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Abstract

Codd’s rule of entity integrity stipulates that every table has a primary key.
Hence, the attributes of the primary key carry unique and complete value
combinations. In practice, data cannot always meet such requirements. Pre-
vious work proposed the superior notion of key sets for controlling entity in-
tegrity. We establish a linear-time algorithm for validating whether a given
key set holds on a given data set, and demonstrate its efficiency on real-
world data. We establish a binary axiomatization for the associated impli-
cation problem, and prove its coNP-completeness. However, the implication
of unary by arbitrary key sets has better properties. The fragment enjoys
a unary axiomatization and is decidable in quadratic time. Hence, we can
minimize overheads before validating key sets. While perfect models do not
always exist in general, we show how to compute them for any instance of
our fragment. This provides computational support towards the acquisition
of key sets.

1. Introduction

Keys provide efficient access to data in database systems. They are re-
quired to understand the structure and semantics of data. For a given collec-
tion of entities, a key refers to a set of column names whose values uniquely
identify an entity in the collection. For example, a key for a relational table
is a set of columns such that no two different rows have matching values
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in each of the key columns. Keys are fundamental for most data models,
including semantic models, object models, XML, RDF, and graphs. They
advance many classical areas of data management such as data modeling,
database design, and query optimization. Knowledge about keys empowers
us to 1) uniquely reference entities across data repositories, 2) reduce data
redundancy at schema design time to process updates efficiently at run time,
3) improve selectivity estimates in query processing, 4) feed new access paths
to query optimizers that can speed up the evaluation of queries, 5) access
data more efficiently via physical optimization such as data partitioning or
the creation of indexes and views, and 6) gain new insight into application
data. Modern applications create even more demand for keys. Here, keys
facilitate data integration, help detect duplicates and anomalies, guide the
repair of data, and return consistent answers to queries over dirty data. The
discovery of keys from data sets is a core task of data profiling.

Due to the demand in real-life applications, data models have been ex-
tended to accommodate missing information. The industry standard for data
management, SQL, allows occurrences of a null marker to model any kind
of missing value. Occurrences of the null marker mean that no information
is available about an actual value of that row on that attribute, not even
whether the value exists and is unknown nor whether the value does not
exist. Codd’s principle of entity integrity suggests that every entity should
be uniquely identifiable. In SQL, this has led to the notion of a primary key.
A primary key is a collection of attributes which stipulates uniqueness and
completeness. That is, no row of a relation must have an occurrence of the
null marker on any columns of the primary key and the combination of val-
ues on the columns of the primary key must be unique. The requirement to
have a primary key over every table in the database is often inconvenient in
practice. Indeed, it can happen easily that a given relation does not exhibit
any primary key. This is illustrated by the following example.

Example 1. Consider the following snapshot of data from an accident ward
at a hospital [16]. Here, we collect information about the name and address
of a patient, who was treated for an injury in some room at some time.

room name address injury time
1 Miller ⊥ cardiac infarct Sunday, 19
⊥ ⊥ ⊥ skull fracture Monday, 19
2 Maier Dresden leg fracture Sunday, 16
1 Miller Pirna leg fracture Sunday, 16
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Evidently, the snapshot does not satisfy any primary key since each column
features some null marker occurrence, or a duplication of some value.

In response, several researchers proposed the notion of a key set. As
the term suggests, a key set is a set of attribute subsets. Naturally, we call
the elements of a key set a key. A relation satisfies a given key set if for
every pair of distinct rows in the relation there is some key in the key set on
which both rows have no null marker occurrences and non-matching values
on some attribute of the key. The formal definition of a key set will be given
in Definition 4 in Section 3. The flexibility of a key set over a primary key
can easily be recognized, as a primary key would be equivalent to a singleton
key set, with the only element being the primary key. Indeed, with a key set
different pairs of rows in a relation may be distinguishable by different keys
of the key set, while all pairs of rows in a relation can only be distinguishable
by the same primary key. We illustrate the notion of a key set on our running
example.

Example 2. The relation in Example 1 satisfies no primary key. Nev-
ertheless, the relation satisfies several key sets. For example, the key set
{{room}, {time}} is satisfied, but not the key set {{room, time}}. The rela-
tion also satisfies the key sets

X1 = {{room, time}, {injury, time}} and X2 = {{name, time}, {injury, time}},

as well as the key set X = {{room, name, time}, {injury, time}}.

It is important to point out a desirable feature that primary keys and
key sets share. Both are independent of the interpretation of null marker
occurrences. That is, any given primary key and any given key set is either
satisfied or not, independently of what information any of the null marker
occurrences represent. Primary keys and key sets are only dependent on
actual values that occur in the relevant columns. This is achieved by stip-
ulating the completeness criterion. The importance of this independence is
particularly appealing in modern applications where data is integrated from
various sources, and different interpretations may be associated with different
occurrences of null markers.

Given the flexibility of key sets over primary keys, and given their in-
dependence of null marker interpretations, it seems natural to further in-
vestigate the notion of a key set. Somewhat surprisingly, however, neither
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the research community nor any system implementations have analyzed key
sets since their original proposal in 1989. The main goal of this article is to
take first steps into the investigation of computational problems associated
with key sets. In database practice, one of the most fundamental problems
is the implication problem. The problem is to decide whether for a given set
Σ∪{ϕ} of key sets, every relation that satisfies all key sets in Σ also satisfies
ϕ. Reasoning about the implication of any form of database constraints is
important because efficient solutions to the problem enable us to facilitate
the processing of database queries and updates.

Example 3. Recall the key sets X1, X2, and X from Example 2. An instance
of the implication problem is whether Σ = {X1,X2} implies the key set ϕ = X ,
and another instance is whether Σ implies

ϕ′ = {{room}, {name}, {address}, {time}}.

Contributions. Our contributions can be summarized as follows.

• We compare the notion of a key set with other notions of keys. In
particular, primary keys are key sets with just one element, and certain
keys are unary key sets, for which every key is a singleton.

• We develop a naive quadratic as well as a linear-time algorithm for
validating whether a given key set holds on a given data set, and ex-
perimentally demonstrate its efficiency on real-world data sets. The
experiments also confirm how additional keys in a given key set help
separate tuple pairs in real-world benchmark data.

• We illustrate how automated reasoning tools for key sets can facilitate
efficient updates and queries in database systems.

• We establish a binary axiomatization for the implication problem of
key sets. Here, binary refers to the maximum number of premises that
any inference rule in our axiomatization can have. This is interesting as
all previous notions of keys enjoy unary axiomatizations, in particular
primary keys. What that means semantically is that every given key
set that is implied by a set of key sets is actually implied by at most
two of the key sets.

• We establish that the implication problem for key sets is coNP -complete.
Again, this complexity is quite surprising in comparison with the linear
time decidability of other notions of keys.
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• An interesting notion in database theory is that of Armstrong databases.
A given class of constraints, such as keys, key sets, or other data depen-
dencies [14], is said to enjoy Armstrong databases whenever for every
given set of constraints in this class there is a single database with the
property that for every constraint in the class, the database satisfies
this constraint if and only if the constraint is implied by the given
set of constraints. This is a powerful property as multiple instances
over the implication problem reduce to validating satisfaction over the
same Armstrong database. Consequently, the generation of Armstrong
databases would create ‘perfect models’ of a given constraint set, which
has applications in the acquisition of requirements in database practice.
We show that key sets do not enjoy Armstrong relations, as opposed
to other classes of keys known from the literature.

