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Differential Cryptanalysis of WARP
Je Sen Teh* and Alex Biryukov

Abstract—WARP is an energy-efficient lightweight
block cipher that is currently the smallest 128-bit
block cipher in terms of hardware. This paper pro-
poses the first key-recovery attacks on WARP based
on differential cryptanalysis in single and related-key
settings. We searched for differential trails for up to 20
rounds of WARP, with the first 19 having optimal dif-
ferential probabilities. We also found that WARP has
a strong differential effect, whereby 16 to 20-round
differentials have substantially higher probabilities
than their corresponding individual trails. A 23-round
key-recovery attack was then realized using an 18-
round differential distinguisher. Next, we formulated
an automatic boomerang search using SMT that
relies on the Feistel Boomerang Connectivity Table
to identify valid switches. We designed the search
as an add-on to the CryptoSMT tool, making it
applicable to other Feistel-like ciphers such as TWINE
and LBlock-s. For WARP, we found a 21-round
boomerang distinguisher which was used in a 24-
round rectangle attack. In the related-key setting,
we describe a family of 2-round iterative differential
trails, we used in a practical related-key attack on the
full 41-round WARP.

Index Terms—Symmetric-key, Block ciphers, Dif-
ferential cryptanalysis, Boomerang distinguisher,
Rectangle attack, Related-key, WARP, GFN

I. INTRODUCTION

Lightweight cryptography is currently one of the
most heavily researched areas in recent years. This
is due in part to the proliferation of resource-
constrained devices such as smart devices which
transmit sensitive information on a daily ba-
sis. Compared to other symmetric-key primitives,
lightweight block ciphers have received the most
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attention in terms of development and cryptanalytic
efforts. Although most lightweight block ciphers
have block sizes of 64 bits to minimize their
hardware footprint, there were a number of 128-bit
block ciphers with lower area and/or power require-
ments than AES such as MIDORI [1] and GIFT-128
[2]. The majority of these 128-bit lightweight block
ciphers are based on the Substitution-Permutation
Network (SPN) design paradigm. However, SPN
ciphers generally take up more hardware space
because they require the inversion of the confusion
and diffusion layers.

To overcome this hurdle, Banik et al. adopted
the Type-2 Generalized Feistel Network [3] in
their 128-bit block cipher called WARP which was
proposed in SAC 2020 [4]. WARP’s design team
consists of the minds behind multiple well-known
lightweight block ciphers such as GIFT, MIDORI
and TWINE [5]. The motivation behind designing
WARP as a 128-bit cipher with a 128-bit key was to
realize a direct replacement for AES-128 without
having to change the underlying mode of operation,
making it applicable to a wide range of applications
such as in the development of lightweight authen-
ticated encryption (AE) schemes [6]. GFN-based
ciphers can reuse the same circuit for encryption
and decryption due to their involutory nature but
are known to have slow diffusion. The designers
addressed this problem by using a permutation
pattern found using Mixed Integer Linear Program-
ming (MILP) that optimizes both diffusion and the
number of active S-boxes. By adopting MIDORI’s
S-box (for reduced latency and area) and a simple
alternating key schedule, the designers found that
WARP only requires 763 Gate Equivalents (GE)
for a bit-serial encryption-only circuit and has better
energy consumption than MIDORI, which is widely
considered the current state-of-the-art in terms of
128-bit low-energy ciphers.
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Related Work. To the best of our knowledge,
the only prior third-party cryptanalysis result for
WARP was an attack reported by Kumar and Yadav
[7]. By using an 18-round differential trail, the
authors were able to perform a key recovery attack
on 21 rounds. WARP’s designers analyzed its
security against differential and linear cryptanalysis
based on the number of active S-boxes. They found
that WARP has more than 64 active S-boxes after
19 rounds. They also found a 21-round impossible
differential distinguisher and a 20-round integral
distinguisher for the cipher. A meet-in-the-middle
attack is expected to be feasible for at most 32
rounds of WARP. Although no concrete attacks
were described, 41 rounds of WARP is expected
to be secure against these attacks.

Our Contributions. In this paper, we focused
our efforts on cryptanalyzing WARP from several
perspectives, all of which are based on differential
cryptanalysis. By using an SMT-aided differential
search, we found differential trails for up to 20
rounds of WARP, with the first 19 guaranteed to
be optimal. These differential trails confirm that the
lower bounds provided by the designers cannot be
improved. We then performed a differential cluster
search for each of these trails and found that WARP
has a strong differential effect from round 13 on-
ward. Notably, differentials for 16 to 20 rounds
have higher probabilities than their corresponding
individual trails by at least a factor of 213.

Next, we implemented an automatic search for
boomerang (or more specifically, rectangle) distin-
guishers that utilizes the recently proposed Feistel
Boomerang Connectivity Table (FBCT) [8]. The
boomerang search was written as a new module
for the CryptoSMT tool [9] rather than one that
was specifically catered to WARP1. Thus, it can
be used for other Feistel-like ciphers and modified
for other design paradigms like SPN. We showcase
its flexibility by searching for boomerang distin-
guishers for TWINE and LBlock-s [10] apart from
WARP. Using our tool, we were able to find a 21-

1The implementation is publicly available under
an open-source license at https://github.com/jesenteh/
cryptosmt-boomerang.

round boomerang distinguisher for WARP with a
differential probability, DP = 2−121.11.

We also performed a search for related-key dif-
ferential trails for WARP. As a result, we found that
WARP has a family of 2-round iterative related-key
differential trails with low weight. These iterative
trails can be concatenated to form distinguishers
for the full 41-round WARP with DP = 2−40.
These trails exist due to an interaction between the
cipher’s nibble-wise permutation, simple alternating
key schedule and subkey XOR operation performed
after the S-box. The interaction between these de-
sign elements also led to another interesting obser-
vation whereby knowledge of the input difference
for a Feistel-subround can be propagated to the next
round without having to guess its corresponding
subkey. This property was leveraged in all of our
key recovery attacks to target specific subkeys,
which then allows the filtering of wrong pairs and
key bits.

Finally, we proposed key-recovery attacks on
WARP based on the differential distinguishers that
were found. In the single-key setting, we have
a 23-round differential attack using an 18-round
differential distinguisher that has time/data/memory
complexities of 2108.68/2108.62/2108.62, followed
by a 24-round rectangle attack using a 21-round
boomerang distinguisher with time/data/memory
complexities of 2122.49/2126.06/2127.06. In the
related-key setting we show a practical attack
on the full 41 rounds of WARP using a 35-
round related-key differential distinguisher with
time/data/memory complexities of 237/237/29.59.
We computationally verified this attack by us-
ing shorter 19-round related-key differential distin-
guisher to break 25-round WARP and it worked as
expected. Our cryptanalytic results are summarized
in Table I.

II. PRELIMINARIES

Notations and abbreviations used in this paper are
summarized in Table II. In all of our notations, the
rightmost (least significant) bits or nibbles have an
index of 0.

https://github.com/jesenteh/cryptosmt-boomerang
https://github.com/jesenteh/cryptosmt-boomerang
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R Method Time Data Memory Sect.

