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ABSTRACT 

The spatial correlations and the temporal contexts are indispensable in Electroencephalogram (EEG)-based 

emotion recognition. However, the learning of complex spatial correlations among several channels is a challenging 

problem. Besides, the temporal contexts learning is beneficial to emphasize the critical EEG frames because the 

subjects only reach the prospective emotion during part of stimuli. Hence, we propose a novel Spatial-Temporal 

Information Learning Network (STILN) to extract the discriminative features by capturing the spatial correlations 

and temporal contexts. Specifically, the generated 2D power topographic maps capture the dependencies among 

electrodes, and they are fed to the CNN-based spatial feature extraction network. Furthermore, Convolutional Block 

Attention Module (CBAM) recalibrates the weights of power topographic maps to emphasize the crucial brain 

regions and frequency bands. Meanwhile, Batch Normalizations (BNs) and Instance Normalizations (INs) are 

appropriately combined to relieve the individual differences. In the temporal contexts learning, we adopt the 

Bidirectional Long Short-Term Memory Network (Bi-LSTM) network to capture the dependencies among the EEG 

frames. To validate the effectiveness of the proposed method, subject-independent experiments are conducted on 

the public DEAP dataset. The proposed method has achieved the outstanding performance, and the accuracies of 

arousal and valence classification have reached 0.6831 and 0.6752 respectively. 

 

Keywords - Emotion recognition, Electroencephalogram (EEG), Spatial correlations, Temporal contexts, Attention 
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1. Introduction 

The research of brain and cognitive science aims to explore the linkage between human psychology and 

brain[1][2]. EEG possesses the advantages of easy acquisition and accurate reflection of emotional state in 

physiological signals [3]. The purpose of the EEG-based emotion recognition is to build harmonious human-

computer interaction and endow the system with the ability to distinguish and comprehend the emotions. Therefore, 

EEG-based emotion recognition becomes an important research direction in cognitive neuroscience and computer 

science. 

Psychologists establish discrete and dimensional models to quantify the emotional state. In the discrete emotion 

model, the emotional states can be divided into variety of discrete basic elements, such as happiness, fear, sadness, 

disgust, etc. [4]. The Valence-arousal plane[5] proposed by J. Russel is an extensively used dimensional emotion 

model which maps emotions into a 2D space, as shown in Fig.1(a). Arousal represents emotional state of calm to 

excitement. Valence refers to positive or negative mental activity. Self-assessment Manikins (SAM) System[6] is 

an effective emotion annotation method and it could enhance the consistency of the ratings among different 

participants. The ratings of each dimension are distributed from 1 to 9. Based on the valence-arousal space and 

SAM System, the emotional state could be more precisely represented.
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Fig.1 Emotion quantitation methods (a) The valence-arousal space (b) The cartoon representation models of the 

SAM system 

The intrinsic attributes of EEG are multichannel, nonlinear, and nonstationary. The spatial correlations capture 

the dependencies among electrodes, and the nonlinear and nonstationary of EEG is reflected in time-domain. 

Therefore, EEG-based feature learning can be summarized as three points: temporal feature learning, spatial 

correlations learning, and multiple domain feature learning. 

A. Temporal Feature Learning 

In recent studies, EEG temporal domain features receive increasing interest from researchers. Badicu et al. [7] 

propose a hierarchical structure based on the long short-term memory network (LSTM), the LSTM layer is utilized 

to model time/feature sequences and to make predictions. Li et al. [8] extract power spectral density (PSD) features 

through time-frequency analysis, and they utilize LSTM to capture the temporal dynamics of emotions. Hwang et 

al. [9] extract EEG differential entropy features and employ LSTM to learn temporal contexts. Undeniably, the 

prospective emotion of the subjects can only be achieved in part of the stimulation process, the learning of the 

temporal contexts is profitable to emphasize the critical EEG frames. Their method verifies the necessity of the 

temporal contexts. However, these studies concentrate on surveying the fluctuation of EEG, but they do not make 

full use of the correlations among the electrodes. 

B. Spatial Correlations Learning 

EEG spatial information provides electrodes-correlated features which is beneficial to discriminate emotions. 

Khosrowabadi et al. [10] propose the feedforward neural network method, and enhanced the connectivity between 

different brain regions. However, the method deficiently captures the correlations between multi-electrode channels. 

Jatupaiboon et al. [11] utilized the support vector machine (SVM) to learn the asymmetric brain activity in different 

emotional states. Bashivan et al. [12] generate spectral images where EEG activities are converted into a series of 

topological structures. Then, the feature extractor is used to robustly learn the spatial correlations of EEG channels. 

Moon et al. [13] transformed the phase locking value connectivity features into the 2D matrix and adopted CNN to 

learn the spatial correlations. These methods prompt the development of EEG-based emotion recognition, but the 

dependence between electrodes has inadequately studied. Moreover, the neuroscience researches also demonstrate 

that human emotion production associate with the frontal lobe of the brain [14], the region that provides more 

contributory information than other regions. However, studies such as[10]-[13] have insufficient ability to 

emphasize information which is beneficial to discriminate emotions from several electrodes or brain regions. 

