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STABILITY RESULTS OF LOCALLY COUPLED WAVE EQUATIONS WITH LOCAL

KELVIN-VOIGT DAMPING: CASES WHEN THE SUPPORTS OF DAMPING AND

COUPLING COEFFICIENTS ARE DISJOINT

MOHAMMAD AKIL1, HAIDAR BADAWI1, AND SERGE NICAISE1

Abstract. In this paper, we study the direct/indirect stability of locally coupled wave equations with local
Kelvin-Voigt dampings/damping and by assuming that the supports of the dampings and the coupling coeffi-
cients are disjoint. First, we prove the well-posedness, strong stability, and polynomial stability for some one
dimensional coupled systems. Moreover, under some geometric control condition, we prove the well-posedness
and strong stability in the multi-dimensional case.
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1. Introduction

The direct and indirect stability of locally coupled wave equations with local damping arouses many interests in
recent years. The study of coupled systems is also motivated by several physical considerations like Timoshenko
and Bresse systems (see for instance [10, 6, 3, 2, 1, 15, 14]). The exponential or polynomial stability of the wave
equation with a local Kelvin-Voigt damping is considered in [20, 23, 13], for instance. On the other hand, the
direct and indirect stability of locally and coupled wave equations with local viscous dampings are analyzed in
[8, 18, 16]. In this paper, we are interested in locally coupled wave equations with local Kelvin-Voigt dampings.
Before stating our main contributions, let us mention similar results for such systems. In 2019, Hayek et al. in
[17], studied the stabilization of a multi-dimensional system of weakly coupled wave equations with one or two
locally Kelvin-Voigt damping and non-smooth coefficient at the interface. They established different stability

1 Université Polytechnique Hauts-de-France, CERAMATHS/DEMAV, Valenciennes, France
E-mail address: Mohammad.Akil@uphf.fr, Haidar.Badawi@uphf.fr, Serge.Nicaise@uphf.fr.
Key words and phrases. Coupled wave equations, Kelvin-Voigt damping, strong stability, polynomial stability .

1

http://arxiv.org/abs/2203.01632v1


results. In 2021, Akil et al. in [24], studied the stability of an elastic/viscoelastic transmission problem of
locally coupled waves with non-smooth coefficients, by considering:






utt −
(
aux + b0χ(α1,α3)utx

)
x
+ c0χ(α2,α4)yt = 0, in (0, L)× (0,∞),

ytt − yxx − c0χ(α2,α4)ut = 0, in (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, in (0,∞),

where a, b0, L > 0, c0 6= 0, and 0 < α1 < α2 < α3 < α4 < L. They established a polynomial energy decay
rate of type t−1. In the same year, Akil et al. in [5], studied the stability of a singular local interaction
elastic/viscoelastic coupled wave equations with time delay, by considering:





utt −
[
aux + χ(0,β)(κ1utx + κ2utx(t− τ))

]
x
+ c0χ(α,γ)yt = 0, in (0, L)× (0,∞),

ytt − yxx − c0χ(α,γ)ut = 0, in (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, in (0,∞),

where a, κ1, L > 0, κ2, c0 6= 0, and 0 < α < β < γ < L. They proved that the energy of their system decays
polynomially in t−1. In 2021, Akil et al. in [4], studied the stability of coupled wave models with locally
memory in a past history framework via non-smooth coefficients on the interface, by considering:





utt −
(
aux + b0χ(0,β)

∫ ∞

0

g(s)ux(t− s)ds

)

x

+ c0χ(α,γ)yt = 0, in (0, L)× (0,∞),

ytt − yxx − c0χ(α,γ)ut = 0, in (0, L)× (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, in (0,∞),

where a, b0, L > 0, c0 6= 0, 0 < α < β < γ < L, and g : [0,∞) 7−→ (0,∞) is the convolution kernel function.
They established an exponential energy decay rate if the two waves have the same speed of propagation. In
case of different speed of propagation, they proved that the energy of their system decays polynomially with
rate t−1. In the same year, Akil et al. in [7], studied the stability of a multi-dimensional elastic/viscoelastic
transmission problem with Kelvin-Voigt damping and non-smooth coefficient at the interface, they established
some polynomial stability results under some geometric control condition. In those previous literature, the
authors deal with the locally coupled wave equations with local damping and by assuming that there is an
intersection between the damping and coupling regions. The aim of this paper is to study the direct/indirect
stability of locally coupled wave equations with Kelvin-Voigt dampings/damping localized via non-smooth
coefficients/coefficient and by assuming that the supports of the dampings and coupling coefficients are disjoint.
In the first part of this paper, we consider the following one dimensional coupled system:

utt − (aux + butx)x + cyt = 0, (x, t) ∈ (0, L)× (0,∞),(1.1)

ytt − (yx + dytx)x − cut = 0, (x, t) ∈ (0, L)× (0,∞),(1.2)

with fully Dirichlet boundary conditions,

(1.3) u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t ∈ (0,∞),

and the following initial conditions

(1.4) u(·, 0) = u0(·), ut(·, 0) = u1(·), y(·, 0) = y0(·) and yt(·, 0) = y1(·), x ∈ (0, L).

In this part, for all b0, d0 > 0 and c0 6= 0, we treat the following three cases:

Case 1 (See Figure 1):

(C1)

{
b(x) = b0χ(b1,b2)(x), c(x) = c0χ(c1,c2)(x), d(x) = d0χ(d1,d2)(x),

where 0 < b1 < b2 < c1 < c2 < d1 < d2 < L.

Case 2 (See Figure 2):

(C2)

{
b(x) = b0χ(b1,b2)(x), c(x) = c0χ(c1,c2)(x), d(x) = d0χ(d1,d2)(x),

where 0 < b1 < b2 < d1 < d2 < c1 < c2 < L.
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Case 3 (See Figure 3):

(C3)

{
b(x) = b0χ(b1,b2)(x), c(x) = c0χ(c1,c2)(x), d(x) = 0,

where 0 < b1 < b2 < c1 < c2 < L.

While in the second part, we consider the following multi-dimensional coupled system:

b1 b2 c1 c2 d1 d2 L

b0

c0

0

d0

Figure 1. Geometric description of the functions b, c and d in Case 1.

b1 b20 d1 d2 c1 c2 L

b0

d0

c0

Figure 2. Geometric description of the functions b, c and d in Case 2.

0 b1 b2 c1 c2 L

b0

c0

Figure 3. Geometric description of the functions b and c in Case 3.

utt − div(∇u + but) + cyt = 0 in Ω× (0,∞),(1.5)

ytt −∆y − cyt = 0 in Ω× (0,∞),(1.6)

with full Dirichlet boundary condition

(1.7) u = y = 0 on Γ× (0,∞),

and the following initial condition

(1.8) u(·, 0) = u0(·), ut(·, 0) = u1(·), y(·, 0) = y0(·) and yt(·, 0) = y1(·) in Ω,
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where Ω ⊂ Rd, d ≥ 2 is an open and bounded set with boundary Γ of class C2. Here, b, c ∈ L∞(Ω) are such
that b : Ω → R+ is the viscoelastic damping coefficient, c : Ω → R is the coupling function and

(1.9) b(x) ≥ b0 > 0 in ωb ⊂ Ω, c(x) ≥ c0 6= 0 in ωc ⊂ Ω and c(x) = 0 on Ω\ωc

and

(1.10) meas (ωc ∩ Γ) > 0 and ωb ∩ ωc = ∅.

In the first part of this paper, we study the direct and indirect stability of system (1.1)-(1.4) by consider-
ing the three cases (C1), (C2), and (C3). In Subsection 2.1, we prove the well-posedness of our system by using
a semigroup approach. In Subsection 2.2, by using a general criteria of Arendt-Batty, we prove the strong
stability of our system in the absence of the compactness of the resolvent. Finally, in Subsection 2.3, by using
a frequency domain approach combined with a specific multiplier method, we prove that our system decay
polynomially in t−4 or in t−1.

