifiers’ meta-parameters. It also guided the fea-
ture search in the wrapper approach. The final performance of
the identification system was measured over the test set in order



Fig. 4. Experimental methodology used to generate the training, validation and test
partitions.

Table 2
Meta-parameter grids considered in our experiments.

Algorithm Meta-
parameter

Grid

ReliefF # Features {1,2, . . . ,9,10,20,30, . . . ,200,250}
PCA # Features {1,2, . . . ,9,10,20,30, . . . ,200,250}
Wrapper # Features {1,2, . . . ,9,10,20,30, . . . ,150}
k-NN k {1,3,5,7,9}
Linear SVM Cost parameter {10�4, 10�3, 10�2, 10�1, 1, 101, 102, 103, 104}
RBF SVM Cost parameter {10�4, 10�3, 10�2, 10�1, 1, 101, 102, 103, 104}
RBF SVM Kernel width {10�3, 10�2, 10�1, 1, 101, 102, 103}
to obtain a reliable estimation of its effectiveness once working in a
real environment.

According to Fig. 1 and the ideas presented in Sections 3.2 and
3.3, different combinations of dimensionality reduction techniques
and classifiers were tested in order to evaluate the feasibility of
using the body odor as biometric identifier. The algorithms consid-
ered in our analysis are listed in Table 1.

All the dimensionality reduction methods (ReliefF, PCA and the
wrapper approach) are feature ranking approaches that require
specifying the dimension of the reduced space which, in turn, will
be the input space for the subsequent classifier. ReliefF also re-
quires specifying the number of nearest neighbors from the same
class (nearest hits) and from different classes (nearest misses) to
consider in the computation of each feature score. The results here
shown are those corresponding to a neighborhood of size 3. Neigh-
borhoods of size 5 and 7 were also implemented with no better re-
sults. Finally, some meta-parameters need also to be adjusted for
some of the classification methods in Table 1. The grid of values
considered for each meta-parameter is shown in Table 2. Note that
the maximum number of features selected with the wrapper algo-
rithm is 150 while it is 250 for ReliefF and PCA. This fact is due to
the high computational cost of the wrapper algorithm [49] and its
poor generalization performance in our data, as it will be shown in
Section 5. Then, according to the experimental setup above de-
scribed, the optimal value of these parameters in each case is that
minimizing the classification error in the validation set.
Table 1
Dimensionality reduction techniques and classifiers considered in our experimental
setup.

Dimensionality reduction Classifier

Feature selection Feature extraction

ReliefF PCA k-NN
LDA
Logistic Regression
Naive Bayes
Linear SVM
RBF SVM

Wrapper (Forward) – LDA
5. Results and discussion

As point of reference, note that the average recognition rate of a
random classifier for this problem is 7.69% since there are 13 sub-
jects (classes) and all of them have the same number of samples.
This rate can be used as a reference in order to verify the presence
of discriminatory information in the hands’ odor.

First of all, we will analyze the results obtained for the wrapper
algorithm to show its poor performance in our case. The wrapper
algorithm was implemented as a sequential forward feature selec-
tion technique using LDA as classifier. Fig. 5 shows the average rec-
ognition rates for the validation and test partitions as a function of
the number of features. It can be observed that the results for the
test partition are significantly worse than those obtained with the
validation set. Overfitting is a well-known limitation of wrapper
approaches [22,49]: the feature selection process is guided by the
performance of the classifier in the validation data and therefore,
it is likely that the obtained model overfits the validation samples
and it does not generalize well to unseen data. In spite of this de-
crease with respect to the validation results, the average recogni-
tion rate for the testing data using only 30 features is about
74.75% (81% in validation) which implies an improvement of nine
times over the random classifier (7.69%). Furthermore, when 95
features are considered, the recognition rate over the testing set
reaches its maximum at 77.75% (85.73% in validation), which im-
proves in 10 times the effectiveness of the random classifier.
Although these results are promising, the wrapper solution was
dismissed in favor of the other dimensionality reduction tech-
niques that yield better performance and generalization in the test
set besides lower execution times.

Tables 3 and 4 show the classification accuracy (%) for ReliefF
and PCA as a function of the number of features and principal
components, respectively, and when combined with the classifi-
ers listed in Table 1. The effectiveness of the classifiers when
dimensionality reduction is not applied is also shown as reference
except for LDA that is ill-posed when all the original features are
taken into account (the number of features is larger than the
number of samples). When applicable, the results are those corre-
sponding to the best meta-parameters obtained from the valida-
tion set. In order to provide a visual representation of the
results that makes it easier to compare them, Figs. 6 and 7 show
the test classification rates (%) of ReliefF and PCA, respectively, as
well as the best performance obtained with no dimensionality
reduction and corresponding to the linear SVM (see Tables 3
and 4). Note that, according to the experimental protocol de-
scribed in Section 4, the training sets are similar to each other
and thus, the estimate of error is almost unbiased but it can have
high variance [6] and [23, Chapter 7].