C. Multiple Domain Feature Learning 

The aforementioned methods commonly perform contexts learning only in the temporal domain, or only spatial 

correlations learning is integrated into the emotion recognition model. The fusion of spatial-temporal features 

ensures that more EEG features are extracted, so many researchers focus on the spatial-temporal fusion strategies. 

Guo et al. [15] fed the correlation coefficient matrix and synchronous likelihood matrix to the feature fusion 

framework of the emotional network and the inception network is adopted to fuse the latent features. Liu et al. [16] 

proposed a 3D convolution attention neural network composed of spatial-temporal feature extraction module and 



channel attention weight learning module, and the internal spatial correlations of multi-channel EEG signals during 

continuous period time are extracted. Wang et al. [17] propose the spatial-temporal feature fusion network to extract 

classification features and integrate feature complementary relationships. The multi-layer perceptron (MLP) is 

applied to learn and extract temporal features, and spatial-temporal feature fusion by Bi-LSTM. Although the 

spatial-temporal fusion strategies [15]-[17] adopt abundant information to improve the performance, it is inadequate 

learning for temporal contexts which is also discriminative to the emotional states. 

As aforementioned, the following two issues can be identified: 1) The learning of complex spatial correlations 

among the electrodes have been inadequately studied, the essential electrodes and brain regions are necessary to be 

emphasized. 2) The EEG temporal contexts learning is effective way to capture the dependencies among the EEG 

frames and discriminate the emotions. Thus, we propose a spatial-temporal information learning network to extract 

discriminative features required for emotion recognition by capturing spatial correlations and temporal contexts 

robustly. The STILN model encompasses the following two elements: 

(1) Spatial Correlations Learning 

We use the frequency bands characteristics of windows in EEG and the position of electrodes to generate the 

2D power topographic maps of PSD features[17]. Different channels or different spaces of the feature maps 

contribute variously to the classification accuracy, and are not fully investigated. In the STILN model, CBAM 

recalibrates the weights of channels and space in the power topographic maps, the crucial brain regions and 

frequency bands are emphasized, and that is one of the differences in our works as compared with other models. 

BNs and INs are exploited to preserve the underlying features of EEG signal while mitigating the individual 

differences. The spatial correlations of the EEG are learned by the extraction network and the fusion network, and 

it greatly enhances the accuracy of emotion recognition. 

(2) Temporal Contexts Learning 

We adopt a more robustly temporal feature learning methods, the temporal contexts learning, rather than the 

spatial-temporal fusion strategy. Hence, Bi-LSTM is applied to bidirectional learning the temporal contexts of 

different EEG windows, and it captures the essential EEG frames. Then, the features of temporal and the down-

sampled spatial features are spliced to complete spatial-temporal information learning. In our methods, the EEG 

spatial correlations are effectively captured, while the temporal contexts are also learned. 

The remainder of the paper is organized as follows. In section II, we describe the details of the DEAP database. 

In section III, we specify the details of the STILN for emotion recognition. In section IV, we conduct extensive 

experiments to validate the effectiveness of STILN. In section V, we discuss the performance of STILN, summarize 

the advantages and limitations of STILN, and compare the performance of STILN with related works. Finally, we 

conclude this work in section VI. 

 

2. Dataset and Feature Extraction 

2.1. Dataset 

The effectiveness of STILN is examine on publicly accessible datasets, specifically DEAP for emotion analysis 

using physiological signals. DEAP is the multimodal emotion classification dataset consisting of EEG and 

peripheral physiological signals. The multi-channel neurophysiological signals of 32 healthy subjects are collected 

and recorded according to the 10-20 international standard of 32 leads (Fig.2). A selection of 40 1-minute-long 

music videos is applied to stimulate emotion. These videos are placed in 40 tracks. EEG and peripheral signals are 

recorded simultaneously when subjects watch a 1-minute-long music video. Trials recorded 63 seconds of EEG data 

from 32 electrodes at a sampling rate of 512 Hz (baseline 3 seconds, 60 seconds signal during stimulation). Subjects' 

emotional labels are subjectively assessed by a self-assessment model with valence and arousal dimensions. 

2.2. EEG Preprocessing and Feature Extraction 

The raw EEG is preprocessed to remove noise and improve the signal-to-noise ratio (SNR). The 32-channel 

raw signals are resampled at the sampling rate of 128 Hz, and band-pass-filtered in the range of 1-45 Hz to remove 



EMG artifact. The independent components analysis (ICA) is conducted on the EEG data to eliminate ocular 

artifacts. The DEAP dataset contains 32 × 40 (subjects × trials = 1280 samples, and the amount of data are far from 

enough data for deep learning network training. Therefore, a 6-second window (overlapping 3-second) is used to 

divide the data of each trail into several segments to increase sample sizes. In addition, arousal and valence are 

divided into two levels, defined as high/low arousal and high/low valence, respectively. Score higher than 5 is high 

grade, and score lower than 5 is low grade. Thereinto, we assume that when the arousal or valence score is 5, its 

emotional state cannot determine, and eliminate it. Finally, 17,252 samples for arousal classification and 17,347 

samples for valence classification are obtained. Thus, the problem of emotion recognition is represented as two 

binary classification problems of arousal and valence. 