In the second part of this paper, we study the indirect stability of system (1.5)-(1.8). In Subsection 3.1,
we prove the well-posedness of our system by using a semigroup approach. Finally, in Subsection 3.2, under
some geometric control condition, we prove the strong stability of this system.

2. Direct and Indirect Stability in the one dimensional case

In this section, we study the well-posedness, strong stability, and polynomial stability of system (1.1)-(1.4).
The main result of this section are the following three subsections.

2.1. Well-Posedness. In this subsection, we will establish the well-posedness of system (1.1)-(1.4) by using
semigroup approach. The energy of system (1.1)-(1.4) is given by

E(t) =
1

2

∫ L

0

(
|ut|2 + a|ux|2 + |yt|2 + |yx|2

)
dx.

Let (u, ut, y, yt) be a regular solution of (1.1)-(1.4). Multiplying (1.1) and (1.2) by ut and yt respectively, then
using the boundary conditions (1.3), we get

E′(t) = −
∫ L

0

(
b|utx|2 + d|ytx|2

)
dx.

Thus, if (C1) or (C2) or (C3) holds, we get E′(t) ≤ 0. Therefore, system (1.1)-(1.4) is dissipative in the sense
that its energy is non-increasing with respect to time t. Let us define the energy space H by

H = (H1
0 (0, L)× L2(0, L))2.

The energy space H is equipped with the following inner product

(U,U1)H =

∫ L

0

vv1dx+ a

∫ L

0

ux(u1)xdx+

∫ L

0

zz1dx+

∫ L

0

yx(y1)xdx,

for all U = (u, v, y, z)
⊤

and U1 = (u1, v1, y1, z1)
⊤

in H. We define the unbounded linear operator A : D (A) ⊂
H −→ H by

D(A) =
{

U = (u, v, y, z)⊤ ∈ H; v, z ∈ H1
0 (0, L), (aux + bvx)x ∈ L2(0, L), (yx + dzx)x ∈ L2(0, L)

}

and

A (u, v, y, z)
⊤
= (v, (aux + bvx)x − cz, z, (yx + dzx)x + cv)

⊤
, ∀U = (u, v, y, z)

⊤ ∈ D (A) .

Now, if U = (u, ut, y, yt)
⊤ is the state of system (1.1)-(1.4), then it is transformed into the following first order

evolution equation

(2.1) Ut = AU, U(0) = U0,

where U0 = (u0, u1, y0, y1)
⊤ ∈ H.
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Proposition 2.1. If (C1) or (C2) or (C3) holds. Then, the unbounded linear operator A is m-dissipative in
the Hilbert space H.

Proof. For all U = (u, v, y, z)⊤ ∈ D(A), we have

ℜ 〈AU,U〉H = −
∫ L

0

b|vx|2dx−
∫ L

0

d|zx|2dx ≤ 0,

which implies that A is dissipative. Now, similiar to Proposition 2.1 in [24] (see also [5] and [4]), we can prove
that there exists a unique solution U = (u, v, y, z)⊤ ∈ D(A) of

−AU = F, ∀F = (f1, f2, f3, f4)⊤ ∈ H.

Then 0 ∈ ρ(A) and A is an isomorphism and since ρ(A) is open in C (see Theorem 6.7 (Chapter III) in [19]),
we easily get R(λI −A) = H for a sufficiently small λ > 0. This, together with the dissipativeness of A, imply
that D (A) is dense in H and that A is m-dissipative in H (see Theorems 4.5, 4.6 in [22]). �

According to Lumer-Phillips theorem (see [22]), then the operator A generates a C0-semigroup of contrac-
tions etA in H which gives the well-posedness of (2.1). Then, we have the following result:

Theorem 2.2. For all U0 ∈ H, system (2.1) admits a unique weak solution

U(t) = etAU0 ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (2.1) admits a unique strong solution

U(t) = etAU0 ∈ C0(R+, D(A)) ∩ C1(R+,H).

2.2. Strong Stability. In this subsection, we will prove the strong stability of system (1.1)-(1.4). We define
the following conditions:

(SSC1) (C1) holds and |c0| < min

( √
a

c2 − c1
,

1

c2 − c1

)
,

(SSC3) (C3) holds, a = 1 and |c0| <
1

c2 − c1
.

The main result of this section is the following theorem.

Theorem 2.3. Assume that (SSC1) or (C2) or (SSC3) holds. Then, the C0-semigroup of contractions
(
etA
)
t≥0

is strongly stable in H; i.e. for all U0 ∈ H, the solution of (2.1) satisfies

lim
t→+∞

‖etAU0‖H = 0.

According to Theorem A.2, to prove Theorem 2.3, we need to prove that the operator A has no pure imaginary
eigenvalues and σ(A) ∩ iR is countable. Its proof has been divided into the following Lemmas.

Lemma 2.4. Assume that (SSC1) or (C2) or (SSC3) holds. Then, for all λ ∈ R, iλI −A is injective, i.e.

ker (iλI −A) = {0} .
Proof. From Proposition 2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R∗. For this aim,

suppose that there exists a real number λ 6= 0 and U = (u, v, y, z)⊤ ∈ D(A) such that

AU = iλU.

Equivalently, we have

v = iλu,(2.2)

(aux + bvx)x − cz = iλv,(2.3)

z = iλy,(2.4)

(yx + dzx) + cv = iλz.(2.5)

Next, a straightforward computation gives

(2.6) 0 = ℜ 〈iλU, U〉H = ℜ 〈AU,U〉H = −
∫ L

0

b|vx|2dx−
∫ L

0

d|zx|2dx.
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Inserting (2.2) and (2.4) in (2.3) and (2.5), we get

λ2u+ (aux + iλbux)x − iλcy = 0 in (0, L),(2.7)

λ2y + (yx + iλdyx)x + iλcu = 0 in (0, L),(2.8)

with the boundary conditions

(2.9) u(0) = u(L) = y(0) = y(L) = 0.

• Case 1: Assume that (SSC1) holds. From (2.2), (2.4) and (2.6), we deduce that

(2.10) ux = vx = 0 in (b1, b2) and yx = zx = 0 in (d1, d2).

Using (2.7), (2.8) and (2.10), we obtain

(2.11) λ2u+ auxx = 0 in (0, c1) and λ2y + yxx = 0 in (c2, L).

Deriving the above equations with respect to x and using (2.10), we get

(2.12)

{
λ2ux + auxxx = 0 in (0, c1),

ux = 0 in (b1, b2) ⊂ (0, c1),
and

{
λ2yx + yxxx = 0 in (c2, L),

yx = 0 in (d1, d2) ⊂ (c2, L).

Using the unique continuation theorem, we get

(2.13) ux = 0 in (0, c1) and yx = 0 in (c2, L)

Using (2.13) and the fact that u(0) = y(L) = 0, we get

(2.14) u = 0 in (0, c1) and y = 0 in (c2, L).

Now, our aim is to prove that u = y = 0 in (c1, c2). For this aim, using (2.14) and the fact that u, y ∈ C1([0, L]),
we obtain the following boundary conditions

(2.15) u(c1) = ux(c1) = y(c2) = yx(c2) = 0.

Multiplying (2.7) by −2(x− c2)ux, integrating over (c1, c2) and taking the real part, we get

(2.16) −
∫ c2

c1

λ2(x− c2)(|u|2)xdx− a

∫ c2

c1

(x− c2)
(
|ux|2

)
x
dx+ 2ℜ

(
iλc0

∫ c2

c1

(x− c2)yuxdx

)
= 0,

using integration by parts and (2.15), we get

(2.17)

∫ c2

c1

|λu|2dx+ a

∫ c2

c1

|ux|2dx+ 2ℜ
(
iλc0

∫ c2

c1

(x − c2)yuxdx

)
= 0.

Multiplying (2.8) by −2(x− c1)yx, integrating over (c1, c2), taking the real part, and using the same argument
as above, we get

(2.18)

∫ c2

c1

|λy|2dx+

∫ c2

c1

|yx|2dx + 2ℜ
(
iλc0

∫ c2

c1

(x− c1)uyxdx

)
= 0.