• Our proof techniques for our axiomatizations help us characterize the
implication problem of key sets by a fragment of propositional logic
under three-valued interpretations. The transformation between key
sets and their propositional formulae becomes simpler in the presence
of NOT NULL constraints, which disallow any occurrences of missing
values in columns for which they are specified in practical database
management systems, such as SQL.

• We then identify an expressive fragment of key sets for which the as-
sociated implication problem can be characterized by a unary axiom-
atization and a quadratic-time algorithm. The fragment also enjoys
Armstrong relations and we show how to generate them with conser-
vative use of time and space.

From a conceptual point of view, previous research has demonstrated
the elegance and robustness of using key sets to control entity integrity in
databases with missing values. Our article establishes limitations and op-
portunities for the use of keys sets in controlling entity integrity from a
computational point of view. These include their validation, minimization
of overheads for integrity control, and computational support for the acqui-
sition of key sets that encode application semantics. Figure 1 illustrates the
areas of our contributions and the sequence of the associated computational
problems we address in this article.
Organization. We discuss related work in Section 2. Basic notions and
notation are fixed in Section 3. The validation problem is addressed in Sec-
tion 4. Section 5 discusses applications of key sets in the processing of queries
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Figure 1: Entity Integrity Control with Key Sets

and updates. An axiomatization for key sets is established in Section 6. The
coNP -completeness of the implication problem is settled in Section 7. A char-
acterization for the implication problem of key sets in terms of a fragment
of a three-valued propositional logic is established in Section 8. The general
existence of Armstrong relations is dis-proven in Section 9. A computation-
ally friendly fragment of key sets is identified in Section 10. We conclude and
briefly discuss future work in Section 11.

2. Related Work

We provide a concise discussion on the relationship of key sets with other
notions of keys over relations with missing information.

Codd is the inventor of the relational model of data [4]. He proposed the
rule of entity integrity, which stipulates that every entity in every table should
be uniquely identifiable. In SQL that led to the introduction of primary
keys, which stipulate uniqueness and completeness on the attributes that
form the primary key. The primary key is a distinguished candidate key.
We call an attribute set a candidate key for a given relation if and only if
every pair of distinct tuples in the relation has no null marker occurrences
on any of the attributes of the candidate key and there is some attribute of
the candidate key on which the two tuples have non-matching values. The
notions of primary and candidate keys have been introduced very early in the
history of database research [13]. Candidate keys are singleton key sets, that
is, key sets with just one element (namely the candidate key). Hence, instead
of having to be complete and unique on the same combination of columns in
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a candidate key, key sets offer different alternatives of being complete and
unique for different pairs of tuples in a relation. Candidate keys were studied
in [7]. In that work, the associated implication problem was characterized
axiomatically and algorithmically, the automatic generation of Armstrong
relations was established, and extremal problems associated with families of
candidate keys were investigated. As Example 1 shows, there are relations
on which no candidate key holds, but which satisfy key sets.

Lucchesi and Osborn studied computational problems associated with
candidate keys [13]. However, their focus was an algorithm that finds all
candidate keys implied by a given set of functional dependencies. They also
proved that deciding whether a given relation satisfies some key of cardinality
not greater than some given positive integer is NP-complete. Recently, this
problem was shown to be W[2]-complete in the size of the key [2]. The
discovery which key sets hold on a given relation is beyond the scope of this
paper and left as an open problem for future work.

Key sets were introduced by Thalheim [15] as a generalization of Codd’s
rule for entity integrity. He studied combinatorial problems associated with
unary key sets, such as the maximum cardinality that non-redundant families
of unary key sets can have, and which families attain them [14, 16]. Key sets
were further discussed by Levene/Loizou [12] where they also generalized
Codd’s rule for referential integrity. Somewhat surprisingly, the study of the
implication problem for key sets has not been addressed by previous work.
This is also true for other automated tasks which require reasoning about
key sets.

More recently, the notions of possible and certain keys were proposed [8].
These notions are defined for relations in which null marker occurrences are
interpreted as ‘no information’, and possible worlds of an incomplete relation
are obtained by independently replacing null marker occurrences by actual
domain values (or the N/A marker indicating that the value does not exist).
A key is said to be possible for an incomplete relation if and only if there is
some possible world of the incomplete relation on which the key holds. A key
is said to be certain for an incomplete relation if and only if the key holds on
every possible world of the incomplete relation. For example, the relation in
Example 1 satisfies the possible key p〈room, name, address〉, since the key
{room,name,address} holds on the possible world:

7



room name address injury time
1 Miller Dresden cardiac infarct Sunday, 19
2 Maier Pirna skull fracture Monday, 19
2 Maier Dresden leg fracture Sunday, 16
1 Miller Pirna leg fracture Sunday, 16

of the relation. In contrast, the key {room,name} is not possible for the
relation because the first and last tuple will have matching values on room
and name in every possible world of the relation. The key {address} is
possible, but not certain, and the key {room,time} is certain for the given
relation. Now, it is not difficult to see that an incomplete relation satisfies
the certain key c〈A1, . . . , An〉 if and only if the relation satisfies the key set
{{A1}, . . . , {An}}. In this sense, certain keys correspond to key sets which
have only singleton keys as elements. The papers [8, 10] investigate computa-
tional problems for possible and certain keys with NOT NULL constraints. In
the current paper we investigate a different class of key constraints, namely
key sets. In particular, the computationally-friendly fragment of key sets we
identify in Section 10 subsumes the class of certain keys as the special case
of unary key sets.

Recently, contextual keys were introduced as a means to separate com-
pleteness from uniqueness requirements [17]. A contextual key is an expres-
sion (C,X) where X ⊆ C. These are different from key sets since X ⊆ C is
a key for only those tuples that are complete on C. In particular, the spe-
cial case where C = X only requires uniqueness on X for those tuples that
are complete on X. This captures the UNIQUE constraint of SQL. Indeed,
UNIQUE(A1, . . . , An) holds on a given relation if and only if the possible key
p〈A1, . . . , An〉 holds on the relation [8]. We leave it as future work to combine
key sets and contextual keys into a unifying notion of contextual key sets.

3. Preliminary Definitions

In this section, we give some basic definitions and fix notation.
A relation schema is a finite non-empty set of attributes, usually denoted

by R. A relation r over R consists of tuples t that map each A ∈ R to
Dom(A) ∪ {⊥} where Dom(A) is the domain associated with attribute A
and ⊥ is the unique null marker. Given a subset X of R, we say that a
tuple t is X-total if t(A) 6= ⊥ for all A ∈ X. Informally, a relation schema
represents the column names of database tables, while each tuple represents a
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row of the table, so a relation forms a database instance. Moreover, Dom(A)
represents the possible values that can occur in column A of a table, and
⊥ represents missing information. That is, if t(A) = ⊥, then there is no
information about the value t(A) of tuple t on attribute A.

In our running example, we have the relation schema

Ward={room,name,address,injury,time}.

Each of these attributes comes with a domain, which we do not specify any
further here. Each row of the table in Example 1 represents a tuple. The
second row, for example, is {injury, time}-total, but not total on any proper
superset of {injury, time}. The four tuples together constitute a relation over
Ward.