The PSD features of EEG are extracted for spatial feature learning. For each 6S-long EEG segment, PSD 

features are extracted in five frequency bands: Delta-band (1-4 Hz), theta-band (4-8 Hz), alpha-band (8-12 Hz), 

beta-band (12-20 Hz), and gamma-band (20-45 Hz). The Cartesian coordinates of 32-channel are obtained by the 

EEGLAB toolbox[15] (As shown in Fig.2), so that the power topography of the corresponding frequency bands can 

be obtained from the generated Cartesian coordinates. Electrode channels are composed into the 9×9 2D space 

matrices according to Cartesian coordinates, and the obtained sparse matrices is processed by biharmonic spline 

interpolation. To ensure learning enough edge features, the edge region of power topographic maps is zero-filled, 

and the 2D spatial matrices is mapped to 32×32 size. We take five different frequency bands as the channels of the 

power topographic maps. The generated power topographic maps of frequency bands are shown in Fig.3. 
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Fig.2 The cartesian coordinates of 32 electrodes based on 10–20 system. 
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Fig.3 The generated power topographic maps from EEG. 

 

3. The Novel STILN for EEG-based Emotion Recognition 

3.1. Overview of STILN 

EEG among different subjects vary significantly. For sake of maximize the accuracy for emotion recognition, 

researchers usually set feature extractors for specific channels or perform recalibrated operations on channels[19]-

[21]. Based on this, the proposed STILN model is the method for feature learning, and introduces spatial-temporal 

learning and attention mechanism into the network. Firstly, the EEG spectrum fragments are combined with the 

electrode position to form the power topographic maps. Then the training samples are sent to STILN for training, 



and the ADAM optimizer updates the corresponding network parameters. Finally, the trained model is utilized to 

classify the pre-processed test samples. The configuration of the STILN model is shown in Fig.4, and the parameters 

are shown in Table 1. 
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Fig.4 Overview of STILN. Note: Sharing weights* denotes that six EEG 1-second segments share weights during 

spatial feature extraction network training.  denotes that the multiplication of the tensors;  denotes that the 

addition of the tensors; CONCAT denotes that splicing of the tensor; FC denotes that the full connection layer; 

Detailed structure of channel attention module (CAM) and spatial attention module (SAM) show in fig.5; Tensors 

of input Bi-LSTM and CONV6 are spliced according to different dimensions. 

Table 1 Parameters of STILN 

Layer Operation 
Kernel 

size/stride 

Activation 

function 

CBAM 
Channel and 
spatial-wise 

attention 
7×7/1 ReLU 

CONV1 Convolutional(2D) 5×5/1 ReLU 

CONV2 Convolutional(2D) 5×5/1 ReLU 

CONV3 Convolutional(2D) 3×3/1 ReLU 

CONV4 Convolutional(2D) 3×3/1 ReLU 

CONV5 Convolutional(2D) 3×3/1 ReLU 

SE 
Channel-wise 

attention 
1×1/1 

ReLU/ 
Sigmoid 

Bi-LSTM LSTM - ReLU 

CONV6 Convolutional(1D) 1×1/48 ReLU 

FC Linear - ReLU 

Output Linear - Sigmoid 

3.2. Spatial Feature Extraction Network 

According to the contribution of different electrodes and frequency bands to the classification, the 



corresponding weights are recalibrated by CBAM[22] to improve the classification accuracy. After the power 

topographic maps input the CNN-based spatial feature extraction network, CBAM continuously calculates the 

feature attention maps along the channel and spatial. Finally, the recalibrated power topographic maps are obtained 

by multiplying the elements of the attention maps and the input power maps. We assume that the power topographic 

maps of the input feature extraction network is 𝐹 ∈ ℝ𝐻×𝑊×𝐶, H and W represent the size of the feature map, and C 

represents the number of feature map channels. Therefore, the recalibrating operation process of CBAM can be 

expressed as follows: 

𝐹𝐶𝐴𝑀 = 𝑀𝐶(𝐹)⨂𝐹 

𝐹𝐶𝐵𝐴𝑀 = 𝑀𝑆(𝐹𝐶𝐴𝑀)⨂𝐹𝐶𝐴𝑀 

where, 𝐹𝐶𝐴𝑀 represents the output of channel weights recalibrating module in CBAM, 𝐹𝐶𝐴𝑀 ∈ ℝ𝐻×𝑊×𝐶, 𝑀𝐶 (·) 

represents the operation of channel weights recalibrating module. 𝐹𝐶𝐵𝐴𝑀 represents the output weights recalibrated 

by spatial module, that is, the final output of CBAM. 𝐹𝐶𝐵𝐴𝑀 ∈ ℝ𝐻×𝑊×𝐶 . 𝑀𝑆(·) represents the operation of the 

spatial weight recalibrating module. ⨂ represents the element-level multiplication of feature map channels. Of these, 

𝑀𝐶 (·) and 𝑀𝐶 (·) are calculated as follows: 

𝑀𝐶 (𝐹) = 𝜎(𝑀𝐿𝑃[𝐺𝐴𝑣𝑔(𝐹)] + 𝑀𝐿𝑃[𝐺𝑀𝑎𝑥(𝐹)]) 