23 SK Diff. 2108.62 2108.62 2107 IV-A
24 SK Rect. 2122.49 2126.06 2127.06 IV-B
41 RK Diff.a 237 237 29.59 V-B

TABLE I
SUMMARY OF KEY-RECOVERY ATTACKS ON WARP (SK/RK

DENOTES SINGLE-KEY/RELATED-KEY)

aComplexity involved in recovering 60 bits of the key

Symbol Meaning

n Block size in bits
k Key size in bits
∆P An XOR difference between two n-bit

plaintexts, P1 and P2

∆C An XOR difference between two n-bit
ciphertexts, C1 and C2

α, β, δ, γ n-bit input and output differences of
differential trails

αj
i The i-th nibble of an n-bit XOR dif-

ference, α in round j
Xj

i The i-th nibble of an n-bit binary vari-
able, X in round j

#AS Number of active S-boxes for a differ-
ential trail

⊕ Binary exclusive-OR (XOR)
|| Binary concatenation
DP Differential probability
R Number of encryption/decryption

rounds
DDT (x, y)/
FBCT (x, y)

An entry in the DDT/FBCT corre-
sponding to an S-box input x and out-
put y

TABLE II
SYMBOLS AND NOTATION

A. Differential Cryptanalysis

A block cipher is a family of key-dependent
permutations that map a set of plaintexts to a set of
ciphertexts. This mapping is performed by applying
a key-dependent round function, fj on a plaintext in
an iterative manner to produce a ciphertext, where
j ∈ R and R denotes the total number of rounds
of a cipher. The goal of differential cryptanalysis
is to find pairs of plaintexts (P1, P2) and their
corresponding ciphertexts (C1, C2) with a strong

correlation between their differences α = P1 ⊕ P2

and β = C1 ⊕ C2. The propagation pattern of a
specific input difference α to a specific output dif-
ference β is known as a differential characterisitic
or trail. A differential trail consists of a sequence
of differences,

α
f1−→ α1 f2−→ ...

fR−2−−−→ αR−2 fR−1−−−→ β. (1)

Generally, the success of differential cryptanalysis
relies on the identification of a differential trail with
sufficiently high differential probability,

DP = Pr(α f1−→ ...
fR−1−−−→ β). (2)

Since it is computationally infeasible to calculate
the exact value for differential probability, cryptan-
alysts rely on the Markov assumption [11] which
allows treating the rounds as independent from one
another. As such, differential probability can be
computed as

DP ≈
R-1∏
j=1

Pr(αj−1 fj−→ αj), (3)

where α0 = α and αR-1 = β. A better estimate
of the differential probability can be obtained by
collecting differential trails that share the same
input and output differences and summing up their
individual probabilities,

DP = Pr(α→ β) =
∑

α1...αR-2

(α
f1−→ ...

fR−1−−−→ β).

(4)
In the related-key setting, an adversary is allowed

to also have a difference in the encryption key,
and not only in the plaintext [12]. However, the
adversary cannot specify the value of the key itself
and the attack must be valid for any pair of keys
with the given difference. The related-key model
has been used to theoretically cryptanalyze the full
rounds of various block ciphers over the years [13]–
[19]. In the past, there have also been practical
attacks that rely on the related-key property [20],
[21]. Ciphers that are vulnerable to related-key
attacks are not recommended for use in protocols
where key integrity is not guaranteed [22], [23].

When cryptanalyzing a block cipher, an adver-
sary is mainly concerned with maximizing the
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probability of the differential by enumerating as
many differential trails as possible. Since this is
a time-consuming task, many automated methods
have been proposed based on branch-and-bound
algorithms [24]–[26], MILP [27]–[29], boolean sat-
isfiability problem (SAT) [30], [31] and satisfiability
modulo theory (SMT) solvers [32] as well as a
graph-based approach [33]. In this paper, we use
CryptoSMT, a differential search tool proposed by
Ankele and Kölbl [32]. Due to its highly modu-
lar nature, we can code our automatic boomerang
search as an additional module of CryptoSMT,
taking advantage of its search functions and existing
cipher suite.

B. Boomerang and Rectangle Attacks

The boomerang attack proposed by Wagner [34]
is a variant of differential cryptanalysis that con-
catenates two shorter differentials to form a longer
distinguisher. The classical boomerang attack in-
volves decomposing a target cipher, E into two
subciphers, E = E1 ◦ E0. We denote the input
and output differences of the first or top half of the
cipher, E1 as α and β while for the lower half, these
differences are denoted as γ and δ. We denote the
probability that α E0−−→ β as p and γ E1−−→ δ as q. The
expected probability of a boomerang differential is

Fig. 1. Sandwich attack

p2q2, which requires an adversary to make (pq)2

adaptive chosen plaintext and ciphertext queries to
distinguish E from an ideal cipher.

The boomerang attack was later reformulated
as a chosen plaintext attack called the amplified
boomerang [35] or rectangle attack [36] by encrypt-
ing many pairs with the input difference α and
searching for a quartet which satisfies C1 ⊕ C3 =
C2 ⊕ C4 = δ when P1 ⊕ P2 = P3 ⊕ P4 = α.
Although the probability of a quartet to be a right
quartet is reduced to 2−np2q2, counting over all
possible β’s and δ’s as long as β 6= δ improves the
probability to 2−np̂2q̂2, where p̂ = (

∑
i Pr2(α

E0−−→
βi)

1
2 and q̂ = (

∑
j Pr2(γ

E1−−→ δj))
1
2 .

Independently chosen E1 and E0 trails may turn
out to be incompatible [37]. With the introduction of
the sandwich attack [15], [16], the boomerang con-
nectivity table (BCT) [38] and its Feistel counter-
part [8], we have a systematic means of enumerat-
ing these differential trails while guaranteeing their
compatibility. The sandwich attack decomposes the
cipher into 3 components, E = E1 ◦ Em ◦ E0,
where Em is the transition in the middle round
with a switching probability denoted by r. We can
calculate r with the help of BCT or FBCT, similar
to how the differential probability can be calculated
based on the differential distribution table (DDT).
The connectivity tables already cover the various
switches that have been used in the past to improve
the probability of boomerang distinguishers such as
the ladder, S-box and Feistel switches [15]. The
probability of obtaining a right quartet is now

p̂2q̂2 =
∑
i,j

(p̂i
2q̂j

2ri,j), (5)

where pi = Pr(α E0−−→ βi), qj = Pr(γj
E1−−→ δ) and

ri,j = Pr(βi
Em−−→ γj). This sandwich distinguisher

is illustrated in Figure 1. It is also possible to
evaluate Em that consists of more than 1 round as
described by Song et al. [39].