Adding (2.17) and (2.18), we get

(2.19)

∫ c2

c1

|λu|2dx+ a

∫ c2

c1

|ux|2dx+

∫ c2

c1

|λy|2dx+

∫ c2

c1

|yx|2dx ≤ 2|λ||c0|(c2 − c1)

∫ c2

c1

(|y||ux|+ |u||yx|) dx.

Using Young’s inequality in (2.19), we get

(2.20)

∫ c2

c1

|λu|2dx + a

∫ c2

c1

|ux|2dx+

∫ c2

c1

|λy|2dx+

∫ c2

c1

|yx|2dx ≤ c20(c2 − c1)
2

a

∫ c2

c1

|λy|2dx

+ a

∫ c2

c1

|ux|2dx+ c20(c2 − c1)
2

∫ c2

c1

|λu|2dx+

∫ c2

c1

|yx|2dx,

consequently, we get

(2.21)

(
1− c20(c2 − c1)

2

a

)∫ c2

c1

|λy|2dx+
(
1− c20(c2 − c1)

2
) ∫ c2

c1

|λu|2dx ≤ 0.

Thus, from the above inequality and (SSC1), we get

(2.22) u = y = 0 in (c1, c2).
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Next, we need to prove that u = 0 in (c2, L) and y = 0 in (0, c1). For this aim, from (2.22) and the fact that
u, y ∈ C1([0, L]), we obtain

(2.23) u(c2) = ux(c2) = 0 and y(c1) = yx(c1) = 0.

It follows from (2.7), (2.8) and (2.23) that

(2.24)

{
λ2u+ auxx = 0 in (c2, L),

u(c2) = ux(c2) = u(L) = 0,
and

{
λ2y + yxx = 0 in (0, c1),

y(0) = y(c1) = yx(c1) = 0.

Holmgren uniqueness theorem yields

(2.25) u = 0 in (c2, L) and y = 0 in (0, c1).

Therefore, from (2.2), (2.4), (2.14), (2.22) and (2.25), we deduce that

U = 0.

• Case 2: Assume that (C2) holds. From (2.2), (2.4) and (2.6), we deduce that

(2.26) ux = vx = 0 in (b1, b2) and yx = zx = 0 in (d1, d2).

Using (2.7), (2.8) and (2.26), we obtain

(2.27) λ2u+ auxx = 0 in (0, c1) and λ2y + yxx = 0 in (0, c1).

Deriving the above equations with respect to x and using (2.26), we get

(2.28)

{
λ2ux + auxxx = 0 in (0, c1),

ux = 0 in (b1, b2) ⊂ (0, c1),
and

{
λ2yx + yxxx = 0 in (0, c1),

yx = 0 in (d1, d2) ⊂ (0, c1).

Using the unique continuation theorem, we get

(2.29) ux = 0 in (0, c1) and yx = 0 in (0, c1).

From (2.29) and the fact that u(0) = y(0) = 0, we get

(2.30) u = 0 in (0, c1) and y = 0 in (0, c1).

Using the fact that u, y ∈ C1([0, L]) and (2.30), we get

(2.31) u(c1) = ux(c1) = y(c1) = yx(c1) = 0.

Now, using the definition of c(x) in (2.7)-(2.8), (2.26) and (2.31) and Holmgren theorem, we get

u = y = 0 in (c1, c2).

Again, using the fact that u, y ∈ C1([0, L]), we get

(2.32) u(c2) = ux(c2) = y(c2) = yx(c2) = 0.

Now, using the same argument as in Case 1, we obtain

u = y = 0 in (c2, L),

consequently, we deduce that

U = 0.

• Case 3: Assume that (SSC3) holds. Using the same argument as in Cases 1 and 2, we obtain

(2.33) u = 0 in (0, c1) and u(c1) = ux(c1) = 0.

Step 1. The aim of this step is to prove that

(2.34)

∫ c2

c1

|u|2dx =

∫ c2

c1

|y|2dx.

7



For this aim, multiplying (2.7) by y and (2.8) by u and using integration by parts, we get

∫ L

0

λ2uydx−
∫ L

0

uxyxdx− iλc0

∫ c2

c1

|y|2dx = 0,(2.35)

∫ L

0

λ2yudx−
∫ L

0

yxuxdx+ iλc0

∫ c2

c1

|u|2dx = 0.(2.36)

Adding (2.35) and (2.36), taking the imaginary part, we get (2.34).

Step 2. Multiplying (2.7) by −2(x− c2)ux, integrating over (c1, c2) and taking the real part, we get

(2.37) −ℜ
(∫ c2

c1

λ2(x − c2)(|u|2)xdx
)
−ℜ

(∫ c2

c1

(x− c2)
(
|ux|2

)
x
dx

)
+ 2ℜ

(
iλc0

∫ c2

c1

(x− c2)yuxdx

)
= 0,

using integration by parts in (2.37) and (2.33), we get

(2.38)

∫ c2

c1

|λu|2dx+ a

∫ c2

c1

|ux|2dx+ 2ℜ
(
iλc0

∫ c2

c1

(x − c2)yuxdx

)
= 0.

Using Young’s inequality in (2.38), we obtain

(2.39)

∫ c2

c1

|λu|2dx +

∫ c2

c1

|ux|2dx ≤ |c0|(c2 − c1)

∫ c2

c1

|λy|2dx+ |c0|(c2 − c1)

∫ c2

c1

|ux|2dx.

Inserting (2.34) in (2.39), we get

(2.40) (1− |c0|(c2 − c1))

∫ c2

c1

(
|λu|2 + |ux|2

)
dx ≤ 0.

According to (SSC3) and (2.34), we get

(2.41) u = y = 0 in (c1, c2).

Step 3. Using the fact that u ∈ H2(c1, c2) ⊂ C1([c1, c2]), we get

(2.42) u(c1) = ux(c1) = y(c1) = yx(c1) = y(c2) = yx(c2) = 0.

Now, from (2.7), (2.8) and the definition of c, we get
{

λ2u+ uxx = 0 in (c2, L),
u(c2) = ux(c2) = 0,

and

{
λ2y + yxx = 0 in (0, c1) ∪ (c2, L),
y(c1) = yx(c1) = y(c2) = yx(c2) = 0.

From the above systems and Holmgren uniqueness Theorem, we get

(2.43) u = 0 in (c2, L) and y = 0 in (0, c1) ∪ (c2, L).

Consequently, using (2.33), (2.41) and (2.43), we get U = 0. The proof is thus completed. �

Lemma 2.5. Assume that (SSC1) or (C2) or (SSC3) holds. Then, for all λ ∈ R, we have

R (iλI −A) = H.

Proof. See Lemma 2.5 in [24] (see also [4]). �

Proof of Theorems 2.3. From Lemma 2.4, we obtain that the operator A has no pure imaginary eigenvalues
(i.e. σp(A) ∩ iR = ∅). Moreover, from Lemma 2.5 and with the help of the closed graph theorem of Banach,
we deduce that σ(A) ∩ iR = ∅. Therefore, according to Theorem A.2, we get that the C0-semigroup (etA)t≥0

is strongly stable. The proof is thus complete. �
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2.3. Polynomial Stability. In this subsection, we study the polynomial stability of system (1.1)-(1.4). Our
main result in this section are the following theorems.

Theorem 2.6. Assume that (SSC1) holds. Then, for all U0 ∈ D(A), there exists a constant C > 0 independent
of U0 such that

(2.44) E(t) ≤ C

t4
‖U0‖2D(A), t > 0.

Theorem 2.7. Assume that (SSC3) holds . Then, for all U0 ∈ D(A) there exists a constant C > 0 independent
of U0 such that

(2.45) E(t) ≤ C

t
‖U0‖2D(A), t > 0.