𝑀𝑆(𝐹) = 𝜎(𝐺𝐶𝑂𝑁𝑉(𝑐𝑜𝑛𝑐𝑎𝑡([𝐺𝐴𝑣𝑔(𝐹)], [𝐺𝑀𝑎𝑥(𝐹)]))) 

In the above formula, 𝜎(·) denotes the sigmoid function, MLP denotes the operation of multi-layer perceptron, 

𝐺𝐴𝑣𝑔 denotes average pooling operation, 𝐺𝑀𝑎𝑥 denotes the operation of maximum pooling, 𝐺𝐶𝑂𝑁𝑉 denotes the 

convolution operation with convolution kernel of 7×7, concat denotes the splicing operation of tensors. 
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Fig.5 CBAM structure. (a) is channel attention module; (b) is spatial attention module. Note: MaxPool and AvgPool 

indicates maximum pooling operation and average pooling operation respectively; MLP denotes that Multilayer 

Perceptron; Conv denotes the 2D convolution, and kernel size is 7×7. 

One of the difficulties of emotion recognition is solving the inconsistency of feature distribution caused by 

individual differences in EEG. Instance normalizations (INs) are confirmed to be successful in transfer learning 

tasks[23]. In EEG emotion recognition, INs independently normalize feature channels to alleviate the differences 

caused by various EEG between individuals. In parallel, Batch Normalizations (BNs) significantly improve the 

performance of classification tasks, and the combination of INs and BNs may achieve satisfactory results[24]. 

Therefore, we design EEG feature extraction network combining INs and BNs. The specific network structure refers 

to Fig.4 and Table 1. The output of the feature extraction network is 𝐹𝑆𝐹𝐸 , 𝐹𝑆𝐹𝐸 ∈ ℝ𝐻×𝑊×𝐶. 

The deep features of EEG have outstanding effects on emotion recognition. Inspired by the residual network 

model structure[25], a feature fusion block suitable for EEG is proposed, as shown in Fig. 4. The input of feature 

maps and the output of convolution are addition performed at the element level, and the output of the feature fusion 



block is activated by the ReLU function. The formula operations for this layer are expressed as follows: 

𝐹𝑅𝑒𝑠 = 𝜌(𝐹𝑆𝐹𝐸 ⨁[𝐶𝑂𝑁𝑉2𝐷(𝐹𝑆𝐹𝐸 )]) 

where, 𝐹𝑅𝑒𝑠 represents the outputs of deep feature fusion block, 𝐹𝑅𝑒𝑠 ∈ ℝ𝐻×𝑊×𝐶 . 𝜎(·) is the ReLU activation 

function. CONV2D is convolution operation, where the convolution kernel size is 3×3 and the number of 

convolution kernels is 64. ⨁ represents the addition operation of the corresponding channels. 

We propose a strategy of twice recalibrating the feature map channel weights by the squeeze and excitation 

(SE) module [26]. SE module recalibrates the weights of features in different channels through adaptive calibration 

of the interdependence of EEG. The adopted SE module includes two main operation operations: squeeze and 

excitation. The output of SE module is the proportional operation between the excitation scalar and the input 

network features mapping. Suppose 𝑢𝑐 ∈ ℝ𝐻×𝑊×𝐶  is the feature mapping tensor of 𝐹𝑅𝑒𝑠  outputted by deep 

feature fusion layer, 𝑈 = [𝑢1, 𝑢2, … , 𝑢𝑐]. The operation process of SE module is as follows: 

𝑆𝐶 = 𝐺𝑠𝑞(𝑢𝑐) =
1

𝐻 × 𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 

𝐸 = 𝐺𝑒𝑥(𝑆, 𝑊) = 𝜎(𝑊2𝜌(𝑊1𝑆)) 

𝐹𝑆𝐸
` = 𝐺𝑠𝑐𝑎𝑙𝑒(𝐸, 𝑈) 

where, 𝑆𝐶 denote output of channels in the squeeze operation, S = [𝑆1, 𝑆2, …, 𝑆𝐶], 𝑆 ∈ ℝ𝑐  denote the descriptor 

of C channels in the feature map. 𝐺𝑠𝑞(·) represents the squeeze operation. E represents output of channels in the 

excitation operation, and 𝐺𝑒𝑥(·) represents the excitation operation. 𝑊1 ∈ 𝑅
𝐶

𝑟
×𝐶

 and 𝑊2 ∈ 𝑅𝐶×
𝐶

𝑟 are the weights 

of ReLU activation function 𝜌(·)  and sigmoid function 𝜎(·)  respectively. r is the dimension reduction ratio, 

which is set to 4. 𝐺𝑠𝑐𝑎𝑙𝑒(·) represents the multiplication of channel elements between scalar E and feature map U. 

𝐹𝑆𝐸
` ∈ 𝑅𝐻×𝑊×𝐶 represents output of the feature map after twice recalibrating. 
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Fig.6 The SE Module structure. Note: The pool∗ denotes the global average pooling. 

