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Abstract: Recently, the normalized subband adaptive filter 

(NSAF) algorithm has attracted much attention for handling 

the colored input signals. Based on the first-order Markov 

model of the optimal tap-weight vector, this paper provides a 

convergence analysis of the standard NSAF. Following the 

analysis, both the step size and the regularization parameter 

in the NSAF are jointly optimized in such a way that 

minimizes the mean square deviation. The resulting 

joint-optimization step size and regularization parameter 

(JOSR-NSAF) algorithm achieves a good tradeoff between 

fast convergence rate and low steady-state error. Simulation 

results in the context of acoustic echo cancellation 

demonstrate good features of the proposed algorithm. 

Keywords: Normalized subband adaptive filter, variable 

step size, variable regularization parameter, echo 

cancellation. 

1 Introduction 

Adaptive filtering algorithms have been found in a wide 

range of practical applications such as system identification, 

channel equalization, beamforming, and echo cancellation 

[1]-[3]. Among these algorithms, a very popular algorithm is 

the normalized least mean square (NLMS), due to its low 

computational complexity and robust performance. 

Furthermore, to obtain fast convergence and low steady-state 

misadjustment (i.e., the final coefficient estimation error) 

simultaneously, many modified NLMS methods controlling 

the step size have been proposed, e.g., see [4]-[7] and 

references therein. However, these NLMS-type algorithms 
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suffer from slow convergence when the input signals are 

colored, especially for the speech input signals. 

To solve this problem, in a recent decade, the 

multiband-structure of the subband adaptive filter (SAF) has 

attracted much attention [3]. This is because the SAF divides 

the colored input signal into multiple mutually almost 

exclusive subband signals, and each decimated subband 

input signal is approximately white. What’s more, as 

compared to the conventional subband structure, the 

multiband-structure has no band edge effects [3]. On the 

basis of this multiband-structure, the normalized SAF 

(NSAF) algorithm [8] was developed by Lee and Gan from 

the least perturbation principle. The NSAF exhibits faster 

convergence for the colored input signals than the NLMS, 

due mainly to the inherent decorrelating property of SAF [9]. 

Moreover, for high-order adaptive filter applications such as 

echo cancellation, the computational complexity of the 

NSAF is almost the same as that of the NLMS. It is worth 

mentioning that the NSAF is equivalent to the NLMS only 

when there is one subband. Afterwards, the theoretical 

models (including the transient and steady-state behavior) of 

the NSAF were provided in [10], [11]. Similar to the NLMS, 

the performance of the standard NSAF depends on two 

important parameters, i.e., the step size and the 

regularization parameter. The fixed step size governs a 

tradeoff between convergence rate and steady-state 

misadjustment. Specifically, for the NSAF, a large (small) 

step size leads to fast (slow) convergence rate but large 

(small) misadjustment in the steady-state. This conflict 

motivates the development of the NSAF with a variable step 

size (VSS) algorithms [12]-[17]. The original intention of the 

regularization parameter is to prevent the NSAF from 

numerical divergence when the l2-norm of the input vector is 

very small or zero (this case is common in echo cancellation). 

Note that its value also reflects a compromise in the 

algorithm’s performance like the step size does. Nevertheless, 

the only difference is that the directions of the step size and 

the regularization parameter controlling the algorithm’s 
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performance are converse. Therefore, several variable 

regularization (VR) NSAF algorithms have also been 

proposed [18]-[21], which in a certain degree overcome the 

conflicting requirements of fast convergence rate and low 

misadjustment caused by the fixed regularization parameter. 

Although researchers have made some achievements on the 

optimization of these two parameters, many of the presented 

VSS-NSAF and VR-NSAF algorithms are essentially 

equivalent. Moreover, these algorithms are obtained based 

on the fact that one of two parameters is optimized by fixing 

the other. 

In this paper, we firstly analyze the convergence 

performance of the standard NSAF based on the first-order 

Markov model of the optimal tap-weight vector. Second, a 

joint-optimization scheme of the step size and the 

regularization parameter is proposed by minimizing the 

mean square deviation (MSD) of the NSAF. The resulting 

algorithm is called the joint-optimization step size and 

regularization parameter NSAF (JOSR-NSAF) algorithm, 

which obtains improved performance. 