C. Specification of WARP

The block cipher WARP is a 41-round, 128-bit
block cipher with a 128-bit key designed based on a
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x 0 1 2 3 4 5 6 7

S(x) C A D 3 E B F 7

x 8 9 A B C D E F

S(x) 8 9 1 5 0 2 4 6

TABLE III
WARP 4-BIT S-BOX

32-nibble Type-2 GFN. The i-th round’s state is di-
vided into 32 nibbles, Xi = Xi

31||Xi
30||...||Xi

1||Xi
0,

where Xi
j ∈ {0, 1}4. It has a simple key schedule

that first divides the secret key into two 64-bit round
keys, K = K1||K0, then alternates between them
(starting from K0). Each 64-bit round key is di-
vided into 16 nibbles, Ki = Ki

15||Ki
14||...||Ki

1||Ki
0,

where Ki
j ∈ {0, 1}4, i ∈ {0, 1}. The round function

consists of calls to S-boxes, XOR of the subkeys,
and finally a nibble-wise permutation, π as shown
in Figure 2. An XOR with round constants is also
performed on Xi

1 and Xi
3 prior to the permutation

operation. The S-box and permutation pattern are
shown in Tables III and IV. Apart from using the
inverse permutation, π−1, the decryption algorithm
is the same.

To avoid the complement property of Feistel-type
ciphers [40], the designers of WARP opted for the
key XOR operation to be after the S-box.However,
this design decision leads to the following differ-
ential propagation property which we will use as
filters in our key recovery attacks:

Property 1 (Subround Filters). Since XOR with
the key is done after the S-box in the Feistel-
subround which works on two nibbles, it allows to
partially decrypt and propagate the knowledge of
the difference to the next round. This can be done

for both the top and bottom rounds.

Based on Figure 3, we can see that partially en-
crypting P1 and P2 that correspond to the input
difference, α allows to immediately check if the
given pair is valid if the left nibble of the output
difference, βL is known. We can do this without
having to guess the corresponding key nibble, Kj

i

because the output difference of the S-box, which
we denote as γ, can be directly computed from the
known values of x1

R and x2
R. Thus, we can check

if αL ⊕ γ = βL because the effect of the round
key has been negated by the XOR operation. The
same property exists for the bottom rounds whereby
partially decrypting known values of C1 and C2

when αL is a known difference allows to check if
βL ⊕ γ = αL.

III. SEARCHING FOR WARP DISTINGUISHERS

A. Differential Distinguishers

We use CryptoSMT [9] to search for both dif-
ferential trails and differentials for WARP. Cryp-
toSMT is a differential search tool based on an SMT
solver known as STP [41], CryptoMinisat [42] as
its underlying SAT solver. First, a Python script was
written to generate the SMT model that describes
the differential propagation of WARP. Then, we
use the existing functionalities of CryptoSMT to
find optimal differential trails for each round and
perform differential clustering. Our findings are
summarized in Table VI where #AS refers to the
number of active S-boxes and the weight of a
differential trail is calculated as W = − log2 DP.

To find optimal trails (lowest possible weight)
for R rounds, we first set the target weight to
#AS · 2 for each round, where #AS is set to the
minimum value according to WARP’s specification
and 2 is the smallest weight for a single S-box,

Fig. 2. Round Function of WARP
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10
π−1(x) 11 4 9 10 13 22 1 30 7 28 15 24 5 18 3 16

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26
π−1(x) 27 20 25 26 29 6 17 14 23 12 31 8 21 2 19 0

TABLE IV
WARP PERMUTATION

Fig. 3. Difference propagation for a pair of nibbles

calculated from its DDT in Table V. If a trail
was found, we repeat the search by reducing the
weight by 1 to confirm its optimality. If no other
solution with lower weight can be found by the
solver (unsatisfiable), the R-round trail is already
optimal. If no trail was found with the minimum
weight, we increment the target weight and look for
another trail. The first trail found is guaranteed to be
optimal. For up to 19 rounds, we verified that the
minimum number of active S-boxes mentioned in
WARP’s design specification was indeed the lower
bound and also found the optimal differential trails
for each of these rounds. The time required to find
differential trails increased sharply with the number
of rounds, compounded with the fact that we are
dealing with a 128-bit block size. Finding a trail for
Round 17 onward would take between 5 to 12 hours
(on a PC with an Intel Core i7-9700K 3.60GHz
processor and 32GB of RAM), longer if a trail did
not exist for a particular weight. We managed to find

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 4 0 2 2 2 0 2 0 0 0 0 0 2 0

2 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0

3 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2

4 0 2 4 2 2 2 0 0 2 0 0 2 0 0 0 0

5 0 2 0 0 2 0 0 4 0 2 4 0 2 0 0 0

6 0 2 0 4 0 0 0 2 2 0 0 0 2 2 0 2

7 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0

8 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0

9 0 0 4 2 0 2 0 0 2 2 0 2 2 0 0 0

A 0 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4

B 0 0 0 0 2 0 0 2 2 2 0 4 0 2 0 2

C 0 0 4 0 0 2 2 0 2 2 0 0 2 0 2 0

D 0 0 0 2 0 0 2 4 0 0 4 2 0 0 2 0

E 0 2 0 0 0 0 0 2 2 0 0 0 2 2 4 2

F 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4

TABLE V
WARP’S DIFFERENTIAL DISTRIBUTION TABLE

a differential trail for 20 rounds of WARP with a
weight of 140 but could not verify its optimality.
The search for a 20-round trail with a weight of
139 did not manage to complete within a reasonable
amount of time (one week), which suggests that the
solver could not find a valid solution.

We then fixed the inputs and outputs corre-
sponding to these optimal trails and performed
differential clustering. We enumerate other trails for
these differentials with a time limit of 24 hours.
The results in Table VI show that for the first 9
rounds, all differentials consisted of only 1 trail
each. Very few trails were found for the 10 to 12-
round differentials, which had a minimal impact
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on their differential probabilities. From Round 13
onward, however, there was a sharp increase in
the number of trails. We managed to find all trails
for the 13-round to 15-round differentials, which
ranged from 1600 to just under 500000 trails. The
number of trails for 16 rounds onward was not
exhaustive as they were bounded by the 24-hour
search limit. Since the differential search increases
the target weight incrementally, we no longer expect
significant improvements after 24 hours as each
trail would have an immeasurably small differential
probability. The results show that WARP has a sig-
nificant differential effect at higher rounds, whereby
rounds 16 to 20 have an improvement to their
differential probabilities by a factor of 213.48, 218.34,
217.38, 213.93 and 217.29, respectively. After the
differential effect has been taken into consideration,
all 20 of our differentials can potentially be used as
differential distinguishers as they have DP > 2−128.

B. Boomerang Distinguishers

To find boomerang distinguishers for WARP, we
formulated an automatic boomerang search based
on CryptoSMT’s differential search functionality.
The overall goal of the automatic search is to
maximize p̂2q̂2 =

∑
i,j(p̂i

2q̂j
2ri,j) by finding

as many E0 and E1 trails that are compatible.
The compatibility of the upper and lower trails is
determined using the FBCT which describes the
propagation of differences and their corresponding
probabilities in Em. For more information about the
FBCT, readers can refer to the work by Boukerrou
et al. [8]. WARP’s FBCT shown in Table IX
already includes scenarios such as the ladder switch
(first row/column) and the Feistel switch (diagonal)
where the switching occurs with a probability of
1. The proposed boomerang search procedure is as
follows:

1) Search for an E0 trail with RE0 rounds for
up to a weight limit of Wupper.