3.3. Temporal Contexts Learning Network 

LSTM is a type of recurrent neural network (RNN), and remembers long sequences of input data[27]. LSTM 

captures remote dependencies through gate control and storage units, but it only utilizes information from previous 

time steps. Bi-LSTM captures the temporal contexts of the sequence through bidirectional learning[28]. Therefore, 

we utilize Bi-LSTM to learn temporal contexts. 

In the spatial feature extraction network, we input the power topographic maps of 1-second EEG segment in 

trials (each sample is divided into 6 segments) into the network. And in temporal information learning, in order to 

learn the EEG features in temporal contexts, 6-separate spatial feature tensors are connected to obtain EEG time 

series containing spatial features. Assuming that 𝐹𝐶𝐴𝑇 ∈ 𝑅𝐻×𝑊×𝐶 represents the vector after the 6-seconds spatial 

feature map is connected, the operation process of Bi-LSTM is as follows: 

𝐹𝑚𝑢𝑡𝑢𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡[𝐿𝑙𝑒𝑓𝑡(𝐹𝐶𝐴𝑇), 𝐿𝑟𝑖𝑔ℎ𝑡 (𝐹𝐶𝐴𝑇)] 



where, 𝐿(·)  represents the unit operation in Bi-LSTM, 𝐿𝑙𝑒𝑓𝑡(·)  represents the operation in the left direction, 

𝐿𝑟𝑖𝑔ℎ𝑡(·) represents the operation in the right direction, and 𝐹𝑚𝑢𝑡𝑢𝑎𝑙 ∈ ℝ2𝑑×𝑁  represents the spatial features of 

EEG obtained by Bi-LSTM, where d is the number of hidden layers in Bi-LSTM. Finally, the down-sampled spatial 

features are linked with the temporal contexts to complete the co-learning of spatial-temporal information. The 

obtained spatial-temporal features are fed into the fully connected layer, and applied to arousal or valence prediction 

after the sigmoid function operation. 

 

4. Experiments 

4.1 Experimental Setups 

The experiment is performed on the public DEAP dataset. The leave-one-out cross-validation (LOOCV) 

method is used to evaluate the classification performance of the STILN model. Specifically, the samples of one 

subject as the test dataset and the samples of the other 31 subjects as the training dataset, until samples of all 32 

subjects are set to the test set once. The arousal and valence SAM scores 1-4 are divided into low grades and 6-9 

are divided into high grades. The arousal samples are divided into 7144 low arousal samples and 10108 high arousal 

samples. The valence samples are divided into 6973 low valence samples and 10374 high valence samples. as shown 

in Table 2. 

Table 2 The data labeling scheme and number of samples per emotion class 

task status 
Emotion 

class 

Label 

scores 

Data 

numbers 

2-class 

classification 

Arousal 
LA A<5 7144 

HA A>5 10108 

Valence 
LV V<5 6973 

HV V>5 10374 

Note: LA denotes low arousal; HA denotes high arousal; LV denotes low valence; HV denotes high valence. 

Configuration parameters are required for running the STILN model. ADAM is selected as the parameter 

optimizer. The learning rate is set to 0.0005, the batch size is set to 256. The cross-entropy loss selected as loss 

function, and the emotional labels of the samples are processed by one-hot coding. All networks in this work are 

implemented in Pytorch framework with NVIDIA GeForce RTX 2060 SUPER GPU. In addition, the accuracy (𝑃𝑎𝑐𝑐) 

and F1 score (𝑃𝐹1) are set for model evaluation, the distribution of test results is reflected by standard deviation. 

4.2. Experimental Results 

Table 3 Average accuracy and F1 scores of subject-independent EEG-based experiments on the DEAP database 

Strategies 
Arousal Valence 

𝑃𝑎𝑐𝑐 𝑃𝐹1 𝑃𝑎𝑐𝑐 𝑃𝐹1 

TOP10 

Subjects 

0.8132 

(0.0602) 

0.7744 

(0.0776) 

0.7747 

(0.0331) 

0.7776 

(0.0301) 

ALL 

Subjects 

0.6831 

(0.1124) 

0.6826 

(0.0838) 

0.6752 

(0.0873) 

0.68 

(0.0969) 

Note: Standard deviation in the brackets. 

The subject-independent experimental classification results of arousal and valence level are shown in Table 3. 

The arousal and valence accuracy of the top ten subjects were 0.8132 and 0.7747, and the F1 scores are 0.7744 and 

0.7776, respectively. The arousal and valence accuracy of all 32 subjects are 0.6831 and 0.6752, respectively, and 

the F1 scores are 0.6826 and 0.68, respectively. In addition, Fig.7 shows the classification accuracy and F1 score 

histogram of 32 subjects. Experimental results indicate that the proposed EEG feature extraction network achieves 

outstanding performance in subject-independent arousal and valence classification. 



 

(a)                                           (b) 

Fig7. The classification accuracy and F1 scores histogram of subjects. (a) denotes accuracy histogram of each 

subject, (b) denotes F1 score histogram of each subject. Note: Abscissa shows the subject number. 