According to Theorem A.3, the polynomial energy decays (2.44) and (2.45) hold if the following conditions

(H1) iR ⊂ ρ(A)

and

(H2) lim sup
λ∈R, |λ|→∞

1

|λ|ℓ
∥∥(iλI −A)−1

∥∥
L(H)

< ∞ with ℓ =

{
1
2 for Theorem 2.6,

2 for Theorem 2.7,

are satisfied. Since condition (H1) is already proved in Subsection 2.2. We still need to prove (H2), let us prove it
by a contradiction argument. To this aim, suppose that (H2) is false, then there exists

{(
λn, Un := (un, vn, yn, zn)

⊤
)}

n≥1
⊂

R∗
+ ×D(A) with

(2.46) λn → ∞ as n → ∞ and ‖Un‖H = 1, ∀n ≥ 1,

such that

(2.47) (λn)
ℓ (iλnI −A)Un = Fn := (f1,n, f2,n, f3,n, f4,n)

⊤ → 0 in H, as n → ∞.

For simplicity, we drop the index n. Equivalently, from (2.47), we have

iλu− v =
f1

λℓ
, f1 → 0 in H1

0 (0, L),(2.48)

iλv − (aux + bvx)x + cz =
f2

λℓ
, f2 → 0 in L2(0, L),(2.49)

iλy − z =
f3

λℓ
, f3 → 0 in H1

0 (0, L),(2.50)

iλz − (yx + dzx)x − cv =
f4

λℓ
, f4 → 0 in L2(0, L).(2.51)

2.3.1. Proof of Theorem 2.6. In this subsection, we will prove Theorem 2.6 by checking the condition (H2),
by finding a contradiction with (2.46) by showing ‖U‖H = o(1). For clarity, we divide the proof into several
Lemmas. By taking the inner product of (2.47) with U in H, we remark that

∫ L

0

b |vx|2 dx+

∫ L

0

d|zx|2dx = −ℜ (〈AU,U〉H) = λ− 1

2ℜ (〈F,U〉H) = o
(
λ− 1

2

)
.

Thus, from the definitions of b and d, we get

(2.52)

∫ b2

b1

|vx|2 dx = o
(
λ− 1

2

)
and

∫ d2

d1

|zx|2 dx = o
(
λ− 1

2

)
.

Using (2.48), (2.50), (2.52), and the fact that f1, f3 → 0 in H1
0 (0, L), we get

(2.53)

∫ b2

b1

|ux|2dx =
o(1)

λ
5

2

and

∫ d2

d1

|yx|2dx =
o(1)

λ
5

2

.

Lemma 2.8. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estimations

(2.54)

∫ b2

b1

|v|2dx =
o(1)

λ
3

2

and

∫ d2

d1

|z|2dx =
o(1)

λ
3

2

.
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Proof. We give the proof of the first estimation in (2.54), the second one can be done in a similar way. For
this aim, we fix g ∈ C1 ([b1, b2]) such that

g(b2) = −g(b1) = 1, max
x∈[b1,b2]

|g(x)| = mg and max
x∈[b1,b2]

|g′(x)| = mg′ .

The proof is divided into several steps:
Step 1. The goal of this step is to prove that

(2.55) |v(b1)|2 + |v(b2)|2 ≤
(
λ

1

2

2
+ 2mg′

)∫ b2

b1

|v|2dx+
o(1)

λ
.

From (2.48), we deduce that

(2.56) vx = iλux − λ− 1

2 (f1)x.

Multiplying (2.56) by 2gv and integrating over (b1, b2), then taking the real part, we get

∫ b2

b1

g
(
|v|2
)
x
dx = ℜ

(
2iλ

∫ b2

b1

guxvdx

)
−ℜ

(
2λ− 1

2

∫ b2

b1

g(f1)xvdx

)
.

Using integration by parts in the left hand side of the above equation, we get

(2.57) |v(b1)|2 + |v(b2)|2 =

∫ b2

b1

g′|v|2dx+ ℜ
(
2iλ

∫ b2

b1

guxvdx

)
− ℜ

(
2λ− 1

2

∫ b2

b1

g(f1)xvdx

)
.

Using Young’s inequality, we obtain

2λmg|ux||v| ≤
λ

1

2 |v|2
2

+ 2λ
3

2m2
g|ux|2 and 2λ− 1

2mg|(f1)x||v| ≤ mg′ |v|2 +m2
gm

−1
g′ λ

−1|(f1)x|2.

From the above inequalities, (2.57) becomes

(2.58) |v(b1)|2 + |v(b2)|2 ≤
(
λ

1

2

2
+ 2mg′

)∫ b2

b1

|v|2dx+ 2λ
3

2m2
g

∫ b2

b1

|ux|2dx+
m2

g

mg′

λ−1

∫ b2

b1

|(f1)x|2dx.

Inserting (2.53) in (2.58) and the fact that f1 → 0 in H1
0 (0, L), we get (2.55).

Step 2. The aim of this step is to prove that

(2.59) |(aux + bvx)(b1)|2 + |(aux + bvx)(b2)|2 ≤ λ
3

2

2

∫ b2

b1

|v|2dx+ o(1).

Multiplying (2.49) by −2g
(
aux + bvx

)
, using integration by parts over (b1, b2) and taking the real part, we get

|(aux + bvx) (b1)|2 + |(aux + bvx) (b2)|2 =

∫ b2

b1

g′|aux + bvx|2dx+

ℜ
(
2iλ

∫ b2

b1

gv(aux + bvx)dx

)
−ℜ

(
2λ− 1

2

∫ b2

b1

gf2(aux + bvx)dx

)
,

consequently, we get

(2.60)

|(aux + bvx) (b1)|2 + |(aux + bvx) (b2)|2 ≤ mg′

∫ b2

b1

|aux + bvx|2dx

+2λmg

∫ b2

b1

|v||aux + bvx|dx+ 2mgλ
− 1

2

∫ b2

b1

|f2||aux + bvx|dx.

By Young’s inequality, (2.52), and (2.53), we have

(2.61) 2λmg

∫ b2

b1

|v||aux + bvx|dx ≤ λ
3

2

2

∫ b2

b1

|v|2dx+ 2m2
gλ

1

2

∫ b2

b1

|aux + bvx|2dx ≤ λ
3

2

2

∫ b2

b1

|v|2dx + o(1).

Inserting (2.61) in (2.60), then using (2.52), (2.53) and the fact that f2 → 0 in L2(0, L), we get (2.59).
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Step 3. The aim of this step is to prove the first estimation in (2.54). For this aim, multiplying (2.49) by
−iλ−1v, integrating over (b1, b2) and taking the real part , we get

(2.62)

∫ b2

b1

|v|2dx = ℜ
(
iλ−1

∫ b2

b1

(aux + bvx)vxdx−
[
iλ−1 (aux + bvx) v

]b2
b1

+ iλ− 3

2

∫ b2

b1

f2vdx

)
.

Using (2.52), (2.53), the fact that v is uniformly bounded in L2(0, L) and f2 → 0 in L2(0, 1), and Young’s
inequalities, we get

(2.63)

∫ b2

b1

|v|2dx ≤ λ− 1

2

2
[|v(b1)|2 + |v(b2)|2] +

λ− 3

2

2
[|(aux + bvx)(b1)|2 + |(aux + bvx)(b2)|2] +

o(1)

λ
3

2

.

Inserting (2.55) and (2.59) in (2.63), we get
∫ b2

b1

|v|2dx ≤
(
1

2
+mg′λ− 1

2

)∫ b2

b1

|v|2dx+
o(1)

λ
3

2

,

which implies that

(2.64)

(
1

2
−mg′λ− 1

2

)∫ b2

b1

|v|2dx ≤ o(1)

λ
3

2

.

Using the fact that λ → ∞, we can take λ > 4m2
g′ . Then, we obtain the first estimation in (2.54). Similarly,

we can obtain the second estimation in (2.54). The proof has been completed. �

Lemma 2.9. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estimations

(2.65)

∫ c1

0

(
|v|2 + a|ux|2

)
dx = o(1) and

∫ L

c2

(
|z|2 + |yx|2

)
dx = o(1).