First of all, note that in both cases the dimensionality reduction
phase not only reduces the risk of overfitting and the computa-
tional cost of the classifier but it also improves the effectiveness
of the identification system by removing noisy and irrelevant fea-
tures. Furthermore, generally speaking, the results obtained when
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Fig. 5. Recognition rate as a function of the number of features of a wrapper feature selection algorithm using forward search in combination with Linear Discriminant
Analysis. Results over the validation and test partitions are shown.

Table 3
Average identification rate (%) for the test and validation sets (validation results in parentheses) for different classifiers and using ReliefF as dimensionality reduction method. As
reference, the performance of the classifiers when all the original features are considered is given. The best result in the test set for each number of features is marked in bold.

Class. Number of features No FS

1 10 50 100 200 250

k-NN 18.68 ± 1.41 40.25 ± 1.53 53.02 ± 2.33 55.08 ± 2.67 50.55 ± 2.24 49.18 ± 2.21 39.15 ± 2.03
(19.57 ± 0.74) (43.15 ± 0.85) (53.91 ± 0.72) (54.50 ± 2.22) (50.71 ± 0.82) (50.80 ± 0.80) (40.48 ± 0.67)

LDA 19.37 ± 1.06 44.37 ± 2.38 73.90 ± 2.46 76.65 ± 2.43 76.92 ± 2.37 76.37 ± 2.02 –
(19.46 ± 0.40) (44.93 ± 0.87) (72.99 ± 1.11) (76.97 ± 1.21) (76.71 ± 1.03) (75.85 ± 0.86) –

LogReg 19.51 ± 0.95 55.91 ± 2.42 71.29 ± 2.16 71.29 ± 2.18 71.84 ± 2.19 71.15 ± 2.47 13.19 ± 0.96
(19.73 ± 0.60) (55.97 ± 0.94) (69.11 ± 1.41) (71.15 ± 2.15) (71.37 ± 1.58) (70.98 ± 1.23) (11.99 ± 1.20)

Naive 19.37 ± 1.06 41.21 ± 1.96 54.40 ± 1.92 55.22 ± 1.91 53.98 ± 2.14 53.02 ± 2.33 31.45 ± 1.76
Bayes (19.46 ± 0.40) (41.29 ± 1.04) (53.85 ± 0.96) (55.39 ± 1.15) (54.36 ± 1.04) (52.84 ± 0.80) (31.36 ± 0.72)

Linear 7.69 ± 0.00 45.74 ± 1.43 81.73 ± 1.96 83.10 ± 2.00 83.93 ± 2.24 84.07 ± 2.00 72.80 ± 2.65
SVM (7.73 ± 0.07) (45.80 ± 1.10) (80.32 ± 1.15) (82.96 ± 1.28) (83.66 ± 0.76) (83.24 ± 0.92) (72.96 ± 1.25)

RBF 17.17 ± 1.11 28.16 ± 1.81 29.12 ± 1.62 32.55 ± 2.23 28.71 ± 1.66 35.85 ± 2.08 29.26 ± 1.69
SVM (19.75 ± 0.82) (28.28 ± 0.90) (28.94 ± 1.05) (30.48 ± 3.77) (29.33 ± 2.36) (35.78 ± 1.69) (29.12 ± 0.55)

Table 4
Average identification rate (%) for the test and validation sets (validation results in parentheses) for different classifiers and using PCA as dimensionality reduction method. As
reference, the performance of the classifiers when all the original features are considered is given. The best result in the test set for each number of principal components is
marked in bold.

Class. Number of principal components No FS

1 10 50 100 200 250

k-NN 13.32 ± 1.07 38.74 ± 1.80 39.56 ± 2.07 39.29 ± 2.12 39.15 ± 2.01 39.42 ± 1.94 39.15 ± 2.03
(14.41 ± 0.98) (39.27 ± 0.62) (40.43 ± 0.70) (40.57 ± 0.68) (40.52 ± 0.68) (40.54 ± 0.70) (40.48 ± 0.67)

LDA 16.21 ± 1.30 39.70 ± 2.43 64.84 ± 3.30 78.16 ± 2.49 82.55 ± 1.86 81.73 ± 2.05 –
(16.20 ± 0.70) (39.25 ± 0.62) (64.84 ± 0.79) (78.00 ± 0.74) (82.28 ± 0.61) (81.36 ± 0.75) –