 

Since the parameters of the deep learning model have significant impact on its performance, we study the 

different model settings and select the parameters with the best performance. In this work, we hold that the number 

of hidden layers of Bi-LSTM and the learning rate of the optimizer have great effect on the performance. Therefore, 

the two parameters for different values are set to be tested. For the hidden layer of Bi-LSTM, five comparison 

parameters of 16,32,64,128,256 are set, and three parameters of 0.0001,0.0005 and 0.001 are set for the comparison 

of learning rate. In the parameter comparison experiment, except for the parameters to be compared, other network 

configurations are the same. 

The effects of different numbers of hidden layers and different learning rates on the performance of accuracy 

are shown in Table 4 and 5, respectively. According to the results of classification in Table 4, when the number of 

hidden layers is 64, STILN achieves the highest average performance of accuracy (arousal is 0.6831, valence is 

0.6752) and F1 score (arousal is 0.6826, valence is 0.68) in arousal and valence classification. According to the box 

plot of the accuracy and F1 score of each subject under different parameters in Fig.8, it can be analyzed that the 

performance index distribution of Bi-LSTM is more concentrate in the 64-layer hidden layer state, and the proposed 

emotion recognition network is also more robust. When the number of hidden layers is less, the features required 

for classification cannot be fully learned in the model, but the number of hidden layers is large, the model appears 

overfitting. According to Table 5 and Fig.9, the learning rate is set to 0.0005, the proposed model achieves the best 

performance, results indicate that too long or too short learning steps cannot effectively learn the necessary EEG 

features. 

 

Table 4 Average accuracy and F1 score in EEG-based emotion recognition for different hidden layers of Bi-LSTM 

hidden 

layers 

Arousal Valence 

𝑃𝑎𝑐𝑐 𝑃𝐹1 𝑃𝑎𝑐𝑐 𝑃𝐹1 

16 
0.6631 

(0.1247) 

0.6602 

(0.0977) 

0.6698 

(0.0974) 

0.6682 

(0.0958) 

32 
0.6496 

(0.1293) 

0.6491 

(0.0926) 

0.6599 

(0.1065) 

0.6606 

(0.1051) 

64 
0.6831 

(0.1124) 

0.6826 

(0.0838) 

0.6752 

(0.0873) 

0.68 

(0.0969) 

128 
0.661 

(0.143) 

0.6576 

(0.1092) 

0.6672 

(0.0989) 

0.6542 

(0.1128) 

256 
0.6696 

(0.1292) 

0.6621 

(0.1107) 

0.6663 

(0.1101) 

0.6612 

(0.1105) 

Note: Standard deviation in the brackets. 
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Table 5 Average accuracy and F1 score in EEG-based emotion recognition of the model with different learning 

rates 

Learning 

Rate 

Arousal Valence 

𝑃𝑎𝑐𝑐 𝑃𝐹1 𝑃𝑎𝑐𝑐 𝑃𝐹1 

0.0001 
0.6618 

(0.1168) 

0.6545 

(0.1046) 

0.6615 

(0.1046) 

0.6621 

(0.1043) 

0.0005 
0.6831 

(0.1124) 

0.6826 

(0.0838) 

0.6752 

(0.0873) 

0.68 

(0.0969) 

0.001 
0.6476 

(0.1451) 

0.6578 

(0.1009) 

0.6508 

(0.103) 

0.6581 

(0.1004) 

Note: Standard deviation in the brackets. 

 

(a)                                           (b) 

Fig.8 Box-plot of accuracy and F1 scores for 32 subjects in different hidden layers. (a) denotes Box-plot of accuracy, 

(b) denotes Box-plot of F1 scores. Note: The number at the bottom of the horizontal coordinate shows the hidden 

layers number. 

 

(a)                                           (b) 

Fig.9 Box-plot of accuracy and F1 scores for 32 subjects in different learning rate. (a) denotes Box-plot of accuracy, 

and (b) denotes Box-plot of F1 scores. Note: The number at the bottom of the horizontal coordinate shows the 

learning rate number. 

 

In this work, we compare STILN with classical deep neural networks, and test the improvement of performance 

for the proposed mothed compare to the common methods. Table 6 shows the performance of classification for 

different methods. Compared with CNN, LSTM, and DBN, the performance of accuracy for arousal in our proposed 

method is improved by 7.59 %, 9.92 %, and 8.49 % respectively, and the performance of accuracy for valence is 

improved by 6.09 %, 8.87 %, and 11.54 % respectively. Besides, we also reimplement the latest spatial and temporal 

EEG encoding networks, CNN-LSTM and DenseNet. Compared with these two networks, our method has 6.21 % 

and 4.94 % improvement in the accuracy of arousal, and 3.66 % and 2.95 % improvement in the accuracy of valence. 