2) Search for an E1 trail with RE1
rounds for up

to a weight limit of Wlower. Limit the search
to only compatible trails by propagating β
from E0 through Em, then including blocking
constraints in the SMT model for each of its

S-boxes based on entries in the FBCT. If a
valid E1 trail is found then:

a) If this is the first iteration, fix the input
and output differences of the boomerang
distinguisher to α and δ for all future
iterations.

b) Calculate the switching probability, ri,j
based on β, γ, the linear layer, π and
FBCT as

ri,j =∏
k =

{2, 4, ...,
28, 30}

FBCT (βk, π
−1(γk)− 1)

16
.

(6)

c) For the clustering process, limit the
search to Winit + n

l where Winit is the
weight of the initial trail and l controls
the upper limit of the search, e.g. for
l = 64, the upper weight limit of the
clustering process is Winit + 2. Set in-
dividual limits for E0 and E1.

d) Perform differential clustering for E0 if
it has not yet been done. Denote the
resulting differential probability as p̂i.

e) Perform differential clustering for E1.
Denote the resulting differential proba-
bility as q̂j

f) Update the current boomerang probabil-
ity with p̂i2q̂j2ri,j .

g) Add blocking constraints to the SMT
model to prevent the current E1 trail
from being found again, then repeat Step
2.

3) If no more valid E1 trails can be found,
clear all blocking constraints for E1, add
constraints to the SMT model to block the
current E0 trail from being found again, then
repeat Step 1.
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Trail Differential

R #AS Wopt (− log2 DP) α β Wdiff (− log2 DP) #Trails

1 0 0 0000 0000 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0100 0000 0 1
2 1 2 0000 0000 0000 0000 0000 0000 4000 0000 0000 4000 0000 0000 0000 0000 0000 0200 2 1
3 2 4 0000 2000 0021 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0200 0000 0000 4 1
4 3 6 0000 0000 002C 0000 0000 0000 0000 0000 0000 0000 0000 0400 000C 2000 0000 0000 6 1
5 4 8 0000 A000 00AA 0000 0000 0000 0000 0000 F000 0000 0000 0000 0A00 0000 0F00 0000 8 1
6 6 12 0092 0000 0000 0000 0000 0000 9000 0042 0000 0000 0000 9002 0000 0002 0000 0000 12 1
7 8 16 0000 7DA0 FF00 0000 0000 0000 0000 0000 0000 0000 0000 A005 000A 000F 0000 00F0 16 1
8 11 22 0000 00FA 5A00 0000 00A0 0000 0000 0000 0000 0000 0000 A705 000A 500A 0000 A005 22 1
9 14 28 0000 0000 0000 1000 0000 C2C0 4200 0012 2900 0020 0000 0000 0120 0000 0104 0001 28 1
10 17 34 E000 00EE EE00 0000 00E0 00EE 0000 0000 E000 0000 0E0E 0000 0E0E 00E0 0E00 E00E 33.19 7
11 22 44 0012 0000 1000 1290 1212 0000 1000 0042 2000 0000 0101 0000 0101 0020 0100 2004 43.19 7
12 28 56 1212 0000 4000 0042 0012 0000 4000 4240 0200 0202 0212 0200 1002 0212 4040 0010 55.42 5
13 34 68 0020 2000 0024 2000 0000 0020 2121 0021 0010 0202 1000 0000 1200 0240 4000 1202 62.37 1600
14 40 80 0000 0010 1292 0012 0010 1000 0042 C000 0000 1002 0200 4202 40C0 0002 C002 4202 72.14 21528
15 47 94 0000 00A0 5A5A 005A 00A0 5000 0057 5000 A500 A005 000A 0700 0AA5 55A5 057A 0AA0 85.54 497248
16 52 104 A000 5AAA 0000 0000 0000 A05A 005A 0000 0A00 000A 000A 0000 0057 0A50 005A 500A 90.52 800152
17 57 114 0000 A000 0000 0075 0000 A500 0000 7000 000A 5000 0550 0000 AA00 000A 0000 0A00 95.66 734494
18 91 122 0000 A0AF 005A 0000 A000 AA75 0000 0000 000A 5000 0AA0 0000 5A00 000A 0000 0A00 104.62 626723
19 66 132 5000 A55A 0000 0000 0000 70AA 00A5 0000 0500 0050 00A0 0A00 00A5 A00A 5007 000A 118.07 594111
20 70* 140* 0000 50AA 0057 0000 F000 5AAF 0000 0000 0A00 A000 0000 500A 0000 050A 0000 F50A 122.71 545045
*Number of active S-boxes and/or differential probability not confirmed to be optimal

TABLE VI
WARP DIFFERENTIALS FOR ROUNDS 1 TO 20

Cipher R (RE0 + REm + RE1 ) α δ
∑

i,j(p̂i
2q̂j

2ri,j)

TWINE 15 (7+1+7) 3890 0000 0097 0000 0DB0 0010 0D00 0C00 2−58.92

TWINE 16 (8+1+7) A250 0000 0056 0000 A000 0702 0050 0002 2−61.62

LBlock-s 15 (7+1+7) 0420 0004 0600 0004 6600 0000 4020 0004 2−58.64

TABLE VII
BOOMERANG DISTINGUISHERS FOR OTHER CIPHERS

R (RE0 + REm + RE1 ) α δ p2q2r
∑

i,j(p̂i
2q̂j

2ri,j)

20 (9+1+10) 0000 0000 0000 1000 0000 C2C0 4200 0012 0202 0040 0200 1002 4000 0000 0202 0000 2−124 2−114.24

21 (10+1+10) E000 00EE EE00 0000 00E0 00EE 0000 0000 2000 0000 0104 0000 0404 0020 0100 2004 2−142 2−121.11

TABLE VIII
BOOMERANG DISTINGUISHERS FOR WARP
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0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 16 16 4 4 0 0 0 0 0 0 0 0 0 0 0 0

2 16 4 16 4 4 0 4 0 0 4 0 4 4 0 4 0

3 16 4 4 16 0 0 0 0 0 0 0 0 0 0 0 0

4 16 0 4 0 16 0 4 0 0 0 0 0 0 0 0 0

5 16 0 0 0 0 16 0 0 0 0 8 0 0 0 0 8

6 16 0 4 0 4 0 16 0 0 0 0 0 0 0 0 0

7 16 0 0 0 0 0 0 16 0 0 8 0 0 8 0 0

8 16 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

9 16 0 4 0 0 0 0 0 0 16 0 4 0 0 0 0

A 16 0 0 0 0 8 0 8 0 0 16 0 0 8 0 8

B 16 0 4 0 0 0 0 0 0 4 0 16 0 0 0 0

C 16 0 4 0 0 0 0 0 0 0 0 0 16 0 4 0

D 16 0 0 0 0 0 0 8 0 0 8 0 0 16 0 0

E 16 0 4 0 0 0 0 0 0 0 0 0 4 0 16 0

F 16 0 0 0 0 8 0 0 0 0 8 0 0 0 0 16

TABLE IX
WARP’S FEISTEL BOOMERANG CONNECTIVITY TABLE

The search itself is generic to Feistel-like ciphers
and can be adapted to other design paradigms such
as SPN. Since the automated search was written
as a new module for CryptoSMT, we can run the
boomerang search for other Feistel-like ciphers in
its cipher suite. Several examples of boomerang
distinguishers for TWINE and LBlock-s found
using the proposed boomerang search are shown
in Table VII2. The best boomerang distinguishers
that we could find for WARP are summarized in
Table VIII. Both distinguishers have REm = 1.
The first 20-round boomerang distinguisher with
RE0 = 9 and RE1 = 10 has an overall probability
of DP = 2−114.24. The boomerang distinguisher is
made up of only 1 E0 differential matched with 351
different E1 differentials. The 21-round boomerang
distinguisher with RE0