The following definition introduces the central object of our studies. It
was first defined by Thalheim in [15].

Definition 4. A key set is a finite, non-empty collection X of subsets of a
given relation schema R. We say that a relation r over R satisfies the key
set X if and only if for all distinct t, t′ ∈ r there is some X ∈ X such that t
and t′ are X-total and t(X) 6= t′(X). Each element of a key set is called a
key. If all keys of a key set are singletons, we speak of a unary key set.

In the sequel we write X ,Y ,Z, . . . for key sets andX, Y, Z, . . . for attribute
sets, and A,B,C, . . . for attributes. We sometimes write A instead of {A}
to denote the singleton set consisting of only A. If ~X is a sequence, then we
may sometimes write simply ~X for the set that consists of all members of ~X.
In the following discussion, we use |K| to denote the number of keys in the
key set K, and ‖K‖ to denote the total number of attribute occurrences in
K.

As already mentioned in Example 2, the relation in Example 1 satisfies the
key sets X1, X2, and X . It also satisfies the unary key set {{room}, {time}},
but not the singleton key set {{room, time}}. In Example 2, we have |K| = 2
and ‖K‖ = 5.

A fundamental problem in automated reasoning about any class of con-
straints is the implication problem. For key sets, the problem is to decide
whether for an arbitrary relation schema R, and an arbitrary set Σ ∪ {ϕ}
of key sets over R, Σ implies ϕ. Indeed, Σ implies ϕ if and only if every
relation over R that satisfies all key sets in Σ also satisfies the key set ϕ. The
following section illustrates how solutions to the implication problem of key
sets can facilitate the efficient processing of queries and updates.
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4. Validating Key Sets

In this section we will investigate the validation problem for key sets. This
problem takes as input both a key set {X1, . . . , Xn} and a given relation r,
and returns ‘yes’ if {X1, . . . , Xn} satisfies r, and returns ‘no’ otherwise. The
validation problem is one of the most basic decision problems that are fun-
damental for automating integrity control management. Efficient solutions
to this problem enable us to validate whether the given data - possible after
updates - is compliant with the business rules encoded by the key set. In
other words, a computer can check quickly whether the data is compliant or
not. Throughout this section, we will use the following example.

Example 1. Table 1 shows an incomplete relation r, where ⊥ denotes a
null marker occurrence. This relation does not satisfy any candidate key
as null markers occur in columns address and injury, and tuples t1 and
t2 have the same projection on {name, time}. The relation only satisfies
one certain key [8], which is {name, address, injury, time} as the two null
marker occurrences can be replaced by any domain values without causing
any duplication. For the key set X = {{name, address}, {injury}, {time}}
we obtain the following: Tuple pairs t1 and t3, and t1 and t4 are complete
and different on X = {name, address}, tuple pairs t1 and t2, and t2 and t3
are complete and different on Y = {injury}, and tuple pairs t2 and t4, and
t3 and t4 are complete and different on Z = {time}. Hence, for every pair
of different tuples there is some X ∈ X such that the tuple pair is complete
and different on X. Hence, the relation r satisfies the key set X.

Table 1: A relation with missing data

name address injury time
t1 Miller Dresden cardiac infarct Sunday, 19
t2 Miller ⊥ skull fracture Sunday, 19
t3 Maier Dresden cardiac infarct Sunday, 19
t4 Maier Dresden ⊥ Monday, 20

4.1. Näıve validation

The validation problem is a decision problem, so the output to every
input is either ‘yes’ or ‘no’. For instances that result in a ‘no’, the answer
is rather uninformative and the first reaction is probably to ask why. So,
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rather than looking at the validation problem, it makes more sense to return
the set rXV ⊆ r of tuples in r that violate a key set X . This set rXV is the
maximum subset of r under subset inclusion with the property that if t ∈ rXV ,
then there is some t′ ∈ rXV with t 6= t′, and for all X ∈ X , t is not X-total
or t′ is not X-total or t(X) = t′(X). If rXV is empty, then the input relation
satisfies the key set X .

Algorithm 1 Quadratic-time algorithm

Require: A key set X , a relation r over relation schema R
Ensure: The maximum set rXV of tuples in r that violate the key set X
rXV := ∅
for t, t′ ∈ r where t 6= t′ do

for X ∈ X do
if for all X ∈ X , (t or t′ is not X-total) or (t(X) = t′(X)) then

rXV := rXV ∪ {t}
return rXV

We begin with a näıve algorithm that computes the set rXV given relation
r and given key set X in time quadratic in the input. The pseudo-code is
given in Algorithm 1. The algorithm starts with an empty set rXV . The
first loop selects every pair of distinct tuples in the input relation r. Then,
the algorithm will go through the given key set X and check if the pair of
selected tuples violate all keys X in the key set X . If that is the case, both
tuples will become part of rXV . After every pair of distinct tuples in the input
relation has been checked, the algorithm returns rXV . It is evident that the
algorithm is correct as it strictly follows the definition of a key set. The time
complexity of Algorithm 1 is O(|r|2 · ‖X‖) since every pair of distinct tuples
is evaluated against every attribute occurrence in X .

Theorem 5. Given a relation r and a key set X , Algorithm 1 computes the
set rXV of violating tuples in time O(|r|2 · ‖X‖).

4.2. Linear-time validation

In Algorithm 2, our strategy is to aggressively partition the input relation
r into different smaller subsets b ⊆ r. Strictly speaking, the subsets b do not
form a partition as i) incomplete tuples may occur in multiple subsets, and
ii) tuples with unique complete projections on some key do not need to be
tracked since they cannot contribute to the violation of the given key set.
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Indeed, each subset b contains tuples which are either incomplete or have
matching values on all previously examined keys of the input key set. By
examining each key X in the input key set X , the subsets b are progressively
split into smaller subsets. Intuitively, each subset b contains tuples such
that every pair of distinct tuples from b violate all the keys in the input
key set that have been examined so far. The worst-case time complexity for
Algorithm 2 is O(|r| · ‖K‖). This is a huge improvement over Algorithm 1.
Before we present Algorithm 2 formally, we show how Algorithm 2 works on
a real example.

Example 2. Let R = {n(ame), a(ddress), i(njury), t(ime)}, r = {t1, t2, t3, t4}
and the key set X = {{n, a}, {i}, {t}}. The output will be set BX of subsets
b of r such that for every b ∈ BX and for all distinct t, t′ ∈ b, {t, t′} violate
the key set X . If no such b exists, then the input relation satisfies the input
key set.

Algorithm 2 starts with BX = {r} where the only block is the input relation
r.

• In the first iteration we pick X = {n, a} ∈ X , and set B := ∅. For our
map M and set I of incomplete tuples we obtain:

M(Miller,Dresden) = {t1},M(Maier,Dresden) = {t3, t4}, and I = {t2}

We then add every tuple in I into each image where M is defined, so
we obtain the following for our map:

M(Miller,Dresden) = {t1, t2},M(Maier,Dresden) = {t2, t3, t4}

As B is the set of all images of values on which M is defined we have:

BX = B = {{t1, t2}, {t2, t3, t4}}

at the end of the first iteration.

• In the second iteration we pick X = {i} ∈ X , and set B := ∅. For
b = {t1, t2} we obtain:

M(cardiac infarct) = {t1},M(skull fracture) = {t2}, andI = ∅ .