Proof. First, let h ∈ C1([0, c1]) such that h(0) = h(c1) = 0. Multiplying (2.49) by 2a−1h(aux + bvx),
integrating over (0, c1), using integration by parts and taking the real part, then using (2.52) and the fact that
ux is uniformly bounded in L2(0, L) and f2 → 0 in L2(0, L), we get

(2.66) ℜ
(
2iλa−1

∫ c1

0

vh(aux + bvx)dx

)
+ a−1

∫ c1

0

h′|aux + bvx|2dx =
o(1)

λ
1

2

.

From (2.48), we have

(2.67) iλux = −vx − λ− 1

2 (f1)x.

Inserting (2.67) in (2.66), using integration by parts, then using (2.52), (2.54), and the fact that f1 → 0 in
H1

0 (0, L) and v is uniformly bounded in L2(0, L), we get

(2.68)

∫ c1

0

h′|v|2dx + a−1

∫ c1

0

h′|aux + bvx|2dx = 2ℜ
(
λ− 1

2

∫ c1

0

vh(f1)xdx

)

︸ ︷︷ ︸
=o(λ−

1

2 )

+ℜ
(
2iλa−1b0

∫ b2

b1

hvvxdx

)

︸ ︷︷ ︸
=o(1)

+
o(1)

λ
1

2

.

Now, we fix the following cut-off functions

p1(x) :=






1 in (0, b1),
0 in (b2, c1),

0 ≤ p1 ≤ 1 in (b1, b2),
and p2(x) :=






1 in (b2, c1),
0 in (0, b1),

0 ≤ p2 ≤ 1 in (b1, b2).

Finally, take h(x) = xp1(x)+ (x− c1)p2(x) in (2.68) and using (2.52), (2.53), (2.54), we get the first estimation
in (2.65). By using the same argument, we can obtain the second estimation in (2.65). The proof is thus
completed. �

Lemma 2.10. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estimations

(2.69) |λu(c1)| = o(1), |ux(c1)| = o(1), |λy(c2)| = o(1) and |yx(c2)| = o(1).
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Proof. First, from (2.48) and (2.49), we deduce that

(2.70) λ2u+ auxx = − f2

λ
1

2

− iλ
1

2 f1 in (b2, c1).

Multiplying (2.70) by 2(x − b2)ūx, integrating over (b2, c1) and taking the real part, then using the fact that
ux is uniformly bounded in L2(0, L) and f2 → 0 in L2(0, L), we get

(2.71)

∫ c1

b2

λ2(x − b2)
(
|u|2
)
x
dx+ a

∫ c1

b2

(x − b2)
(
|ux|2

)
x
dx = −ℜ

(
2iλ

1

2

∫ c1

b2

(x− b2)f1uxdx

)
+

o(1)

λ
1

2

.

Using integration by parts in (2.71), then using (2.65), and the fact that f1 → 0 in H1
0 (0, L) and λu is uniformly

bounded in L2(0, L), we get

(2.72) 0 ≤ (c1 − b2)
(
|λu(c1)|2 + a|ux(c1)|2

)
= ℜ

(
2iλ

1

2 (c1 − b2)f1(c1)u(c1)
)
+ o(1),

consequently, by using Young’s inequality, we get

|λu(c1)|2 + |ux(c1)|2 ≤ 2λ
1

2 |f1(c1)||u(c1)|+ o(1)

≤ 1

2
|λu(c1)|2 +

2

λ
|f1(c1)|2 + o(1).

Then, we get

(2.73)
1

2
|λu(c1)|2 + |ux(c1)|2 ≤ 2

λ
|f1(c1)|2 + o(1).

Finally, from the above estimation and the fact that f1 → 0 in H1
0 (0, L), we get the first two estimations in

(2.69). By using the same argument, we can obtain the last two estimations in (2.69). The proof has been
completed. �

Lemma 2.11. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estimation

(2.74)

∫ c2

c1

|λu|2 + a|ux|2 + |λy|2 + |yx|2dx = o(1).

Proof. Inserting (2.48) and (2.50) in (2.49) and (2.51), we get

−λ2u− auxx + iλc0y =
f2

λ
1

2

+ iλ
1

2 f1 +
c0f3

λ
1

2

in (c1, c2),(2.75)

−λ2y − yxx − iλc0u =
f4

λ
1

2

+ iλ
1

2 f3 −
c0f1

λ
1

2

in (c1, c2).(2.76)

Multiplying (2.75) by 2(x− c2)ux and (2.76) by 2(x− c1)yx, integrating over (c1, c2) and taking the real part,
then using the fact that ‖F‖H = o(1) and ‖U‖H = 1, we obtain

(2.77)

−λ2

∫ c2

c1

(x − c2)
(
|u|2
)
x
dx− a

∫ c2

c1

(x− c2)
(
|ux|2

)
x
dx+ ℜ

(
2iλc0

∫ c2

c1

(x − c2)yuxdx

)
=

ℜ
(
2iλ

1

2

∫ c2

c1

(x− c2)f1uxdx

)
+

o(1)

λ
1

2

and

(2.78)

−λ2

∫ c2

c1

(x− c1)
(
|y|2
)
x
dx −

∫ c2

c1

(x− c1)
(
|yx|2

)
x
dx−ℜ

(
2iλc0

∫ c2

c1

(x− c1)uyxdx

)
=

ℜ
(
2iλ

1

2

∫ c2

c1

(x− c1)f3yxdx

)
+

o(1)

λ
1

2

.

Using integration by parts, (2.69), and the fact that f1, f3 → 0 in H1
0 (0, L), ‖u‖L2(0,L) = O(λ−1), ‖y‖L2(0,L) =

O(λ−1), we deduce that

(2.79) ℜ
(
iλ

1

2

∫ c2

c1

(x− c2)f1uxdx

)
=

o(1)

λ
1

2

and ℜ
(
iλ

1

2

∫ c2

c1

(x− c1)f3yxdx

)
=

o(1)

λ
1

2

.
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Inserting (2.79) in (2.77) and (2.78), then using integration by parts and (2.69), we get
∫ c2

c1

(
|λu|2 + a|ux|2

)
dx+ ℜ

(
iλc0

∫ c2

c1

(x − c2)yuxdx

)
= o(1),(2.80)

∫ c2

c1

(
|λy|2 + |yx|2

)
dx−ℜ

(
iλc0

∫ c2

c1

(x − c1)uyxdx

)
= o(1).(2.81)

Adding (2.80) and (2.81), we get
∫ c2

c1

(
|λu|2 + a|ux|2 + |λy|2 + |yx|2

)
dx = ℜ

(
2iλc0

∫ c2

c1

(x− c1)uyxdx

)
−ℜ

(
2iλc0

∫ c2

c1

(x− c2)yuxdx

)
+ o(1)

≤ 2λ|c0|(c2 − c1)

∫ c2

c1

|u||yx|dx + 2λ
|c0|
a

1

4

(c2 − c1)a
1

4

∫ c2

c1

|y||ux|dx+ o(1).

Applying Young’s inequalities, we get

(2.82) (1− |c0|(c2 − c1))

∫ c2

c1

(|λu|2 + |yx|2)dx +

(
1− 1√

a
|c0|(c2 − c1)

)∫ c2

c1

(a|ux|2 + |λy|2)dx ≤ o(1).

Finally, using (SSC1), we get the desired result. The proof has been completed. �

Lemma 2.12. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estimations

(2.83)

∫ c1

0

(
|z|2 + |yx|2

)
dx = o(1) and

∫ L

c2

(
|v|2 + a|ux|2

)
dx = o(1).

Proof. Using the same argument of Lemma 2.9, we obtain (2.83). �

Proof of Theorem 2.6. Using (2.53), Lemmas 2.8, 2.9, 2.11, 2.12, we get ‖U‖H = o(1), which contradicts
(2.46). Consequently, condition (H2) holds. This implies the energy decay estimation (2.44).