= 10 and RE1
= 10

has an overall probability of DP = 2−121.11. It
consists of 5 E0 differentials matched with 316 E1

differentials.

2These distinguishers only serve to showcase the flexibility
of the proposed boomerang search, and may not be the best
boomerang distinguishers found for these ciphers.

C. Related-key Differential Distinguishers

Although its designers do not claim any security
in the related-key setting, WARP could possibly
be used to design other primitives such as hash
functions or used in certain applications for which
resilience against related-key attacks are important3.
We found that WARP has a family of 2-round
iterative related-key differential trails:

Property 2 (2-round Related-key Trails). Let i be
an odd-numbered index (1,3,...,29,31) of a nonzero
nibble in the input difference and x be the nibble’s
difference. The input difference α consists of all
zero nibbles except αi = x. When K1

π−1(i)
2

= y,

K0
(π−1)2(i)−1

2

= x and K0
i−1
2

= x, we have a 2-

round related-key differential trail from α→ α with
DP = DDT (x,y)

16 .

Depending on the DDT (Table V), these trails can
either have a differential probability of 4

16 = 2−2

or 2
16 = 2−3. Figure 4 illustrates two examples of

trails described in Property 2. For a more concrete
example, we set i = 3, x = 1 and y = 2 and have
the following differential propagation that follows
the red trail in Figure 4:

0000...0000000000001000
1r−−→

2−0

0000...0000010000000000 (2−0)
1r−−→

2−2

0000...0000000000001000 (2−2),

where the key difference is ∆K =
{∆K1 = 0000000000200000,
∆K0 = 0000000010000010}. The trail’s
differential probability is DDT (1,2)

16 = 2−2. We
can then concatenate this iterative related-key
differential trail 20.5 times to obtain a differential
distinguisher for the full 41-round WARP that
holds with a probability of 2−40. We estimate that
at least 240 plaintext pairs with the required input
difference, α is sufficient to produce at least one
right pair fulfilling the expected output difference,
β for the given key difference of ∆K.

3Other block ciphers such as GIFT have also been extensively
cryptanalyzed using related-key attacks despite not claiming any
security in this setting [29], [43], [44].
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Fig. 4. Two examples of the 2-round iterative related-key differential trails for WARP where i = 3 and i = 1 are represented by
the red and blue trails respectively (Property 2)

IV. DIFFERENTIAL ATTACKS ON WARP

We denote an R-round cipher, E as
E = Ef ◦ E′ ◦ Eb, where E′ is our differential
distinguisher. The Rb-round Eb and Rf -round Ef
are rounds added before and after the distinguisher,
respectively. The input difference of Eb and the
output difference of Ef are denoted as ∆P and
∆C. We denote the number of active or unknown
bits of ∆P as rb while the n − rb inactive or
fixed bits are denoted as r̂b and r̄b for 0s and 1s,
respectively. Analogously, these bits are denoted as
rb, r̂b and r̄b for ∆C. We adopt a targeted approach
for the key counting procedure by strategically
guessing and filtering keys involved in subround
filters described in Property 1. The number of keys
that need to be guessed is denoted as m.

Data Preparation. We collect y = 2 · 2−rb · s
DP

structures of 2rb plaintexts each, where s is the
expected number of right pairs. The plaintexts
traverse all possible values for the active rb bits
while the r̂b and r̄b bits are assigned suitable
constants. Notably, half of the plaintexts should
have the r̄b bits set to 0 while the other half has
these set to 1. We encrypt all 2rb plaintexts of
each structure by querying an encryption oracle
to obtain 2rb corresponding ciphertexts. We store
the data in a hash table, H indexed by the r̂f
ciphertext bits. Each structure will have 22rb−1

ciphertext pairs at the beginning.

Key Recovery. We initialize a list of 2m counters
then:

1) We filter wrong pairs using inactive bits of
∆C, leaving 22rb−1

r̂f+r̄f
pairs.

2) If we have vf pairs of nibbles in the final
round with the difference propagation pattern
described in Property 1 (subround filters), we
can filter more pairs, leaving 22rb−1

r̂f+r̄f
· 2−4×vf

pairs.
3) Consult the hash table to find plaintext pairs

for the remaining ciphertext pairs.
4) If we have vb subround filters, we can filter

more pairs and with 22rb−1

r̂f+r̄f
· 2−4×vf · 2−4×vb

remaining. We denote the time complexity of
Steps 2, 3 and 4 as θ.

5) For all 22rb−1

r̂f+r̄f
· 2−4×vf · 2−4×vb remaining

pairs (per pair of structures), we strategically
guess subkeys to perform partial decryptions
(or encryptions) to derive the differences in-
volved in the subround filters of the other
rounds to discard invalid pairs and keys. We
guess a total of m subkey bits such that m
is of sufficient size for key counting with
respect to the remaining pairs or combinations
of pairs associated with the guessed key bits.
We denote the time complexity of this step as
ε.

6) We select the top 2m−a hits in the counter to
be candidates that deliver an a-bit or higher
advantage [45], then brute-force the k − m
remaining bits of the secret key.
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R Input Difference (∆P ) ???? A000 A0?? ???A ?F?? 0000 A0A0 ??50

1 After S-box and XOR (∆X1) 0?0? A000 A07? 0?0A 0F0? 0000 A0A0 0?50
After Permutation (∆Y 1) 00?7 00?A F000 00?A A0?A 00?A ?500 0000

2 After S-box and XOR (∆X2) 00A7 000A F000 000A A00A 000A 5500 0000
After Permutation (∆Y 2) 0000 A0AF 005A 0000 A000 AA75 0000 0000

2-20 Differential distinguisher, 0000 A0AF 005A 0000 A000 AA75 0000 0000
α→ β 000A 5000 0AA0 0000 5A00 000A 0000 0A00

21 After S-box and XOR (∆X21) 00?A 5000 ?AA0 0000 ?A00 00?A 0000 ?A00
After Permutation (∆Y 21) 00AA A00? A00? 0005 0?00 0?A0 00A0 0?00

22 After S-box and XOR (∆X22) 00?A A0?? A0?? 00?5 ??00 ??A0 00A0 ??00
After Permutation (∆Y 22) 00?? 000A ??0? 0??A 5?0A ??A0 0000 ?A0?