No further changes are applied as we only have singleton images in the
map and no incomplete tuples exist, so B = ∅. For b = {t2, t3, t4} we
obtain:

M(skull fracture) = {t2},M(cardiac infarct) = {t3}, and I = {t4} .
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We then add every tuple in I into each image where M is defined, so
we obtain:

M(skull fracture) = {t2, t4},M(cardiac infarct) = {t3, t4} .

Since B is the set of all images of values on which M is defined we
have:

BX = B = {{t2, t4}, {t3, t4}}

at the end of the second iteration.

• For the third and final iteration we pick X = {t} ∈ X , and set B := ∅.
For b = {t2, t4} we obtain:

M(Sunday, 19) = {t2},M(Monday, 20) = {t4}, and I = ∅ .

No further changes are applied as we only have singleton images in the
map and no incomplete tuples exist, so B = ∅. For b = {t3, t4} we
obtain

M(Sunday, 19) = {t3},M(Monday, 20) = {t4}, and I = ∅ .

Again, no further changes are applied as we only have singleton images
in the map and no incomplete tuples exist, so B = ∅.

As final output we return BX = ∅. That means r satisfies X .

Algorithm 2 shows the pseudo-code for computing the set BX of all ⊆-
maximal subsets b ⊆ r such that for all pairs of distinct tuples t, t′ ∈ b, {t, t′}
violates X .

Evidently, different tuples will and can only occur in the same subset b
at the end of the computation, if it is true for every key in the key set that
they have either matching complete values on all the columns of the key, or
one of the tuples has a null marker occurrence on some column in the key.

Theorem 6. Given a relation r and a key set X , Algorithm 2 computes the
set BX of all maximal subsets b ⊆ r such that for all distinct t, t′ ∈ b, {t, t′}
violates X , in time O(|r| · ‖X‖).

4.3. Experiments

For the benefit of complementing our theoretical worst-case time com-
plexity analysis with some actual runtimes of our algorithms, we conducted
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Algorithm 2 Linear-time Algorithm

Require: A key set X , a relation r over relation schema R
Ensure: Set BX of ⊆-maximal subsets b ⊆ r such that for all distinct tuple

pairs t, t′ ∈ b, {t, t′} violate X
BX := {r}
for X ∈ X do

B := ∅
for all b ∈ BX do

Create an empty map M
Create an empty set I
for all t ∈ b do

if t[X] contains some missing value then
I := I ∪ {t}

else
M [t[X]] := M [t[X]] ∪ {t}

for all y such that M [y] exists do
M [y] := M [y] ∪ I
if |M [y]| > 1 then

B := B ∪ {M [y]}
if there is no y such that M [y] exists and |I| > 1 then

B := B ∪ {I}
BX := B

return BX

14



Table 2: Incomplete Datasets

Dataset #R #C #⊥
horse 300 28 1605
bridges 108 13 77
hepatitis 155 20 167
breast-cancer-wisconsin 691 11 16
echocardiogram 132 13 132
plista 996 63 23317
flight 1000 109 51938
ncvoter 1000 19 2863

a few experiments with publicly available data sets. These have served as
benchmark data sets for the discovery problem of a variety of data depen-
dencies []. Our algorithms and experiments were implemented in Python
3.
Data sets. Our experiments are based on a collection of real-world data sets
with missing data. Basic statistics of the data sets are shown in Table 2. We
use #R, #C and # ⊥ to denote the number of rows, columns and missing
data values in the given data set, respectively. As we can tell, these real-
world data sets have indeed different characteristics. Particularly, more than
40% of values in the data set plista are missing, but only 7.5% of values are
missing in the data sets hepatitis and echocardigram.
Generation of key sets. For our experiments, we use two algorithms to
generate synthetic key sets. For each data set with n attributes, the first
algorithm creates n key sets. For each key set Xi where 1 ≤ i ≤ n,

Xi = {{A1, . . . , Ai}, {Ai+1}, . . . , {An}}

where Ai denotes the i-th attribute in the data set. The second algorithm is
similar to the first, but for each key set, the first key is randomly selected and
the remaining attributes are used to construct singleton keys. For example,
if we generate a key set X = {k1, . . . , kn+1−m} over a relation schema R with
n attributes, then k1 will be generated by randomly selecting m attributes
from R, and k2, . . . , kn+1−m will each denote a singleton subset made up of
the remaining n−m attributes of R.
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4.4. Experiment 1 - Run time efficiency

Example 7. In this experiment, we use the first key set generation algorithm
with cardinalities from 1 to n, where n denotes the number of attributes in
a data set. We learn how |X | affects the satisfaction of the key set X . For
example, in the data set ’bridges’, a decrease of |K| from 11 to 10 results in
a violation of the key set

X ′ = {{0, 1, 2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}} .

Indeed, with the key set

X = {{0, 1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}},

the following six tuples contribute to a violation:

(’E54’, ’Y’, ’?’, ’1908’, ’HIGHWAY’, ’1240’, ’?’, ’G’, ’?’, ’STEEL’,
’MEDIUM’, ’F’, ’SIMPLE-T’),

(’E100’, ’O’, ’43’, ’1982’, ’HIGHWAY’, ’?’, ’?’, ’G’, ’?’, ’?’, ’?’, ’F’, ’?’),
(’E56’, ’M’, ’23’, ’1909’, ’HIGHWAY’, ’?’, ’?’, ’G’, ’THROUGH’,

’STEEL’, ’MEDIUM’, ’F’, ’SIMPLE-T’),
(’E40’, ’M’, ’22’, ’1893’, ’HIGHWAY’, ’?’, ’2’, ’G’, ’THROUGH’,

’STEEL’, ’MEDIUM’, ’F’, ’SIMPLE-T’),
(’E109’, ’A’, ’28’, ’1986’, ’HIGHWAY’, ’?’, ’?’, ’G’, ’?’, ’?’, ’?’, ’F’, ’?’),

and
(’E39’, ’A’, ’25’, ’1892’, ’HIGHWAY’, ’?’, ’2’, ’G’, ’THROUGH’,

’STEEL’, ’MEDIUM’, ’F’, ’SIMPLE-T’) .

The main reason of this violation is due to the null marker occurrence on
attribute 2 in tuple E54. For example, tuples E54 and E56 violate the key
set X because: i) the null marker occurrence on attribute 2 in tuple E54
violates the key {0, 1, 2, 3}, and ii) on all the singleton keys in this key set,
both tuples have matching values or a null marker occurrence (and thereby
violating each of these keys as well).

In our first experiment we determine the run-time of our two algorithms
for validating key sets on our real-world data sets. For each data set, we
use the synthetic key sets generated by the first key set generation algorithm
with cardinalities from 1 to n, where n denotes the number of attributes in
a data set. For each key set, we run each algorithm 10 times. We report the
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average run-time of our two algorithms for each of our data sets, where the
average is taken over all runs over all cardinalities. The results are shown in
Table 3.

Table 3: Run-time comparison (in s) for validating synthetic key sets on benchmark data

Dataset Algorithm 1 Algorithm 2
horse 62.628 2.228
bridges 1.991 0.063
hepatitis 8.361 0.443
breast-cancer-wisconsin 64.266 0.104
echocardiogram 2.822 0.290
plista too long 2.379
flight too long 1.958
ncvoter 370.416 8.036

The results show clear practical run-time benefits for developing a sophis-
ticated linear-time algorithm that validates key sets.