2.3.2. Proof of Theorem 2.7. In this subsection, we will prove Theorem 2.7 by checking the condition (H2),
that is by finding a contradiction with (2.46) by showing ‖U‖H = o(1). For clarity, we divide the proof into
several Lemmas. By taking the inner product of (2.47) with U in H, we remark that

∫ L

0

b|vx|2dx = −ℜ (〈AU,U〉H) = λ−2ℜ (〈F,U〉H) = o(λ−2).

Then,

(2.84)

∫ b2

b1

|vx|2dx = o(λ−2).

Using (2.48) and (2.84), and the fact that f1 → 0 in H1
0 (0, L), we get

(2.85)

∫ b2

b1

|ux|2dx = o(λ−4).

Lemma 2.13. Let 0 < ε < b2−b1
2 , the solution U ∈ D(A) of the system (2.48)-(2.51) satisfies the following

estimation

(2.86)

∫ b2−ε

b1+ε

|v|2dx = o(λ−2).

Proof. First, we fix a cut-off function θ1 ∈ C1([0, c1]) such that

(2.87) θ1(x) =





1 if x ∈ (b1 + ε, b2 − ε),
0 if x ∈ (0, b1) ∪ (b2, L),

0 ≤ θ1 ≤ 1 elsewhere.

Multiplying (2.49) by λ−1θ1v, integrating over (0, c1), using integration by parts, and the fact that f2 → 0 in
L2(0, L) and v is uniformly bounded in L2(0, L), we get

(2.88) i

∫ c1

0

θ1|v|2dx+
1

λ

∫ c1

0

(ux + bvx)(θ
′
1v + θvx)dx = o(λ−3).
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Using (2.84) and the fact that ‖U‖H = 1, we get

1

λ

∫ c1

0

(ux + bvx)(θ
′
1v + θvx)dx = o(λ−2).

Inserting the above estimation in (2.88), we get the desired result (2.86). The proof has been completed. �

Lemma 2.14. The solution U ∈ D(A) of the system (2.48)-(2.51) satisfies the following estimation

(2.89)

∫ c1

0

(|v|2 + |ux|2)dx = o(1).

Proof. Let h ∈ C1([0, c1]) such that h(0) = h(c1) = 0. Multiplying (2.49) by 2h(ux + bvx), integrating over
(0, c1) and taking the real part, then using integration by parts and the fact that f2 → 0 in L2(0, L), we get

(2.90) ℜ
(
2

∫ c1

0

iλvh(ux + bvx)dx

)
+

∫ c1

0

h′|ux + bvx|2dx = o(λ−2).

Using (2.84) and the fact that v is uniformly bounded in L2(0, L), we get

(2.91) ℜ
(
2

∫ c1

0

iλvh(ux + bvx)dx

)
= 2

∫ c1

0

iλvhuxdx + o(1).

From (2.48), we have

(2.92) iλux = −vx −
(
f1
)
x

λ2
.

Inserting (2.92) in (2.91), using integration by parts and the fact that f1 → 0 in H1
0 (0, L), we get

(2.93) ℜ
(
2

∫ c1

0

iλvh(ux + bvx)dx

)
=

∫ c1

0

h′|v|2dx+ o(1).

Inserting (2.93) in (2.90), we obtain

(2.94)

∫ c1

0

h′
(
|v|2 + |ux + bvx|2

)
dx = o(1).

Now, we fix the following cut-off functions

θ2(x) :=






1 in (0, b1 + ε),
0 in (b2 − ε, c1),

0 ≤ θ2 ≤ 1 in (b1 + ε, b2 − ε),
and θ3(x) :=






1 in (b2 − ε, c1),
0 in (0, b1 + ε),

0 ≤ θ3 ≤ 1 in (b1 + ε, b2 − ε).

Taking h(x) = xθ2(x) + (x− c1)θ3(x) in (2.94), then using (2.84) and (2.85), we get

(2.95)

∫

(0,b1+ε)∪(b2−ε,c1)

|v|2dx+

∫

(0,b1)∪(b2,c1)

|ux|2dx = o(1).

Finally, from (2.85), (2.86) and (2.95), we get the desired result (2.89). The proof has been completed. �

Lemma 2.15. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estimations

(2.96) |λu(c1)| = o(1) and |ux(c1)| = o(1),

(2.97)

∫ c2

c1

|λu|2dx =

∫ c2

c1

|λy|2dx+ o(1).

Proof. First, using the same argument of Lemma 2.10, we claim (2.96). Inserting (2.48), (2.50) in (2.49) and
(2.51), we get

λ2u+ (ux + bvx)x − iλcy = − f2

λ2
− i

f1

λ
− c

f3

λ2
,(2.98)

λ2y + yxx + iλcu = − f4

λ2
− if3

λ
+ c

f1

λ2
.(2.99)

14



Multiplying (2.98) and (2.99) by λy and λu respectively, integrating over (0, L), then using integration by parts,
(2.84), and the fact that ‖U‖H = 1 and ‖F‖H = o(1), we get

λ3

∫ L

0

uȳdx − λ

∫ L

0

uxȳxdx− ic0

∫ c2

c1

|λy|2dx = o(1),(2.100)

λ3

∫ L

0

yūdx− λ

∫ L

0

yxūxdx+ ic0

∫ c2

c1

|λu|2dx =
o(1)

λ
.(2.101)

Adding (2.100) and (2.101) and taking the imaginary parts, we get the desired result (2.97). The proof is thus
completed. �

Lemma 2.16. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following asymptotic behavior

(2.102)

∫ c2

c1

|λu|2dx = o(1),

∫ c2

c1

|λy|2dx = o(1) and

∫ c2

c1

|ux|2dx = o(1).

Proof. First, Multiplying (2.98) by 2(x − c2)ūx, integrating over (c1, c2) and taking the real part, using the
fact that ‖U‖H = 1 and ‖F‖H = o(1), we get

(2.103) λ2

∫ c2

c1

(x− c2)
(
|u|2
)
x
dx+

∫ c2

c1

(x− c2)
(
|ux|2

)
x
dx = ℜ

(
2iλc0

∫ c2

c1

(x− c2)yūxdx

)
+ o(1).

Using integration by parts in (2.103) with the help of (2.96), we get

(2.104)

∫ c2

c1

|λu|2dx+

∫ c2

c1

|ux|2dx ≤ 2λ|c0|(c2 − c1)

∫ c2

c1

|y||ux|+ o(1).

Applying Young’s inequality in (2.104), we get

(2.105)

∫ c2

c1

|λu|2dx +

∫ c2

c1

|ux|2dx ≤ |c0|(c2 − c1)

∫ c2

c1

|ux|2dx+ |c0|(c2 − c1)

∫ c2

c1

|λy|2dx+ o(1).

Using (2.97) in (2.105), we get

(2.106) (1− |c0|(c2 − c1))

∫ c2

c1

(
|λu|2 + |ux|2

)
dx ≤ o(1).

Finally, from the above estimation, (SSC3) and (2.97), we get the desired result (2.102). The proof has been
completed. �

Lemma 2.17. Let 0 < δ < c2−c1
2 . The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following

estimations

(2.107)

∫ c2−δ

c1+δ

|yx|2dx = o(1).

Proof. First, we fix a cut-off function θ4 ∈ C1([0, L]) such that

(2.108) θ4(x) :=





1 if x ∈ (c1 + δ, c2 − δ),
0 if x ∈ (0, c1) ∪ (c2, L),

0 ≤ θ4 ≤ 1 elsewhere.

Multiplying (2.99) by θ4ȳ, integrating over (0, L) and using integration by parts, we get

(2.109)

∫ c2

c1

θ4|λy|2dx −
∫ L

0

θ4|yx|2dx−
∫ L

0

θ′4yxȳdx+ iλc0

∫ c2

c1

θ4uȳdx =
o(1)

λ2
.

Using (2.102) and the definition of θ4, we get

(2.110)

∫ c2

c1

θ4|λy|2dx = o(1),

∫ L

0

θ′4yxȳdx = o(λ−1), iλc0

∫ c2

c1

θ4uȳdx = o(λ−1).