23 After S-box and XOR (∆X23)/ 00?? 00?A ???? ???A ???A ??A0 0000 ?A??
Output Difference (∆C)

Additional Notes: ? denotes an undetermined nibble. Red text denotes subround filters based
on Property 1.

TABLE X
THE 23-ROUND KEY RECOVERY MODEL FOR WARP USING AN 18-ROUND DIFFERENTIAL

Complexity Estimation. The data complexity is
around N = y · 2rb−1 while the memory complex-
ity includes the space required to store the hash
table, H and the key counters, which amounts to
N + 2m · m128 128-bit blocks. The time complexity,
which includes the data preparation, filtering based
on Property 1 and key recovery is approximately
N + θ + ε+ 2n−a encryptions.

A. 23-round Attack using 18-round Differential

We use the 18-round differential from Table VI
with DP = 2−104.62 to mount an attack on
23-round WARP by adding 2 rounds at the
beginning and 3 rounds at the end. The 23-round
key recovery model is depicted in Table X, where
we have (rb = 56, r̂b = 56, r̄b = 16) and
(rf = 72, r̂f = 46, r̄f = 10). We guess a total
of m = 56 subkey bits, corresponding to K0

i

and K1
j , where i = {0, 1, 4, 5, 7, 8, 9, 11, 14} and

j = {2, 4, 11, 13, 14}. The attack procedure is as
follows:

Data Preparation. We let s = 8 and collect
y = 2 · 2−56 · 8

2−104.62 ≈ 252.62 structures of
256 plaintexts each. We encrypt all 256 plaintexts

to obtain 256 corresponding ciphertexts of all
structures that are stored in a hash table H ,
according to the 46 r̂f bits set to 0. For each pair
of structures, we have 2111 pairs at the beginning.

Key Recovery. We initialize a list of 256 counters
then:

1) We filter wrong pairs using inactive bits of
∆C, leaving 2111−56 = 255 pairs per struc-
ture or 252.62+55 = 2107.62 pairs in total.

2) The number of filters (Property 1) in the first
and final rounds are vb = 8 and vf = 6,
respectively as indicated in red in Table X.
Thus, the number of valid pairs would be
reduced to 2107.62−4×8−4×6 = 251.62.

3) In Round 23: We can propagate knowledge
of the output difference to Round 22 without
having to guess any keys (Property 1).

4) In Round 22: In this round, we guess and
filter subkeys for each remaining pair based
on Property 1. For example, to calculate
∆X22

2 = ∆Y 22
29 , we need to guess K0

14 to
partially decrypt ∆X23

29 . On the other hand,
∆X22

3 = ∆Y 22
14 = ∆X23

14 can be directly
computed from the ciphertext pairs. Then, we



12

can check if ∆X22
3 ⊕ S(∆X22

2 ) = ∆Y 21
3 =

0. If the equality holds, then we keep the
guessed value of K0

14 and the pair, other-
wise we discard them. There will be around
249.62 · 24 · 2−4 = 249.62 combinations of the
remaining pairs associated with the guessed
K0

14 values. In other words, there remains
around 214·2−4 pairs with 24 candidate values
of K0

14. We have 6 more of these filters in
Round 22, for which we can additionally
guess and filter K0

1 , K0
4 , K0

5 , K0
7 , K0

8 and
K0

11 candidates. We expect to have 251.62

combinations of the remaining pairs associ-
ated with 28-bit key candidates.

5) In Round 21: We need to guess K1
14, K1

11

and K1
4 to calculate ∆X21

2 , ∆X21
14 and ∆X21

28

respectively, while the remaining differences
involved in those subround filters can be
calculated based on the previous key guesses.
After going through these filters, there will
be 251.62 combinations of the remaining pairs
associated with 40-bit key candidates. For
the remaining two filters, we need to guess
(K0

9 ,K1
13) to calculate ∆X21

8 and (K0
0 ,K1

2 )
to calculate ∆X21

22 . Since there are 28 pos-
sible subkey candidates involved in each of
these 4-bit filters, each guess will increase the
number of combinations of pairs and keys by
28 · 2−4 = 24. Thus, we will end up with
251.62 · 24×2 = 259.62 combinations of the
remaining pairs associated with 56-bit key
candidates.

6) In Round 1: For all the remaining pairs,
we can propagate knowledge of the input
difference to Round 2 without having to guess
any keys (Property 1).

7) In Round 2: K0 candidates that have been
filtered in the earlier steps can be used to filter
more pairs based on Property 1. Differences
∆Y 1

6 and ∆Y 1
24 can be calculated using K0

0

and K0
11 candidates already associated with

each remaining pair. The other differences in
those Feistel-subrounds, ∆Y 1

7 and ∆Y 1
25, can

be calculated directly from the plaintext pairs.
We can then discard combinations of pairs
and keys based on the known differences,

∆X2
7 = 5 and ∆X2

25 = 0 due to Property 1.
This reduces the number of possible combi-
nations to 259.62−4×2 = 251.62.

8) We increment the key counters based on the
251.62 remaining combinations of pairs asso-
ciated with the 56 bits of guessed keys. We
expect that on average, 8 pairs will vote for
the right key while the remaining pairs will
vote for a random key with a probability of
251.62−56 = 2−4.38.

9) We select the top 256−52 = 16 hits in the
counter and brute-force the 72 remaining bits
of the secret key.

Complexity Estimation. The data and memory
complexities are N = 252.62 · 256 ≈ 2108.62

plaintexts and 2108.62 + 256 · 56
128 ≈ 2108.62 128-bit

blocks, respectively. The time complexity of the
key recovery is dominated by the final round
filtering in Step 2, in which the 2107.62 pairs
need to be partially decrypted. This requires
θ = 2107.62 · 2

23 ≈ 2104.09 23-round WARP
encryptions. Therefore, the time complexity
of the 23-round differential attack is about
2108.62 + 2104.09 + 276 ≈ 2108.68 23-round WARP
encryptions when a = 52.

Success Probability. We calculate the probability
of success, PrS of our attack based on the method
proposed by Selçuk [45]:

PrS = Φ

(√
s · SN − Φ−1(1− 2−a)√

SN + 1

)
, (7)

where the signal-to-noise ratio is calculated as
SN = DP

2−n . With a = 52, the probability that the
attack succeeds is 99.76%.

