Skip to main content
Log in

Visual analysis of meteorological satellite data via model-agnostic meta-learning

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Satellites detect the distribution of meteorological data worldwide. However, due to the orbital constraints, the satellite can only reach the same area again after one orbiting cycle. The interval between two detections in the same area is long, and the variation of meteorological data between the two detections is unknown. Moreover, meteorological satellite data are only located near the orbit in one cycle, while the global distribution of meteorological data is unknown. Our method allows to train a regression model with only few meteorological satellite data by taking advantage of the recent advances in deep learning. In detail, we train a model-agnostic meta-learning (MAML) model with data from ground stations instead of meteorological satellites and get the initial network parameters. Based on the initial network parameters trained by MAML, we train the regression models again for different areas. We sample the regression curves of all areas by time and get a time series of global meteorological data distribution. Through case studies conducted together with domain experts, we validate the effectiveness of our method.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA19080102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (rar 2656 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Shen, H., Shan, G. et al. Visual analysis of meteorological satellite data via model-agnostic meta-learning. J Vis 24, 301–315 (2021). https://doi.org/10.1007/s12650-020-00704-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00704-4

Keywords