Finally, Inserting (2.110) in (2.109), we get the desired result (2.111). The proof has been completed. �

Lemma 2.18. The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estimations

(2.111)

∫ c1+ε

0

|λy|2dx,
∫ c1+ε

0

|yx|2dx,
∫ L

c2−ε

|λy|2dx,
∫ L

c2−ε

|yx|2dx,
∫ L

c2

|λu|2dx,
∫ L

c2

|ux|2dx = o(1).
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Proof. Let q ∈ C1([0, L]) such that q(0) = q(L) = 0. Multiplying (2.98) by 2qȳx integrating over (0, L), using
(2.102), and the fact that yx is uniformly bounded in L2(0, L) and ‖F‖H = o(1), we get

(2.112)

∫ L

0

q′
(
|λy|2 + |yx|2

)
dx = o(1).

Now, take q(x) = xθ5(x) + (x− L)θ6(x) in (2.112), such that

θ5(x) :=





1 in (0, c1 + ε),
0 in (c2 − ε, L),

0 ≤ θ1 ≤ 1 in (c1 + ε, c2 − ε),
and θ2(x)





1 in (c2 − ε, L),
0 in (0, c1 + ε),

0 ≤ θ2 ≤ 1 in (c1 + ε, c2 − ε).

Then, we obtain the first four estimations in (2.111). Now, multiplying (2.98) by 2q
(
ux + bvx

)
integrating over

(0, L) and using the fact that ux is uniformly bounded in L2(0, L), we get

(2.113)

∫ L

0

q′
(
|λu|2 + |ux|2

)
dx = o(1).

By taking q(x) = (x− L)θ7(x), such that

θ7(x) =






1 in (c2, L),
0 in (0, c1),

0 ≤ θ7 ≤ 1 in (c1, c2),

we get the the last two estimations in (2.111). The proof has been completed. �

Proof of Theorem 2.7. Using (2.85), Lemmas 2.14, 2.16, 2.17 and 2.18, we get ‖U‖H = o(1), which
contradicts (2.46). Consequently, condition (H2) holds. This implies the energy decay estimation (2.45)

3. Indirect Stability in the multi-dimensional case

In this section, we study the well-posedness and the strong stability of system (1.5)-(1.8).

3.1. Well-posedness. In this subsection, we will establish the well-posedness of (1.5)-(1.8) by usinf semigroup
approach. The energy of system (1.5)-(1.8) is given by

(3.1) E(t) =
1

2

∫ L

0

(
|ut|2 + |∇u|2 + |yt|2 + |∇y|2

)
dx.

Let (u, ut, y, yt) be a regular solution of (1.5)-(1.8). Multiplying (1.5) and (1.7) by ut and yt respectively, then
using the boundary conditions (1.9), we get

(3.2) E′(t) = −
∫

Ω

b|∇ut|2dx,

using the definition of b, we get E′(t) ≤ 0. Thus, system (1.5)-(1.8) is dissipative in the sense that its energy
is non-increasing with respect to time t. Let us define the energy space H by

H =
(
H1

0 (Ω)× L2(Ω)
)2

.

The energy space H is equipped with the inner product defined by

〈U,U1〉H =

∫

Ω

vv1dx+

∫

Ω

∇u∇u1dx+

∫

Ω

zz1dx+

∫

Ω

∇y · ∇y1dx,

for all U = (u, v, y, z)⊤ and U1 = (u1, v1, y1, z1)
⊤ in H. We define the unbounded linear operator Ad : D (Ad) ⊂

H −→ H by

D(Ad) =
{
U = (u, v, y, z)⊤ ∈ H; v, z ∈ H1

0 (Ω), div(ux + bvx) ∈ L2(Ω), ∆y ∈ L2(Ω)
}

and

AdU =




v

div(∇u + b∇v)− cz

z

∆y + cv




, ∀U = (u, v, y, z)⊤ ∈ D(Ad).
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Ω̃

Ω

ωcωb • x0

Γ0

Γ1 •x
ν

Figure 4. Geometric description of the sets ωb and ωc

If U = (u, ut, y, yt) is a regular solution of system (1.5)-(1.8), then we rewrite this system as the following first
order evolution equation

(3.3) Ut = AdU, U(0) = U0,

where U0 = (u0, u1, y0, y1)
⊤ ∈ H. For all U = (u, v, y, z)⊤ ∈ D(Ad), we have

ℜ 〈AdU,U〉H = −
∫

Ω

b|∇v|2dx ≤ 0,

which implies that Ad is dissipative. Now, similar to Proposition 2.1 in [7], we can prove that there exists a
unique solution U = (u, v, y, z)⊤ ∈ D(Ad) of

−AdU = F, ∀F = (f1, f2, f3, f4)⊤ ∈ H.

Then 0 ∈ ρ(Ad) and Ad is an isomorphism and since ρ(Ad) is open in C (see Theorem 6.7 (Chapter III) in
[19]), we easily get R(λI−Ad) = H for a sufficiently small λ > 0. This, together with the dissipativeness of Ad,
imply that D (Ad) is dense in H and that Ad is m-dissipative in H (see Theorems 4.5, 4.6 in [22]). According
to Lumer-Phillips theorem (see [22]), then the operator Ad generates a C0-semigroup of contractions etAd in
H which gives the well-posedness of (3.3). Then, we have the following result:

Theorem 3.1. For all U0 ∈ H, system (2.1) admits a unique weak solution

U(t) = etAdU0 ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (2.1) admits a unique strong solution

U(t) = etAdU0 ∈ C0(R+, D(Ad)) ∩C1(R+,H).

3.2. Strong Stability. In this subsection, we will prove the strong stability of system (1.5)-(1.8). First, we
fix the following notations

Ω̃ = Ω− ωc, Γ1 = ∂ωc − ∂Ω and Γ0 = ∂ωc − Γ1.

Let x0 ∈ Rd and m(x) = x− x0 and suppose that (see Figure 4)

(GC) m · ν ≤ 0 on Γ0 = (∂ωc)− Γ1.

17



The main result of this section is the following theorem

Theorem 3.2. Assume that (GC) holds and

(SSC) ‖c‖∞ ≤ min

{
1

‖m‖∞ + d−1
2

,
1

‖m‖∞ +
(d−1)Cp,ωc

2

}
,

where Cp,ωc
is the Poincarré constant on ωc. Then, the C0−semigroup of contractions

(
etAd

)
is strongly stable

in H; i.e. for all U0 ∈ H, the solution of (3.3) satisfies

lim
t→+∞

‖etAdU0‖H = 0.

Proof. First, let us prove that

(3.4) ker(iλI −Ad) = {0}, ∀λ ∈ R.

Since 0 ∈ ρ(Ad), then we still need to show the result for λ ∈ R∗. Suppose that there exists a real number
λ 6= 0 and U = (u, v, y, z)⊤ ∈ D(Ad), such that

AdU = iλU.

Equivalently, we have

v = iλu,(3.5)

div(∇u+ b∇v)− cz = iλv,(3.6)

z = iλy,(3.7)

∆y + cv = iλz.(3.8)

Next, a straightforward computation gives

0 = ℜ 〈iλU, U〉H = ℜ 〈AdU,U〉H = −
∫

Ω

b|∇v|2dx,

consequently, we deduce that

(3.9) b∇v = 0 in Ω and ∇v = ∇u = 0 in ωb.

Inserting (3.5) in (3.6), then using the definition of c, we get

(3.10) ∆u = −λ2u in ωb.

From (3.9) we get ∆u = 0 in ωb and from (3.10) and the fact that λ 6= 0, we get

(3.11) u = 0 in ωb.

Now, inserting (3.5) in (3.6), then using (3.9), (3.11) and the definition of c, we get

(3.12)
λ2u+∆u = 0 in Ω̃,

u = 0 in ωb ⊂ Ω̃.

Using Holmgren uniqueness theorem, we get

(3.13) u = 0 in Ω̃.

It follows that

(3.14) u =
∂u

∂ν
= 0 on Γ1.