B. 24-round Rectangle Attack using 21-round
Boomerang Distinguisher

We use the 21-round boomerang distinguisher
from Table VIII where RE0 = 10, RE1 = 10 and∑
i,j p̂i

2q̂j
2ri,j) = 2−121.11 to mount a rectangle

attack on 24-round WARP by appending 1 round
at the beginning and 2 rounds at the end. Based
on this boomerang distinguisher, we expect that
the probability of a quartet to be a right rectangle
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R Input Difference (∆P ) 00?E 0000 E000 ?EE0 ?E?E 0000 E000 00?E

1 After S-box and XOR (∆X1) 000E 0000 E000 0EE0 0E0E 0000 E000 000E
After Permutation (∆Y 1) E000 00EE EE00 0000 00E0 00EE 0000 0000

2-22 Boomerang distinguisher, E000 00EE EE00 0000 00E0 00EE 0000 0000
α→ δ 2000 0000 0104 0000 0404 0020 0100 2004

23 After S-box and XOR (∆X23) 2000 0000 ?1?4 0000 ?4?4 0020 ?100 20?4
After Permutation (∆Y 23) 400? 024? 4010 0040 0200 0?0? 0?1? 0200

24 After S-box and XOR (∆X24)/ 40?? ?2?? 4010 0040 ?200 ???? ???? ?200
Output Difference (∆C)

? denotes an undetermined nibble. Red text denotes subround filters based on Property 1.

TABLE XI
THE 24-ROUND KEY RECOVERY MODEL OF THE RECTANGLE ATTACK FOR WARP USING A 21-ROUND (10+1+10)

BOOMERANG DISTINGUISHER

quartet is 2−n · (
∑
i,j p̂i

2q̂j
2ri,j) = 2−249.11.

The 24-round key recovery model is depicted in
Table XI, where we have (rb = 20, r̂b = 84,
r̄b = 24) and (rf = 60, r̂f = 61, r̄f = 7).
The number of subkey bits that will be guessed
are mf = 16, corresponding to K1

j where
j = {2, 8, 10, 15}. Based on prior work by Biham
et al. [36] and Zhao et al. [43], details of our
rectangle attack are as follows:

Data Preparation. To have s = 8 right quartets,
we collect y =

√
8·264−20
√

2−121.11
= 2106.06 structures of

220 plaintexts each. Similar to subsection IV-A,
the plaintexts of each structure are assigned all
possible combinations of the rb active bits while
the other bits are assigned suitable constants. We
encrypt all 220 plaintexts of each structure to
obtain 220 corresponding ciphertexts. We store
the plaintext-ciphertext pairs in a hash table, H1,
indexed by the rb bits of the plaintext.

Key Recovery. We initialize a list of 216 counters
then:

1) We construct a set S = {(P1, C1, P2, C2) :
Eb(P1)⊕ Eb(P2) = α}. We can construct S
without having to guess any keys in Eb as
follows:

a) For every plaintext P1 in a structure, we
determine the known r̂b + r̄b bits in P2

by calculating P2 = P1 ⊕∆P .
b) The unknown nibbles in P2, which

are all left input nibbles to Feistel-
subrounds, can be calculated from their
corresponding right input nibbles. Let
the pairs of nibbles for P1 and P2 be
denoted as (x1

L, x1
R) and (x2

L, x2
R) re-

spectively (see Figure 3). We already
know the values for the right halves (x1

R,
x2
R) after Step 1(a) and we also know

the value of x1
L from P1. We can then

calculate the remaining unknown value
as

x2
L = x1

L ⊕ S(x1
R)⊕ S(x2

R).

For example, if (∆P1,∆P0) = ?E, and
(x1
L, x1

R) = 7F, we can calculate x2
R =

x1
R ⊕ ∆P0 = F ⊕ E = 1. Then, x2

L =
7⊕S(F)⊕S(1) = 7⊕6⊕A = B. We can
then easily verify that ∆P1⊕S(∆P0) =
∆X1

1 = 0.
c) After calculating all the unknown bits of

P2, we check H1 to find the correspond-
ing plaintext-ciphertext pair indexed by
the rb bits of P2. Since vb = 5, we
expect to have 220×2−1 · 2−4×vb = 219

pairs in S.
2) The size of S is N = 2106.06 · 2(19+1)×2−1

=
2116.06 chosen plaintexts. Insert S into a hash
table H2 indexed by the 61 r̂f bits of C1
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and C2. For each element of S, we check H2

to find (P1, C1, P2, C2) where (C1, C3) and
(C2, C4) collide in the r̂f + r̄f = 68 known
bits. There will be (2116.06)2·2−2×68 = 296.12

quartets remaining.
3) The number of subround filters (Property 1)

in the final round is vf = 9 as indicated in
red in Table XI. Thus, the number of valid
quartets would be reduced to 296.12−8×9 =
224.12. The filtering effect due to Property 1
is twofold since it is applicable to both pairs
in a quartet.

4) In Round 24: We propagate the knowledge
of the output difference to Round 23 (Prop-
erty 1).

5) In Round 23: Perform the guess-and-filter
procedure for subkeys in Round 23. For ex-
ample, ∆X23

0 can be directly computed from
the ciphertext pairs. We guess K1

15 and par-
tially decrypt (C1, C3) and (C2, C3) to obtain
∆X23

1 for each pair. Since the difference δ1
is known, we can check if each pair in the
quartet fulfills ∆X23

1 ⊕ S(∆X23
0 ) = δ1 = 0.

If the equality holds for both pairs in the quar-
tet, we keep the guessed key and the quartet,
otherwise, we discard them. There will be
around 224.12·24·2−8 = 2−20.12 combinations
of the remaining quartets associated with the
guessed K1

15 values. In other words, there
remains around 224.12 · 2−8 quartets with 24

candidate values of K1
15 each. We guess and

filter three more subkeys, K1
2 , K1

8 and K1
10,

which leaves 220.12 · 2−4×3 = 28.12 combi-
nations of the remaining quartets associated
with the guessed keys.

6) We increment the key counters based on the
28.12 remaining combinations of quartets as-
sociated with the 16 bits of guessed keys. We
expect that on average, 8 quartets will vote
for the right key while the remaining quartets
will vote for a random key with a probability
of 26.12−16 = 2−7.88.

7) We select the top 216−12 = 16 hits in the
counter and brute force the 112 remaining
bits of the secret key.

Complexity Estimation. The data complexity of
the attack is N = 2106.06 · 220 ≈ 2126.06 chosen
plaintexts. The memory complexity includes the
space required to store the hash tables and the key
counters, which is 2 · 2126.06 + 224 · 24

128 ≈ 2127.06

128-bit blocks. To prepare the quartets, we
require around 2N memory accesses and the
time complexity of the key recovery is dominated
by the final round filtering in Step 3, which is
approximately θ = 296.12 · 4

24 ≈ 293.54. The
overall time complexity of the 24-round attack is
2 · 2126.06 · 1

24 + 293.54 + 2116 ≈ 2122.49 24-round
WARP encryptions when a = 12.

Success Probability. When a = 12 and SN =∑
i,j(p̂i

2q̂j
2ri,j)

2−n = 2−121.11, the probability that the
attack succeeds is 99.38%.

V. RELATED-KEY DIFFERENTIAL ATTACKS ON
WARP

In this section, we show how the 2-round iterative
related-key differential trails from subsection III-C
can be used in key-recovery attacks against WARP.
First, we formulate a 25-round related-key dif-
ferential attack on WARP which we can verify
experimentally. Then, we describe a related-key
differential attack on the full WARP using the same
attack procedure.