LogReg 14.56 ± 1.11 47.80 ± 2.42 66.48 ± 2.05 75.00 ± 2.09 79.12 ± 1.98 79.53 ± 2.08 13.19 ± 0.96
(14.78 ± 0.82) (47.90 ± 0.89) (64.22 ± 0.94) (75.02 ± 0.96) (79.70 ± 0.79) (79.23 ± 0.92) (11.99 ± 1.20)

Naive 16.21 ± 1.30 38.87 ± 2.30 61.68 ± 3.11 76.65 ± 2.63 82.14 ± 2.19 80.91 ± 2.25 31.45 ± 1.76
Bayes (16.20 ± 0.70) (38.28 ± 0.89) (61.16 ± 0.86) (76.39 ± 0.56) (81.33 ± 0.72) (80.89 ± 0.77) (31.36 ± 0.72)

Linear 13.19 ± 0.54 31.87 ± 1.42 53.71 ± 2.26 63.19 ± 2.49 66.48 ± 2.68 65.52 ± 1.91 72.80 ± 2.65
SVM (13.55 ± 0.33) (32.95 ± 0.86) (53.92 ± 1.15) (63.50 ± 1.05) (66.60 ± 0.87) (67.35 ± 1.32) (72.96 ± 1.25)

RBF 12.50 ± 0.92 8.93 ± 0.53 7.97 ± 0.19 7.97 ± 0.19 7.97 ± 0.19 7.97 ± 0.19 29.26 ± 1.69
SVM (13.14 ± 1.13) (8.92 ± 0.18) (7.95 ± 0.08) (7.96 ± 0.07) (7.96 ± 0.07) (7.96 ± 0.07) (29.12 ± 0.55)
used ReliefF and PCA reveal that these two approaches better face
our identification problem than the wrapper algorithm. The supe-
riority of ReliefF and PCA is not surprising. We are facing a small-
sample-size problem with high risk of overfitting and algorithms
like ReliefF and PCA, based on intrinsic properties of the data, are
able to better generalize given that the validation set is only used
to decide the optimum number of variables but not to select them
as in the case of wrapper approaches.
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Fig. 6. Recognition rate (%) as a function of the number of features of a filter feature selection algorithm (ReliefF) integrated with different classifiers. As reference, the best
performance obtained by considering all the original features is also shown (Baseline error). Results over the test partition are shown.
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Fig. 6 shows the good performance of the system when combin-
ing ReliefF and a linear SVM, achieving recognition rates of 85.03%
in the test set when 160 features are taking into account, which
implies an improvement of more than 11 times with respect to
the random classifier and a reduction of the dimensionality of
the problem by a factor of 4.7 (752 original features/160 selected
features). Actually, ReliefF has been already successfully used in
mass-spectrometry domains [45]. Regarding PCA (Fig. 7), the high-
est recognition rate for the test data is achieved in combination
with LDA when 190 principal components are kept. The accuracy
amounts to 82.83%, which means that PCA + LDA outperforms the
random classifier in 10.77 times while reducing the dimension of
the problem by a factor of 3.96 (752 original features/190 principal
components). This good performance is also corroborated by the
successful combination of PCA and LDA in previous works address-
ing mass-spectrometry problems [38,33,1,34]. Finally, remark that
it is not strange that both linear SVMs and LDA behave similarly in
some cases given the close relationship between LDA and the Fish-
er Discriminant Analysis (FDA) and the equivalence between FDA
and SVMs [48].

Regarding the other classifiers, k-NN does not yield good results
in either case, possibly because it requires scale of the features to
be consistent with the importance of the variable. This is not the
case here: there are compounds that are abundant and common
to all people (such as lactic acid) and they are not necessarily dis-
criminative. Logistic Regression and Naive Bayes work well when
combined with PCA but not when used together with ReliefF. These
results make sense since both classifiers assume independent fea-
tures and PCA just extracts uncorrelated features. However, any
kind of independence is derived from the attributes chosen by Re-
liefF. Finally, as expected, the classification accuracies of nonlinear
SVMs (with RBF kernel) are very poor, either in the validation or
test partition. As discussed in Section 3.3, it is likely that the model
complexity of RBF SVMs leads to overfitting and thus, the
Fig. 9. Decision boundaries (black lines) obtained by the PCA + LDA model for all the pair
training/test partitions of our evaluation method. Training and test points of the partitio
algorithm does not generalize well to unseen patterns [40]. In or-
der to analyze the generalization capability of the best combina-
tions in Figs. 6 and 7 as well as to compare them, Fig. 8 shows
the classification accuracy (%) in the validation and test sets for Re-
liefF and PCA when combined with both linear SVM and LDA. The
difference between the validation and test errors is low, which
means that the models are not incurring in overfitting.