Now, our aim is to show that u = y = 0 in ωc. For this aim, inserting (3.5) and (3.7) in (3.6) and (3.8), then
using (3.9), we get the following system

λ2u+∆u− iλcy = 0 in Ω,(3.15)

λ2y +∆y + iλcu = 0 in Ω,(3.16)

u = 0 on ∂ωc,(3.17)

y = 0 on Γ0,(3.18)

∂u

∂ν
= 0 on Γ1.(3.19)
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Let us prove (3.4) by the following three steps:

Step 1. The aim of this step is to show that

(3.20)

∫

Ω

c|u|2dx =

∫

Ω

c|y|2dx.

For this aim, multiplying (3.15) and (3.16) by ȳ and ū respectively, integrating over Ω and using Green’s
formula, we get

λ2

∫

Ω

uȳdx−
∫

Ω

∇u · ∇ȳdx− iλ

∫

Ω

c|y|2dx = 0,(3.21)

λ2

∫

Ω

yūdx−
∫

Ω

∇y · ∇ūdx+ iλ

∫

Ω

c|u|2dx = 0.(3.22)

Adding (3.21) and (3.22), then taking the imaginary part, we get (3.20).
Step 2. The aim of this step is to prove the following identity

(3.23) − d

∫

ωc

|λu|2dx+ (d− 2)

∫

ωc

|∇u|2dx+

∫

Γ0

(m · ν)
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ− 2ℜ
(
iλ

∫

ωc

cy (m · ∇ū) dx

)
= 0.

For this aim, multiplying (3.15) by 2(m · ∇ū), integrating over ωc and taking the real part, we get

(3.24) 2ℜ
(
λ2

∫

ωc

u(m · ∇ū)dx

)
+ 2ℜ

(∫

ωc

∆u(m · ∇ū)dx

)
− 2ℜ

(
iλ

∫

ωc

cy(m · ∇ū)dx

)
= 0.

Now, using the fact that u = 0 in ∂ωc, we get

(3.25) ℜ
(
2λ2

∫

ωc

u(m · ∇ū)dx

)
= −d

∫

ωc

|λu|2dx.

Using Green’s formula, we obtain

(3.26)

2ℜ
(∫

ωc

∆u(m · ∇ū)dx

)
= −2ℜ

(∫

ωc

∇u · ∇ (m · ∇ū) dx

)
+ 2ℜ

(∫

Γ0

∂u

∂ν
(m · ∇ū) dΓ

)

= (d− 2)

∫

ωc

|∇u|2dx−
∫

∂ωc

(m · ν)|∇u|2dx+ 2ℜ
(∫

Γ0

∂u

∂ν
(m · ∇ū) dΓ

)
.

Using (3.17) and (3.19), we get

(3.27)

∫

∂ωc

(m · ν)|∇u|2dx =

∫

Γ0

(m · ν)
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ and ℜ
(∫

Γ0

∂u

∂ν
(m · ∇ū) dΓ

)
=

∫

Γ0

(m · ν)
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ.

Inserting (3.27) in (3.26), we get

(3.28) 2ℜ
(∫

ωc

∆u(m · ∇ū)dx

)
= (d− 2)

∫

ωc

|∇u|2dx+

∫

Γ0

(m · ν)
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ.

Inserting (3.25) and (3.28) in (3.24), we get (3.23).

Step 3. In this step, we prove (3.4). Multiplying (3.15) by (d − 1)u, integrating over ωc and using (3.17), we
get

(3.29) (d− 1)

∫

ωc

|λu|2dx+ (1− d)

∫

ωc

|∇u|2dx −ℜ
(
iλ(d− 1)

∫

ωc

cyūdx

)
= 0.

Adding (3.23) and (3.29), we get
∫

ωc

|λu|2dx+

∫

ωc

|∇u|2dx =

∫

Γ0

(m · ν)
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ− 2ℜ
(
iλ

∫

ωc

cy (m · ∇ū) dx

)
−ℜ

(
iλ(d− 1)

∫

ωc

cyūdx

)
= 0.

Using (GC), we get

(3.30)

∫

ωc

|λu|2dx+

∫

ωc

|∇u|2dx ≤ 2|λ|
∫

ωc

|c||y||m · ∇u|dx+ |λ|(d− 1)

∫

ωc

|c||y||u|dx.
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Using Young’s inequality and (3.20), we get

(3.31) 2|λ|
∫

ωc

|c||y||m · ∇u|dx ≤ ‖m‖∞‖c‖∞
∫

ωc

(
|λu|2 + |∇u|2

)
dx

and

(3.32) |λ|(d − 1)

∫

ωc

|c(x)||y||u|dx ≤ (d− 1)‖c‖∞
2

∫

ωc

|λu|2dx+
(d− 1)‖c‖∞Cp,ωc

2

∫

ωc

|∇u|2dx.

Inserting (3.32) in (3.30), we get
(
1− ‖c‖∞

(
‖m‖∞ +

d− 1

2

))∫

ωc

|λu|2dx+

(
1− ‖c‖∞

(
‖m‖∞ +

(d− 1)Cp,ωc

2

))∫

ωc

|∇u|2dx ≤ 0.

Using (SSC) and (3.20) in the above estimation, we get

(3.33) u = 0 and y = 0 in ωc.

In order to complete this proof, we need to show that y = 0 in Ω̃. For this aim, using the definition of the

function c in Ω̃ and using the fact that y = 0 in ωc, we get

(3.34)

λ2y +∆y = 0 in Ω̃,

y = 0 on ∂Ω̃,

∂y

∂ν
= 0 on Γ1.

Now, using Holmgren uniqueness theorem, we obtain y = 0 in Ω̃ and consequently (3.4) holds true. Moreover,
similar to Lemma 2.5 in [7], we can prove R(iλI − Ad) = H, ∀λ ∈ R. Finally, by using the closed graph
theorem of Banach and Theorem A.2, we conclude the proof of this Theorem. �

Let us notice that, under the sole assumptions (GC) and (SSC), the polynomial stability of system (1.5)-(1.8)
is an open problem.

Appendix A. Some notions and stability theorems

In order to make this paper more self-contained, we recall in this short appendix some notions and stability
results used in this work.

Definition A.1. Assume that A is the generator of C0−semigroup of contractions
(
etA
)
t≥0

on a Hilbert space

H . The C0−semigroup
(
etA
)
t≥0

is said to be

(1) Strongly stable if

lim
t→+∞

‖etAx0‖H = 0, ∀x0 ∈ H.

(2) Exponentially (or uniformly) stable if there exists two positive constants M and ε such that

‖etAx0‖H ≤ Me−εt‖x0‖H , ∀ t > 0, ∀x0 ∈ H.

(3) Polynomially stable if there exists two positive constants C and α such that

‖etAx0‖H ≤ Ct−α‖Ax0‖H , ∀ t > 0, ∀x0 ∈ D(A).

�

To show the strong stability of the C0-semigroup
(
etA
)
t≥0

we rely on the following result due to Arendt-Batty

[9].

Theorem A.2. Assume that A is the generator of a C0−semigroup of contractions
(
etA
)
t≥0

on a Hilbert space

H . If A has no pure imaginary eigenvalues and σ (A) ∩ iR is countable, where σ (A) denotes the spectrum of
A, then the C0-semigroup

(
etA
)
t≥0

is strongly stable. �

Concerning the characterization of polynomial stability stability of a C0−semigroup of contraction
(
etA
)
t≥0

we

rely on the following result due to Borichev and Tomilov [12] (see also [11] and [21])
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Theorem A.3. Assume that A is the generator of a strongly continuous semigroup of contractions
(
etA
)
t≥0

on H. If iR ⊂ ρ(A), then for a fixed ℓ > 0 the following conditions are equivalent

(A.1) lim sup
λ∈R, |λ|→∞

1

|λ|ℓ
∥∥(iλI −A)−1

∥∥
L(H)

< ∞,

(A.2) ‖etAU0‖2H ≤ C

t
2

ℓ

‖U0‖2D(A), ∀t > 0, U0 ∈ D(A), for some C > 0.

�
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