A. 25-round Related-key Differential Attack

We concatenate 9 instances of the 2-round
iterative related-key differential trail described in
subsection III-C and append 1 more round to form
a 19-round distinguisher with DP= 2−18. After
appending 6 rounds to the end of this distinguisher,
we have a 25-round key-recovery model depicted
in Table XII where r = 19. We guess a total
of 16 subkey bits, corresponding to K0

i where
i = {4, 7, 10, 14}. Although it may be possible to
guess more key bits to reduce the computational
complexity of the final brute force step, we stick
with 16 bits so we can computationally verify
the attack efficiently. The attack procedure is as
follows:
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R (∆K)

0− r RK differential distinguisher, 0000 0000 0000 0000 0000 0000 0000 1000
α→ β 0000 0000 0000 0000 0000 0100 0000 0000

r + 1 (∆K1) After S-box and XOR (∆Xr+1) 0000 0000 0000 0000 0000 ?100 0000 0000
After Permutation (∆Y r+1) 0000 0000 0000 0000 0000 0000 0000 100?

r + 2 (∆K0) After S-box and XOR (∆Xr+2) 0000 0000 0000 0000 1000 0000 0000 00??
After Permutation (∆Y r+2) ?000 0000 0000 0000 0000 0100 0?00 0000

r + 3 (∆K1) After S-box and XOR (∆Xr+3) ?000 0000 0000 0000 0000 ?100 ??00 0000
After Permutation (∆Y r+3) 0000 0?00 00?0 0000 0000 000? 0000 100?

r + 4 (∆K0) After S-box and XOR (∆Xr+4) 0000 ??00 00?0 0000 1000 00?? 0000 00??
After Permutation (∆Y r+4) ?00? ?000 0000 ?00? 0000 0100 0?00 0?00

r + 5 (∆K1) After S-box and XOR (∆Xr+5) ?0?? ?000 0000 ?0?? 0000 ?100 ??00 ??00
After Permutation (∆Y r+5) 0??0 0?00 0??? 000? ??00 00?? 0000 100?

r + 6 (∆K0) After S-box and XOR (∆Xr+6) ???0 ??00 ???? 00?? ??00 00?? 0000 00??
Output Difference (∆C)

? denotes an undetermined nibble. Red text denotes subround filters based on Property 1.

TABLE XII
AN r + 1-ROUND KEY RECOVERY MODEL OF THE DIFFERENTIAL ATTACK FOR WARP USING AN r-ROUND RELATED KEY

DIFFERENTIAL DISTINGUISHER WHERE r ∈ {3, 5, ..., 31}

Data Preparation. We encrypt 220 pairs of
plaintexts, (P1, P2) with the required input
difference P1 ⊕ P2 = α using a pair of related
keys, (K,K ⊕ ∆K). We expect s = 22 right
pairs. There is a strong filtering effect at the output
difference ∆C, which has 60 inactive bits and 5
subround filters (Property 1). The probability of a
wrong pair surviving is 220 · 2−60 · 2−4×5 = 2−60,
which implies that only the right pairs remain.

Key Recovery. For all the remaining (right) pairs:

1) In Round 25: We propagate knowledge of the
output difference to Round 24 without having
to guess any keys (Property 1).

2) In Round 24: We guess K0
14 to calculate

224
2 , then derive 224

3 from the ciphertext pairs.
Since all pairs are valid, none of them will
be discarded. Instead, each pair will be as-
sociated with at least one possible 4-bit key
candidate, one of which is the correct subkey.
We repeat the procedure by guessing K0

10, K0
7

and K0
4 to calculate ∆X24

6 , ∆X24
16 and ∆X24

28

respectively, while the remaining differences

involved in those subround filters can be
calculated from the ciphertexts.

Complexity Estimation. The data complexity
of the attack is N = 2 · 220 = 221 chosen
plaintexts and it finds correctly 16-bits of the key,
which is sufficient for verification of the attack
correctness. The memory requirement for the
attack is negligible because only 4-bit counters are
required for each subkey.

Computational Verification. We execute the entire
attack 10 times with randomly selected keys and
plaintexts on a PC with an Intel Core i7-9700K
3.60GHz processor and 32GB of RAM. The correct
subkey candidates always have the highest count of
s, and will be among the top 24 key candidates
70% of the time. On average, the attack completes
in under 5 minutes using an unoptimized implemen-
tation. Codes associated with the 25-round attack as
well as supplementary codes to verify the correct-
ness of our WARP implementation is available at
https://github.com/jesenteh/cryptosmt-boomerang/.

https://github.com/jesenteh/cryptosmt-boomerang/
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B. 41-round (Full) Related-key Differential Attack

The key recovery model for a 41-attack on
WARP using a 35-round distinguisher with DP =
2−34 is also depicted in Table XII where r = 35.
We generate 236 pairs and expect 22 right pairs.
After filtering, we expect that only the right pairs
remain. From Round 40 to Round 36, we guess
a total of 60 subkey bits (16 in Round 40, 12 in
Round 39, 16 bits in 38, 12 in Round 37 and 4 in
Round 36). There are subround filters in Rounds 37
and 38 that require guessing 12 key bits, so we need
key counters that can accommodate 212 possibilities
for these instances. The memory requirement is
(6 · 24 · 4

128 + 2 · 212 · 12
128 ) ≈ 29.59 128-bit blocks.

The time complexity for the guess-and-determine
procedure is negligible, therefore recovering 60 bits
of the key comes mainly from encrypting the 237

chosen plaintexts. We can either brute force the
remaining 68 bits, which would then dominate the
time complexity or use faster auxiliary techniques
to find the rest of the key.

VI. CONCLUSION

This paper described cryptanalytic attacks on the
energy-efficient lightweight block cipher WARP,
which is currently the smallest 128-bit block cipher
in terms of hardware requirements. All attacks were
based on differential cryptanalysis and considered
both the single-key and related-key settings. We
found efficient differential distinguishers for the first
20 rounds of WARP. Differential clustering for
these trails revealed that WARP has a strong dif-
ferential effect from round 13 onward. We also in-
troduced an automatic search for boomerang distin-
guishers which is applicable to Feistel-like ciphers.
We found boomerang distinguishers for WARP for
up to 21 rounds and also demonstrated its flexibility
on other lightweight block ciphers, TWINE and
LBlock-s. Next, we described a family of 2-round
iterative related-key differential trails with only 1
active S-box. These trails can be concatenated to
construct a full 41-round distinguisher for WARP
with a probability of 2−40. We then proposed key-
recovery attacks on WARP using the various dis-
tinguishers that have been identified. In the single-
key setting, we attacked 23 and 24 rounds of

WARP using an 18-round differential and 21-round
boomerang distinguisher, respectively. We proposed
and computationally verified a 25-round related-
key attack on WARP using a 19-round related-key
differential distinguisher, whereby 16 subkey bits
can be recovered in under 5 minutes. Using the
same framework, we finally introduce a related-key
attack on the full 41 rounds of WARP. All attack
complexities were summarized in Table I. To the
best of our knowledge, this is the first (valid) 3rd
party cryptanalysis results for WARP.
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