Collectively, STILN achieves more stable performance on the DEAP standard dataset. The comparison results verify 

the effectiveness of the proposed STILN model in emotion recognition. 
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Table 6 The results of deep networks on the DEAP database 

Methods 
Arousal Valence 

𝑃𝑎𝑐𝑐 𝑃𝐹1 𝑃𝑎𝑐𝑐 𝑃𝐹1 

CNN[11] 
0.6072 

(0.101) 

0.5888 

(0.1083) 

0.6143 

(0.086) 

0.6068 

(0.0808) 

LSTM[29] 
0.5839 

(0.0904) 

0.5261 

(0.0985) 

0.5865 

(0.0816) 

0.5331 

(0.089) 

DBN[30] 
0.5982 

(0.0872) 

0.5749 

(0.0823) 

0.607 

(0.0893) 

0.5972 

(0.0841) 

CNN-LSTM 

[31] 

0.621 

(0.0963) 

0.6047 

(0.0999) 

0.6386 

(0.0855) 

0.6136 

(0.0737) 

DenseNet 

[32] 

0.6337 

(0.0705) 

0.615 

(0.0747) 

0.6457 

(0.0748) 

0.6258 

(0.0706) 

STILN 

(ours) 

0.6831 

(0.1124) 

0.6826 

(0.0838) 

0.6752 

(0.0873) 

0.68 

(0.0969) 

Note: Standard deviation in the brackets. 

4.3. Ablation Experiment 

To evaluate the function of proposed modules in the model, we perform ablation experiments. Ablation 

experiment steps for modules are based on the LOOCV experiments design. Fig.10(a) shows the STILN principal 

network structure with the complete module, named NET0. To verify the performance of the CBAM attention 

mechanism, the NET1 structure shown in Fig.10(b) is designed. INs of the CNN-based spatial feature learning 

module are replaced by BNs to verify the validity, and the designed network structure NET2 is shown in Fig.10(c). 

In Fig.(d), NET3 is designed to verify the deep feature fusion, using a layer of 2D convolution to replace the 

proposed fusion structure. The verification of performance for the SE module is implemented by the NET4 

architecture, as shown in Fig.10(e). Bi-LSTM for temporal contexts features is bidirectional temporal information 

learning. To verify the performance of Bi-LSTM, we replace Bi-LSTM with LSTM in NET6. The detailed structure 

is shown in Fig.10(f). 

Table 7 shows the performance of arousal and valence for ablation experiment. The complete STILN (NET0) 

improves the accuracy of arousal by 0.74 % -3.49 % over other structures and F1 scores by 1.87 % -3.48 %. In the 

classification of valence, compared with other ablation experimental structures, the accuracy is increase by 0.56 % 

-2.99 % in NET0 and its F1 score increase by 1.52 % -4.44 %. Compared with other variant structures, the 

performance of complete STILN has been significantly improved. Ablation experiment verifies the important role 

of CBAM attention mechanism, INs, deep fusion structure, SE module, and Bi-LSTM in the proposed EEG emotion 

classification model. 

Table 7 The results of different network configurations on the DEAP datasets in ablation experiments 

NET 
Arousal Valence 

𝑃𝑎𝑐𝑐 𝑃𝐹1 𝑃𝑎𝑐𝑐 𝑃𝐹1 

NET0 
0.6831 

(0.1124) 

0.6826 

(0.0838) 

0.6752 

(0.0873) 

0.68 

(0.0969) 

NET1 
0.654 

(0.1056) 

0.6477 

(0.0963) 

0.6452 

(0.1027) 

0.6355 

(0.1266) 

NET2 
0.6756 

(0.1549) 

0.6638 

(0.1278) 

0.6511 

(0.1115) 

0.6623 

(0.1019) 

NET3 
0.6481 

(0.1427) 

0.651 

(0.118) 

0.6485 

(0.1021) 

0.6579 

(0.0835) 

NET4 
0.6619 

(0.1313) 

0.6478 

(0.1122) 

0.6603 

(0.1041) 

0.6647 

(0.1021) 

NET5 
0.6677 

(0.1213) 

0.6575 

(0.1117) 

0.6695 

(0.1005) 

0.6499 

(0.1006) 

Note: Standard deviation in the brackets. 
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Fig.10 The network structures for ablation experiment. (a): NET0; (b): NET1; (c): NET2; (d): NET3; (e): NET4; 

(f): NET5. Note: The network parameters are shown in the table1. LSTM uses the same hidden layer as Bi-LSTM. 

 

5 Discussion 

5.1. Advantages of STILN 

In our proposed model, the power topographic maps about electrodes and different frequency bands are 

constructed, and it focus on the links between different electrodes and adjacent frequency bands. The CBAM and 

SE channel attention mechanism are utilized to realize channel and spatial recalibrated processing with different 

contributions to classification. The individual difference of EEG between subjects is the obstruction of emotion 

recognition. INs effectively reduce the difference between individuals. After completing spatial feature extraction, 

the temporal contexts are learned by Bi-LSTM while the critical EEG frames are emphasized. Then, the down-

sampled spatial features are linked with the temporal contexts to complete the co-learning of spatial-temporal 

information. The accuracy of emotion recognition is improved. 