4.5. Experiment 2 - Run time efficiency by cardinality of key sets

In this experiment, we break down our analysis of the run-time efficiencies
of Algorithm 1 and Algorithm 2 based on a given cardinality of the key sets.
We use the second key set generation algorithm to generate random key sets.
For each given cardinality that applies to a given data set, we create 100
different key sets randomly. Then we apply our algorithms to each of the
key sets. This enables us to observe the run-time of these algorithms in
relationship to the cardinalities of a given key set. Interestingly, the results
we obtain for the two algorithms are quite different. The run-time behaviors
of our two algorithms are visualized in Figure 2 and Figure 3, respectively.
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Figure 2: Run-time of Algorithm 1 by the cardinality of the given key sets

From Figure 2 we can observe a linear increase of the run-time in the
cardinality of the key sets, where the size of the key set is fixed. Indeed,
Algorithm 1 analyses all the given tuple pairs for each of the keys in the
given key set.
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Figure 3: Run-time of Algorithm 2 by the cardinality of the given key sets
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However, the run-time behavior of Algorithm 2 does not follow this pat-
tern. The reason is that the number of tuples that needs to be analyzed by
Algorithm 2 becomes less as more keys of the given key set are examined.
Hence, the total number of tuples examined by Algorithm 2 decreases for a
larger number of keys in the given key set. In fact, the run-time behavior of
Algorithm 2 shows actual insight. Indeed, for different key sets of the same
size and different cardinalities, there are more tuples that contribute to the
violation of key sets that have lower cardinality than other key sets.

4.6. Experiment 3 - Offending Tuples

We will now illustrate experimentally how the increase in the cardinality
of the given key set affects the number of offending tuples. For that purpose
we have applied Algorithm 2. In Figure 4, we show the average number
of tuples that offend the given key set found by our previous experiment.
The figure shows how the average number of offending tuples decreases with
the cardinality of the given key set. Again, this explains why Algorithm 2
performs efficiently: the more of the keys of the given key set have been
processed, the fewer tuples remain that offend all of those keys.
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Figure 4: Average number of offending tuples by the cardinality of the given key set
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4.7. Experiment 4 - Adding Keys to Establish Entity Integrity

For our final experiment, we want to illustrate how the percentage of
violations decreases with a growing number of keys in a key set. This confirms
our main motivation for studying key sets as a major mechanism to establish
entity integrity in relations with missing values. For our experiment, we
looked at the benchmark data sets and randomly generated keys sets with
different cardinalities to test how easy entity integrity can be established. For
a fixed cardinality on a given data set, we randomly generated 100 key sets
and recorded the percentage of violations. The results are shown in Figure 5.
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Figure 5: Percentage of Violations by Cardinality of Key Sets
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The data sets “Horse” , “Breast Cancer”, and “Hepatitis” illustrate the
reality that data sets with duplicate tuples can never achieve entity integrity.
That is, whenever there are two different tuples with matching values on all
columns, then no key can distinguish them, and therefore also no key set.
However, when a data set does not contain any duplicate tuples, then our
experiment illustrates clearly how additional keys can further separate tuples
that are indistinguishable by previously used keys.

4.8. Summary

Key sets serve as a natural mechanism to establish entity integrity in
data sets with missing values. Indeed, the restriction to separate all pairs
of distinct tuples by the same key seems unnatural. For example, when
we want to identify a person we may want to use biometric measures such
as fingerprints or retina scans. Indeed, if one technology fails to obtain the
measure, the other one may still work. In this section, we have established an
algorithm that decides whether a given key set is satisfied by a given relation
with missing values. The algorithm works through the given relation as many
times as there are keys in the given key set. However, in each scan it does
not need to separate tuple pairs that have already been separated in previous
runs. Experiments with our algorithm show how the number of keys in a key
set lowers the number of offending tuples in real-world benchmark data sets,
and how the addition of keys to a key set helps establish entity integrity in
data sets with missing values.

5. Applications for Automated Reasoning

We illustate some applications of key sets for automated reasoning in
databases. The most important applications of processing data are updates
and queries. We briefly describe in this section how automated reasoning
about key sets can facilitate each of these application areas.

5.1. Efficient Updates

When databases are updated it must be ensured that the resulting database
satisfies all the constraints that model the business rules of the underlying
application domain. Violations of the constraints indicate sources of incon-
sistency, and an alert of such inconsistencies should at least be issued to the
database administrator. This is to ensure that appropriate actions can be
taken, for example, to disallow the update. This quality assurance process
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incurs an overhead in terms of the time it takes to validate the constraints.
As such, users of the database expect that such overheads are minimized.
In particular, the time on validating constraints increases with the volume
of the database. As a principal, the set of constraints that are specified on
the database and therefore subject to validation upon updates, should be
non-redundant. That is, no constraints should be specified that are already
implied by other specified constraints. The simple reason is that the vali-
dation of any implied constraints is a waste of time because the validity of
the other constraints already ensures that any implied constraint is valid as
well. This is a strong real-life motivation for developing tools that can de-
cide implication. In our running example, the set Σ = {X1,X2,X} of key
sets is redundant because the subset Σ′ = {X1,X2} implies the key set X .
Automated solutions to the implication problem can thus automatize the
minimization of overheads in validating constraints under database updates.

5.2. Efficient Queries

We are interested in the names of patients that can be identified uniquely
based on information about their name and the room and time at the accident
ward, or based on information about their injury and the time at the accident
ward. In SQL, this may be expressed as follows.

SELECT name
FROM ward

WHERE room IS NOT NULL AND name IS NOT NULL AND

time IS NOT NULL

GROUP BY room, name, time
HAVING count(room, name, time) ≤ 1
UNION

SELECT name
FROM ward

WHERE injury IS NOT NULL AND time IS NOT NULL

GROUP BY injury, time
HAVING count(injury, time) ≤ 1 ;

Knowing that the underlying relation over Ward satisfies the two key sets
X1 and X2 and that the key set X = {{room, name, time}, {injury, time}} is
implied by X1 and X2, one can deduce that every tuple of Ward must be in
at least one of the sub-query results of the UNION query. That is, the query
above can be simplified to
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Table 4: An axiomatization A for key sets

X
X ∪ Y

X ∪ {XY }
X ∪ {X, Y }

X1 X2

{Z(X1,X2) | (X1, X2) ∈ X1 ×X2}
Z(X1,X2) ⊆ X1 ∪X2, and

X1 ⊆ Z(X1,X2) or X2 ⊆ Z(X1,X2)

Upward closure Refinement Composition

SELECT DISTINCT name
FROM ward ;

Note that the DISTINCT word is necessary since the UNION operator eliminates
duplicates. When evaluated on the example from the introduction, each
query will return the result {(name: Miller),(name: ⊥), (name: Maier)}.

Motivated by the applications of key sets for data processing and the
lack of knowledge on automated reasoning tasks associated with key sets,
the following sections will investigate the implication problem for key sets.

6. Axiomatizing Key Sets

In this section we establish axiomatizations for arbitrary key sets as well
as unary ones. This will enable us to effectively enumerate all implied key
sets, that is, to determine the semantic closure Σ∗ = {σ | Σ |= σ} of any given
set Σ of key sets. A finite axiomatization facilitates human understanding of
the interaction of the given constraints, and ensures all opportunities for the
use of these constraints in applications can be exploited.