Regarding the comparison between ReliefF + Linear SVM and
PCA + LDA, both approaches provide good identification rates,
being slightly better the combination of ReliefF + Linear SVM. Addi-
tionally, ReliefF + Linear SVM (i) is able to achieve an identification
rate of 84.34% with only 60 features while PCA + LDA has not com-
petitive results for this number of features, and (ii) favors the inter-
pretability of the final model since ReliefF gives as a result a subset
of the original features whereas PCA generates new variables from
linear combinations of the original ones. Nevertheless, the good
performance of PCA + LDA should not be dismissed. In fact, one
of the advantages of this model with respect to ReliefF + Linear
SVM is that we can depict its decision boundaries as shown in
Fig. 9. When used for multi-class classification tasks, the classes
are divided into two groups and the binary LDA is applied. Typi-
cally, two strategies can be implemented to generate such parti-
tions. On the one hand, the ‘‘one against the rest’’ approach
considers that points from one of the classes form one group and
the points from the remaining classes configure the other group
[8]. On the other hand, the ‘‘one against one’’ methodology gener-
ates a new classifier for each possible pair of classes [30]. The latter
approach was the one adopted in this work and thus, one classifier
was obtained for each pair of subjects (Sx vs Sy); that is, there are

13
2

� �
¼ 78 pairwise binary classifiers. This way, Fig. 9 shows the

decision boundary of each binary classifier in one of the training/
test partitions of our evaluation process (see Fig. 4) as well as the
points associated with these partitions. The good generalization
wise classifiers corresponding to classify one subject vs other (Sx vs Sy) in one of the
n are also shown. Best viewed in color.
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Fig. 10. Recognition rate (%) of the ReliefF + Linear SVM (a) and PCA + LDA (b) models as a function of the number of sessions per subject in the training set and the number of
features (#feat.) or principal components (#PC), respectively.

I. Rodriguez-Lujan et al. / Knowledge-Based Systems 52 (2013) 279–289
of PCA + LDA is corroborated in this figure, being the test points
well classified in most of the cases.

Finally, we would like to show the appropriateness of using our
LOO-based evaluation strategy by analyzing the effect in the per-
formance of varying the number of training sessions per subject
for ReliefF + Linear SVM (Fig. 10a) and PCA + LDA (Fig. 10b). In
the abscissa axis the number of sessions used in the training set
is represented whereas the ordinate axis shows the recognition
rate of the system. Each curve corresponds to the average recogni-
tion rate (%) in test using a different number of features or princi-
pal components. It can be observed that in all cases the
performance tends to improve as the number of sessions increases.
The reason for this relation might be the high variability present in
the body odor which makes it necessary to consider a large number
of training samples in order to generate robust statistical models.
Therefore, the methodology described in Section 4 is advisable as
it is focused on maximizing the number of training samples.
6. Conclusions

This paper analyses the feasibility of using the body odor as a
biometric identifier using a machine learning framework. Although
the best classifier reaches an average recognition rate over 85%
when identifying 13 subjects, these results are not comparable to
other well-known biometric methods such as fingerprint or iris.
Therefore, the identification based on the body odor should be
complemented with other biometric techniques in order to in-
crease its effectiveness. Nevertheless, these medium results are
very promising since they reveal that there is actually discrimina-
tory information in the body odor.

Due to the fact that this problem requires analyzing a large
number of features (752 mass intervals) using a reduced number
of samples (13 subjects � 28 sessions), different dimensionality
reduction approaches were tested together with different classifi-
ers namely, k Nearest Neighbors (k-NN), Linear Discriminant Anal-
ysis (LDA), Logistic Regression, Naive Bayes and linear Support
Vector Machines (SVMs). The incorporation of a dimensionality
reduction phase not only reduced the computational cost of the
identification system but also improved its effectiveness. More
precisely, a filter feature selection method called ReliefF combined
with a linear SVM yielded the best identification rate (85.03%) with
160 features and it has demonstrated good generalization proper-
ties. A wrapper feature selection method achieved high recognition
rates in the validation data but the results obtained with the test-
ing data were degraded, questioning the generalization capacity of
this model. Finally, Principal Component Analysis (PCA) was
considered for feature extraction. PCA reached recognition rates
over 82% when combined with LDA whereas providing good
generalization results. However, it needed more variables (190
principal components) than the ReliefF approach.

In conclusion, this work gives evidence of the presence of dis-
tinctive information in the body odor by achieving recognition
rates over 85% and outperforming the effectiveness of a random
classifier in 11 times. Nevertheless, the odor sensor is still in a
development phase and it is expected that further improvements
lead to consider odor as a new biometric feature capable of com-
peting with the most successful biometric techniques.
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