The proposed STILN model achieves higher classification performance for emotion recognition 

(arousal:0.6831, valence:0.6752). As shown in Table 3, the standard deviation of the average classification accuracy 

in our proposed model is smaller, results indicate that the EEG features of individual differences are concerned in 

the method. In Table 4 and Table 5, we analyze affected with different numbers of hidden layers of Bi-LSTM and 

the learning rate of the training network on the performance of classification. When the number of hidden layers is 

set to 64 and the learning rate is set to 0.0005, the proposed model achieved optimal performance. We also contrast 



the performance of proposed model with the classic networks of classification for emotion recognition. The results 

in Table 6 shows that the classification performance of our model is significantly improved compared with classical 

methods. Finally, we conduct ablation experiment on the performance of the modules. The results prove that 

proposed modules in the model possess an irreplaceable role in emotion recognition. Taken together, the STILN 

model shows outstanding performance in related research, and the proposed model is effective for emotion 

recognition. 

5.2. Comparison with Related Research 

We compare the performance of STILN with the research schemes in the past four years on the DEAP dataset. 

Table 8 lists the performance of classification for comparison schemes. Except for references[33] and [38] using the 

K-fold cross-validation method, the remaining research uses LOOCV. Comparing results, the proposed STILN 

possesses higher accuracy of arousal and valence than the performance of networks in [33]-[40] (except[38]). Our 

method is more accurate in classification of arousal, but the performance of classification for valence is not as better 

as [38]. Through analysis, [38] adopts K-fold cross-validation, and the EEG of the same subjects is distributed in 

the training set and the testing set, and resulting in higher accuracy for test. Furthermore, we find that the methods 

using PSD features of EEG superior to the methods applying other EEG features (differential entropy, wavelet 

entropy, etc.). Overall, our STILN model achieves relatively outstanding performance of classification. 

In parallel, the limitation of STILN is also worth exploring. As in all deep-learning methods, the STILN model 

requires a significant amount of data for training. In this study, the usage of a 6-second sliding overlap window is 

to obtain a larger data (17,252 samples of classification for arousal, and 17,347 samples of classification for valence). 

However, it still does not reach the size of samples for training our deep network, so the performance of STILN is 

restricted. Moreover, the analysis of standard deviation for accuracy and F1 score demonstrates that the results of 

classification are unevenly distributed. The reason maybe is that the network is insensitive to EEG with the extreme 

individual differences. 

Table 8 Performance comparison with related works 

Related researches Features Classifier Validation method Accuracy (𝑃𝑎𝑐𝑐) 

Chen et al. 

(2019)[33] 
PSD GRU 

10-folds cross-

validation 

Arousal:0.6790 

Valence:0.6650 

Zhong et al. 

(2020)[34] 
DE Features SE_CNN 

Leave-one-out Cross-

Validation 

Arousal:0.6623 

Valence:0.6850 

Yin et al. 

(2020)[35] 
Frequency Spectral LSSVM 

Leave-one-out Cross-

Validation 

Arousal:0.6510 

Valence:0.6797 

Zhang et al. 

(2020)[36] 

Temporal-Frequency 

Spectral 
SSFE 

Leave-one-out Cross-

Validation 

Arousal:0.6521 

Valence:0.6635 

Liang et al. 

(2021)[37] 

Temporal Domain 

Features 
EEGFuseNet 

Leave-one-out Cross-

Validation 

Arousal:0.5855 

Valence:0.5644 

Yang et al. 

(2022)[38] 

Sample entropy and 

Wavelet entropy 
SVM 

K-folds cross-

validation 

Arousal:0.6420 

Valence:0.7010 

He et al. 

(2022)[39] 

Temporal Domain 

Features 
TSNs+ADDA 

Leave-one-out Cross-

Validation 

Arousal:0.6433 

Valence:0.6325 

Wang et al. 

(2022)[40] 
PSD HSLT 

Leave-one-out Cross-

Validation 

Arousal:0.6575 

Valence:0.6663 

The proposed 

STILN(ours) 
PSD STILN 

Leave-one-out Cross-

Validation 

Arousal:0.6831 

Valence:0.6752 

Note: DE denotes Differential entropy. GRU denotes Gated Recurrent Neural Network; SE_CNN denotes 

Convolutional Neural Network for adding channel attention; LSSVM denotes Least Squares Support Vector 

Machine; SSFE denotes the shared-subspace feature elimination approach; EEGFuseNet denotes a practical hybrid 

unsupervised deep convolutional recurrent generative adversarial network; SVM denotes Support Vector Machine; 



TSNs+ADDA denotes the feasibility of combining temporal convolutional networks (TCNs) and adversarial 

discriminative domain adaptation (ADDA) algorithms; HSLT denotes Hierarchical Spatial Learning Transformer. 

 

6. Conclusion 

In this work, we propose a spatial-temporal information learning network for EEG-based emotion recognition. 

The power topographic maps generated according to PSD features are adopted to evaluate the STILN performance. 

The EEG spatial correlations and temporal contexts are effectively learned and fused, and it greatly enhances the 

accuracy of emotion recognition. The STILN has achieve anticipated results in subject-independent experiment with 

the accuracy of arousal and valence 0.6831/0.6752 in the DEAP database respectively. Experimental results indicate 

that the performance of STILN is outstanding than the previous methods. In addition, we also analysis the limitation 

of STILN. In the future work, the STILN model performs performance verification on more benchmark datasets. 

Further, we will proceed to settle the problem of larger individual differences in EEG, and explore multimodal data 

for cross-subject emotion recognition. 
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