In using an axiomatization we determine the semantic closure by applying

inference rules of the form
premise

conclusion
. For a set R of inference rules let

Σ `R ϕ denote the inference of ϕ from Σ by R. That is, there is some
sequence σ1, . . . , σn such that σn = ϕ and every σi is an element of Σ or is
the conclusion that results from an application of an inference rule in R to
some premises in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ | Σ `R ϕ} be the syntactic
closure of Σ under inferences by R. R is sound (complete) if for every set Σ
over every R we have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite)

axiomatization if R is both sound and complete.

26



Table 4 shows a finite axiomatization A for key sets. A non-trivial rule is
Composition which is illustrated by our running example.

Example 8. Recall Example 1 from the introduction, in particular Σ =
{X1,X2} and ϕ = X . It turns out that ϕ is indeed implied by Σ, since ϕ can
be inferred from Σ by an application of the Composition rule, and the rule is
sound for the implication of key sets. Indeed, X1 ×X2 consists of:

({room,time}, {name,time}),
({room,time}, {injury,time}),

({injury,time}, {name,time}), and
({injury,time}, {injury,time}) .

and for each element X = (X1, X2) we need to pick one attribute set ZX that
is contained in the union X1∪X2 and contains either X1 or X2. For the first
element we pick {room, time, name}, and for the remaining three elements
we pick {injury, time}. That results in the key set X .

We now proceed with the completeness proof for the axiom system A of
Table 4. The proof proceeds in three stages. First in Lemma 9, we show a
characterization of the implication problem. This is applied in Lemma 10
to show that A extended with n-ary Composition for all n ∈ N is complete
(see Table 5). At last, we show in Lemma 11 that n-ary Composition can be
simulated with the binary Composition of A.

Table 5: The n-ary Composition rule

X1 . . . Xn

{Z ~X | ~X ∈ X1 × . . .×Xn}
Z ~X ⊆

⋃ ~X and
∨

iXi ⊆ Z ~X

Lemma 9. {X1, . . . ,Xn} |= Y iff for all (X1, . . . , Xn) ∈ X1 × . . .×Xn there
is Z ⊆ Y such that

⋃
Z ⊆

⋃
iXi, and Xi ⊆

⋃
Z for some i.

Proof. Assume first that one finds such an Z. We show that any relation r
that satisfies each Xi satisfies also Y . Let t, t′ be two tuples from r. Then
for some (X1, . . . , Xn) ∈ X1 × . . . × Xn, t and t′ are both

⋃
iXi-total and

disagreeing on each Xi. Assume that i is such that Xi ⊆
⋃
Z, and let
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A ∈ Xi be such that t(A) 6= t′(A). Then selecting some Z ∈ Z such that it
also contains A, we have that t and t′ are Z-total and deviate on Z. Thus Z
is witness for r |= Y .

For the other direction we assume that no such Z exists. Then there is
(X1, . . . , Xn) ∈ X1 × . . . × Xn such that for Z := {Z ∈ Y | Z ⊆

⋃
iXi},

Xi 6⊆
⋃
Z for all i. Then, selecting an attribute Ai from Xi \

⋃
Z for all i,

we may construct a relation r satisfying {X1, . . . ,Xn,¬Y}. This relation r
consists of two tuples t, t′ where t is a constant function mapping all of R to
0, and t′ maps

⋃
iAi to 1,

⋃
iXi \

⋃
iAi to 0, and all the remaining attributes

to ⊥. Now, obviously r satisfies all Xi. Furthermore, for Y ∈ Y \ Z, t′ is
not Y -total, and for Y ∈ Y ∩ Z both t and t′ are Y -total but with constant
values 0. Therefore, r is a witness of {X1, . . . ,Xn} 6|= Y which concludes the
proof.

Notice that the latter condition of Lemma 9 can be equivalently stated
as Xi ⊆

⋃
{Y ∈ Y | Y ⊆

⋃
iXi} for some i.

Lemma 10. The axiomatization A extended with n-ary Composition is com-
plete for key sets.

Proof. Assume {X1, . . . ,Xn} |= Y . Then we obtain by Lemma 9 for all
~X = (X1, . . . , Xn) ∈ X1× . . .×Xn a subset Z ~X ⊆ Y such that

⋃
Z ~X ⊆

⋃ ~X,
and Xi ⊆

⋃
Z ~X for some i. Then by Composition we may derive {

⋃
Z ~X |

~X ∈ X1 × . . . × Xn}. With repeated applications of Refinement we then

derive
⋃
{Z ~X | ~X ∈ X1× . . .×Xn}. Since this set is a subset of Y , we finally

obtain Y with a single application of Upward closure.

Lemma 11. n-ary Composition is derivable in A.

Proof. Assume that K = {Z ~X | ~X ∈ X1 × . . . × Xn} is obtained from
X1, . . . ,Xn by an application of n-ary Composition. We will perform con-
secutive applications of (binary) Composition until we have obtained K.
Composition is applied incrementally so that the first application of this
rule combines X1 and X2 to obtain a new key set X , the second combines X
and X3 to obtain the next key set X ′, the third X ′ and X4 to obtain X ′′, and
so forth. Once Xn is reached the cycle is started again from X1.

At each step of the aforementioned procedure we have deduced a key set
X such that each X ∈ X either is a union

⋃
Y1 ∪ . . . ∪

⋃
Yn for Yi ⊆ Xi, or

belongs to the required key set K. In the previous case, provided that each
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Yi is the maximal subset of Xi such that
⋃
Yi ⊆ X, we refer to Y1 ∪ . . .∪Yn

as the maximal decomposition of X and |Y1 ∪ . . . ∪ Yn| as the decomposition

size of X. Furthermore, given a set Z ~X ∈ K where ~X ∈ X1× . . .×Xn we say

that a set Xi ∈ ~X is full in Z ~X if Xi ⊆ Z ~X . By the prerequisite of the n-ary

Composition some member of ~X is always guaranteed to be full in Z ~X .
Initialization. Consider an instance of n-ary Composition. We initialize
the procedure by applying Composition n− 1 many times so that we obtain
the key set {

⋃ ~X | ~X ∈ X1× . . .×Xn}. This is done by letting U1 := X1 and
taking the key set Ui+1 = {X1∪X2 | (X1, X2) ∈ Ui×Xi+1} for i = 1, . . . , n−1.
Inductive step. After the initial step we have reached a key set V1 := Un
such that all X ∈ V1\K have decomposition size at least 1. Assume now that
we have reached a key set Vm such that all X ∈ Vm \ K have decomposition
size at least m. As the induction step we show how to obtain a key set Vm+1

such that every member of Vm+1 \ K has decomposition size at least m + 1.
This is done by taking a single round of applications of Composition to Vm
and X1, . . . ,Xn. That is, Vm and X1 are first combined using Composition,
then the outcome is combined with X2, and its outcome with X3, and so forth
until we have applied this procedure to Xn. All these applications keep the
members of Vm∩K fixed. For instance, at the first step Z(X,Y ) for X ∈ Vm∩K
and any Y ∈ X1 is defined as X. We show how this deduction handles an
arbitrary X ∈ Vm \ K.

By induction assumption each X ∈ Vm\K has decomposition size at least
m. Let

⋃
Y1 ∪ . . .∪

⋃
Yn be the maximal decomposition of X. Now, assume

towards a contradiction that for each i there is Yi ∈ Yi such that Yi is not
full in any Z~Y ∈ K where ~Y ∈ Y1 × . . .× Yn and Yi is the ith member of ~Y .

Then, however, the diagonal ~Y ′ = (Y1, . . . , Yn) must have a member that is
full in Z~Y ′ . This is a contradiction and hence there is i such that all Yi ∈ Yi

are full in some Z~Y ∈ K where ~Y ∈ Y1 × . . .× Yn and Yi is the ith member

of ~Y . With regards to X, Composition is then applied as follows. For the
first i− 1 applications X is kept fixed. For the ith application that considers
Xi, each pair of X and Y ∈ Yi is transformed to that Z~Y ∈ K in which Y
is full. Furthermore, each pair of X and Y ∈ Xi \ Yi is transformed to XY .
Take note that the decomposition size of XY is at least n + 1. At last, the
remaining applications of Composition keep the obtained sets fixed. Since
this procedure is applied to all X ∈ Vm \K, we obtain that Vm+1 \K has only
sets with decomposition size at least m + 1. This concludes the induction
step.
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Now, VM+1 where M = |X1∪. . .∪Xn| is a subset of K. Hence, we conclude
that VM+1 yields K with one application of Upward closure.

Note that a simulation of one application of n-ary of Composition to
{X1, . . . ,Xn} takes at most (n+ 1) · |

⋃n
i=1Xi| applications of binary Compo-

sition plus one application of Upward Closure.
The previous three lemmata now generate the following axiomatic char-

acterization of key set implication. We omit the soundness proof which is
straightforward to check.

Theorem 12. The axiomatization A is sound and complete for key sets.

Another important application. A direct application of an axiomatiza-
tion is the efficient representation of collections of key sets. Similar to the
computation of non-redundant covers during update operations, removing
any redundant constraints makes the result easier to understand by humans.
This is, for example, important for the discovery problem of key sets in which
one attempts to efficiently represent all those key sets that a given relation
satisfies. Even more directly, one can understand any sound inference rule
as an opportunity to apply pruning techniques as part of a discovery algo-
rithm. A complete axiomatization ensures all opportunities for the pruning
of a search space can be exploited.

7. Complexity of Key Set Implication

In this section we settle the exact computational complexity of the impli-
cation problem for key sets. While the implication problem for most notions
of keys over incomplete relations is decidable in linear time, the implication
problem for key sets is likely to be intractable. This should also be seen as
evidence for the expressivity of key sets.

Theorem 13. The implication problem for key sets is coNP-complete.

Proof. Consider first the membership in co− NP. By Lemma 9, for determin-
ing whether {X1, . . . ,Xn} 6|= Y , it suffices to choose X1, . . . , Xn respectively
from X1, . . . ,Xn, and then deterministically check that Xi 6⊆

⋃
Z for all i,

where Z is selected deterministically as Z := {Z ∈ Y | Z ⊆
⋃

iXi}.
For the hardness, we reduce from the complement of 3-SAT. Let C1, . . . , Cn

be a collection of clauses, each consisting of three literals, i.e., propositions
of the form p or negated propositions of the form ¬p. Let P be the set of
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all proposition symbols that appear in some Ci, and let P consist of their
negations. Letting P ∪ P be our relation schema, we show that

∧
i

∨
Ci has

a solution iff {{p,¬p} | p ∈ P} 6|= {C1, . . . , Cn}. Notice that the antecedent
is a set of singleton key sets, each of size two.

Assume first that there is a solution. Let S ⊆ P(P ) encode the com-
plement of that solution, i.e., S is such that each Ci contains some p /∈ S
or some ¬p for p ∈ S. Let S = {¬p | p 6∈ S}, and define singleton sets
Xp = {p,¬p} ∩ (S ∪ S), encoding those literals that are set false by the so-
lution. Then Ci 6⊆

⋃
pXp for all i, implying be Lemma 9 that {{p,¬p} | p ∈

P} 6|= {C1, . . . , Cn}.
Assume then that {{p,¬p} | p ∈ P} 6|= {C1, . . . , Cn}. By Lemma 9

we find Xp ∈ {p,¬p} such that for no Z ⊆ {C1, . . . , Cn} we have that⋃
Z ⊆

⋃
pXp and

∨
pXp ⊆

⋃
Z. Now, Ci ⊆

⋃
pXp implies Xp ⊆ Ci for

three distinct p, and therefore we must have Ci 6⊆
⋃

pXp for all i. It is
now easy to see that the sets Xp give rise to a solution to the satisfiability
problem.

8. Logical Characterization of the Implication Problem

9. Armstrong Relations

In this section we ask the basic question whether key sets enjoy Armstrong
relations. These are special models which are perfect for a given collection of
key sets. More formally, a given relation r is said to be Armstrong for a given
set Σ of key sets if and only if for all key sets ϕ it is true that r satisfies ϕ if
and only if Σ implies ϕ. Indeed, an Armstrong relation is a perfect model for
Σ since it satisfies all keys sets implied by Σ and does not satisfy any key set
that is not implied by Σ. Armstrong relations have important applications in
data profiling [1] and the requirements acquisition phase of database design
[11].

Unfortunately, arbitrary sets of key sets do not enjoy Armstrong relations
as the following result manifests.

Theorem 14. There are sets of key sets for which no Armstrong relations
exist.

Proof. An example is

Σ = {{{A}, {B}}, {{C}, {D}}}
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A B C D

d d ⊥ d
⊥ d d d

A B C D

d d d ⊥
d ⊥ d d

A B C D

d d ⊥ d
⊥ d d d
d d d ⊥
d ⊥ d d

Figure 6

with attributes A,B,C,D. Then σ1 = {{A,C}, {A,D}, {B,C}} and σ2 =
{{A,D}, {B,C}, {B,D}} are two non-consequences of Σ, respectively exem-
plified by the two 2-tuple relations on the left of Figure 6, where “d” refers
to any distinct total value.

These are the only possible types of tuple pairs that satisfy Σ∪{¬σ1} and
Σ∪ {¬σ2}, respectively. Therefore, we observe that any relation r satisfying
Σ and refuting both σ1 and σ2 has a homomorphism from a relation of the
form on the right of Figure 6 to a subset of r with the condition that this
homomorphism preserves nulls and maps domain values to domain values.
However, then neither {{A}, {B}} nor {{C}, {D}} is a key set anymore.

10. Implication for Unary by Arbitrary Key Sets

In this section we identify a fragment of key sets for which automated
reasoning is efficient. This is strongly motivated by the results of the previous
sections in which the coNP-completeness of the implication problem, and
the lack of general Armstrong relations has been established. Indeed, the
fragment is the implication of unary key sets by arbitrary key sets. We show
that this fragment is captured axiomatically by the Refinement and Upward
Closure rules, can be decided in time quadratic in the input, and Armstrong
relations always exist and can be computed with conservative use of time
and space.

10.1. An algorithmic characterization

Our first result establishes that unary key sets must be implied by a single
key set from the given collection of key sets.

Theorem 15. Let Σ = {X1, . . . ,Xn} be a collection of arbitrary key sets,
and let ϕ = {{A1}, . . . , {Ak}} be a unary key set over relation schema R.
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Then Σ implies ϕ if and only if there is some i ∈ {1, . . . , n} such that
⋃
Xi ⊆

{A1, . . . , Ak}.

Proof. If
⋃
Xi ⊆ X for some i ∈ {1, . . . , n}, Refinement and Upward Closure

infer ϕ from Σ. Due to the rules’ soundness, ϕ is implied by Σ.
Vice versa, assume that

⋃
Xi 6⊆ X holds for all i = 1, . . . , n. Let r

be defined as r = {t, t′} where t and t′ are two total tuples that agree on
X = {A1, . . . , Ak} and disagree elsewhere. It follows that r violates ϕ. Since⋃
Xi 6⊆ X for all i = 1, . . . , n, t1 and t2 must differ on some attribute in

⋃
Xi

for i = 1, . . . , n. This means, r satisfies all key sets in Σ. Consequently, Σ
does not imply ϕ.

A direct consequence of Theorem 15 is the quadratic time complexity of the
implication problem for unary by arbitrary key sets. For a collection Σ of
key sets let |Σ| denote the total number of attribute occurrences in elements
of Σ.

Corollary 16. The implication problem of unary key sets by arbitrary key
sets is decidable in time O(|Σ| × |ϕ|) in the input Σ ∪ {ϕ}.

10.2. A finite axiomatization

Our next result establishes a finite axiomatization for the implication of
unary by arbitrary key sets that consists of the Refinement and Upward
Closure rules. As this fragment is decidable in time quadratic in the input,
and the general case is coNP -complete, the Composition rule is the source
of likely intractability.

Corollary 17. The implication problem of unary key sets by arbitrary key
sets has a sound and complete axiomatization in Refinement and Upward
Closure.

Proof. Let Σ = {X1, . . . ,Xn} be a set of key sets, and let ϕ = {{A1}, . . . , {Ak}}
be a unary key set over relation schema R. If ϕ can be inferred from Σ by
a sequence of applications of the Refinement and Upward Closure rules, the
soundness of these rules ensures that ϕ is also implied by Σ.

For completeness we assume that ϕ cannot be inferred from Σ by means of
applications using the Refinement and Upward Closure rules. Hence,

⋃
Xi 6⊆

X holds for all i = 1, . . . , n. Theorem 15 shows that Σ does not imply ϕ.
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10.3. Existence and computation of Armstrong relations

Armstrong models relative to unary consequences are also easy to obtain.
It merely suffices to take a disjoint union of all of the two tuple relations
mentioned in the proof of Theorem 15.

Corollary 18. The implication problem of unary key sets by arbitrary key
sets has Armstrong relations.

While the existence of perfect models is easy to come by the disjoint
union construction, an actual generation of Armstrong relations by this con-
struction is not efficient. Smaller Armstrong relations can be constructed as
follows. Theorem 15 shows that the implication problem of unary key sets
X by a collection Σ = {X1, . . . ,Xn} of arbitrary key sets only depends on
the attributes contained in each given key set of Σ, and not on how they are
grouped as sets in a key set. We thus identify, without loss of generality, X
with

⋃
X and each Xi with

⋃
Xi.

The idea is then to compute so-called anti-keys, which are the maximal
subsets of the underlying relation schema which are key sets not implied by
Σ. Given the anti-keys, an Armstrong relation for Σ can be generated by
starting with a single complete tuple, and introducing for each anti-key a new
tuple that has matching total values on the attributes of the anti-key and
unique values on attributes outside the anti-key. This construction ensures
that all non-implied (unary) key sets are violated and all given key sets are
satisfied. The computation of the anti-keys from Σ can be done by taking
the complements of the minimum transversals of the hypergraph formed by
the elements of Σ. A transversal for a given set of attribute subsets Xi is
an attribute subset T such that T ∩ Xi 6= ∅ holds for all i. While many
efficient algorithms exist for the computation of all hypergraph transversals,
it is still an open problem whether there is an algorithm that is polynomial
in the output [5]. We can show that this construction always generates an
Armstrong relation whose number of tuples is at most quadratic in that of
an Armstrong relation that requires a minimum number of tuples.

Corollary 19. Armstrong relations that are at most quadratic in that of a
minimum Armstrong relation can be generated for unary by arbitrary key
sets.

Sketch. One can show first that a given relation is Armstrong for a given set
of key sets if and only if for every anti-key the relation has two tuples which
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have matching values on exactly those attributes that form the anti-key and
for no union over the elements of a key set there is a pair of tuples with
matching values on all attributes in the union. Subsequently, one can show
that the number of tuples in a minimum-sized Armstrong relation is bounded
from below by one half of the square root of 1 plus 8 times the number of
anti-keys, and bounded upwards by the increment of the number of anti-keys.
Consequently, our construction generates an Armstrong relation that is at
most quadratic in a minimum-sized Armstrong relation.

Our construction can also be viewed as a construction of Armstrong re-
lations for certain keys by key sets. Note that [8] constructed Armstrong
relations for sets of possible and certain keys under NOT NULL constraints,
whenever they exist. Our construction here does not require null markers.

Example 20. Consider the set Σ = {X1,X2} with X1 and X2 from Example 2
over the relation schema Ward. Then

⋃
X1 = {room, time, injury} and⋃

X2 = {name, time, injury}. The minimum transversals would be T1 =
{time}, T2 = {injury}, and T3 = {room, name}, and their complements on
Ward are the anti-keys

A1 = {room, name, address, injury},

A2 = {room, name, address, time}, and

A3 = {address, injury, time}.

The following relation is Armstrong for Σ.

room name address injury time
1 Miller 24 Queen St leg fracture Sunday, 16
1 Miller 24 Queen St leg fracture Monday, 19
1 Miller 24 Queen St arm fracture Monday, 19
2 Maier 24 Queen St arm fracture Monday, 19

The relation satisfies X1 and X2, but the relation violates the unary key set
ϕ′ = {{room}, {name}, {address}, {time}}, so ϕ′ is not implied by Σ.

11. Conclusion and Future Work

We took first steps in investigating limits and opportunities for automated
reasoning about key sets in databases. Key sets provide a more general and
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flexible implementation of entity integrity than Codd’s notion of a primary
key. We established a linear-time algorithm for the validation of a given
key set on a given data set, and experimentally demonstrated its runtime
behavior. We showed that the implication problem for general key sets enjoys
a binary axiomatization, is coNP -complete, and lacks Armstrong relations.
The implication problem of unary key sets by arbitrary key sets enjoys a
unary axiomatization, is decidable in quadratic input time, and Armstrong
relations can always be generated using hypergraph transversals such that
the number of tuples is guaranteed to be at most quadratic in the minimum
number of tuples required. Our results provide a foundation for controlling
entity integrity in databases with missing values.
Interesting questions arise in theory and practice. Our coNP -completeness
result calls for fixed-parameter solutions. A characterization for the exis-
tence of Armstrong relations in the general case would be interesting, and
their efficient construction whenever possible. The validation of key sets in
databases is an important practical issue, for which effective index struc-
tures need to be found. The problem of computing all key sets that hold
in a given relation is important for data profiling [1]. Automated reasoning
about foreign key sets is interesting as they generalize referential integrity
[12]. Similar to how functional and inclusion dependencies and independence
atoms interact [3, 9], automated reasoning for functional, multivalued, and
inclusion dependency sets is interesting [6].
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