2 Preliminary knowledge 

Consider the observed data ( )d n  that originates from the 

model 

( ) ( ) ( )T
od n n n u w ,              (1) 

where ( )T  indicates the transpose, ow  is the unknown 

M-dimensional vector to be estimated with an adaptive filter, 

( ) [ ( ),  ( 1),  ..., ( 1)]Tn u n u n u n Mu      is the input signal 

vector, and ( )n  is the measurement noise which is 

assumed to be white Gaussian noise with zero-mean and 

variance 2
 . Fig. 1 shows the multiband-structure diagram 

of the SAF, where N denotes number of subbands. The 

observed data ( )d n  and input data ( )u n  are partitioned 

into multiple subband signals ( )id n  and ( )iu n  through 

the analysis filter bank, namely, ( ) ( )i id n d n h   and 

( ) ( )i iu n u n h  , 0,1,..., 1i N  , where ih  is the impulse 

response of the ith analysis filter ( )iH z  and   denotes 

linear convolution. The subband output signals ( )iy n  are 

obtained by filtering the subband input signals ( )iu n  

through an adaptive filter whose tap-weight vector is 

1 2( ) [ ( ),  ( ),  ..., ( )]T
Mk w k w k w kw . Then, the signals ( )iy n  

and ( )id n  are N-fold decimated [3], [8] to yield the signals 

, ( )i Dy k  and , ( )i Dd k  which are respectively formulated as 

, ( ) ( ) ( 1)T
i D iy k k ku w   and , ( ) ( )i D id k d kN , where 

( ) [ ( ),  ( 1),  ..., ( 1)]T
i i i ik u kN u kN u kN M   u . In this 

paper, we use n to indicate the original sequences, and k to 

indicate the decimated sequences. As shown in Fig. 2, the 

decimated subband error signals are expressed by 

subtracting , ( )i Dy k  from , ( )i Dd k  as  

, ,  ( ) ( ) ( ) ( 1)T
i D i D ie k d k k ku w   , 0,1,..., 1i N  . (2) 
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Fig. 1. Multiband-structure diagram of the SAF. 

As reported in [8], the update equation of the standard 

NSAF algorithm is expressed as 

1
, D

2
0

( ) ( )
( ) ( 1)

( )

N
i i

i i

e k k
k k

k

u
w w

u








  


          (3) 

where   denotes the l2-norm of a vector, μ is the step-size, 

and 0   is a small regularization parameter. 

3 Proposed JOSR-NSAF algorithm 

In this section, the proposed JOSR-NSAF algorithm will be 

derived, whose inspiration comes from the 

joint-optimization NLMS (JO-NLMS) algorithm proposed 

by S. Ciochină et al. [7]. 

3.1 Some insights for convergence of the NSAF 

Let us assume that the unknown vector ow  is a 

time-varying vector that follows a simplified first-order 

Markov model [24], i.e., 

( ) ( 1) ( )o ok k kw w q               (4) 

where ( )kq  is a white Gaussian noise vector with 

zero-mean and covariance matrix 2( ) ( )T
q ME k kq q I     

with MI  being an M M  identity matrix and  E   

denoting the mathematical expectation. Evidently, the 

quantity 2
q  characterizes the randomness in ( )o kw , and 

( )kq  is independent of ( 1)o kw  .  
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Subtracting (4) from (3), we obtain  

1
, D

2
0

( ) ( )
( ) ( 1) ( )

( )

N
i i

i i

e k k
k k k

k








   



u

w w q
u

      (5) 

where ( ) ( ) ( )ok k kw w w   denotes the tap-weight error 

vector. Based on (1), (2)and (4), the decimated subband error 

signals can be  rewritten as 

, ( ) ( ) ( 1) ( ) ( ) ( )T T
i D i i ie k k k k k k   u w u q    (6) 

where ( )i k  for 0,1,..., 1i N   are the subband noises 

that are obtained by partitioning the measurement noise 

( )n , and have zero-mean and variances 2 2

i
N    [11], 

[22].  

Taking the squared l2-norm and mathematical 

expectation on both sides of (6), and removing the 

uncorrelated product of ( )kq  and ( 1)k w , we get  

 
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u

u u
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

     (7) 

where 
2

MSD( ) ( )k E kw 
  
  denotes the MSD of the 

algorithm at the kth iteration. In (7), we also use the diagonal 

assumption, i.e., ( ) ( ) 0,  T
i jE k k i j    u u , which has been 

used in the derivation of the standard NSAF [8]. For a long 

adaptive filter, it is assumed that the fluctuation of 
2

( )i ku  

from one iteration to the next is small enough [12], [16] so 

that (7) becomes  

 
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





w u

u

q u

u

u u

u



.      (8) 

Owing to the inherent decorrelating property of SAF, 

we can assume that each decimated subband input signal is 

close to a white signal, i.e., 2( ) ( ) ( )
i

T
i i M uk k ku u I   and 

2( ) ( ) ( )
i

T
i i uk k M ku u   [14]. Hence, (8) is changed as  

 

2

1
, D

2
0

1
, D

2
0

2
1

, D2

22
0

MSD( ) MSD( 1)

( ) ( 1) ( )
2

( )

( ) ( ) ( )
2

( )

( ) ( ) ( )

( )

i

i

i

q

TN
i i

i u

T
N

i i

i u

T
N

i i i

i
u

k k M

E e k k k

M k

E e k k k

M k

E e k k k

M k

w u

q u

u u






 


 


 













  

   

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

 
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







.      (9) 

To further proceed, the commonly used independent 

assumption [1], [7], [10], [22] that ( 1)k w , ( )i ku , ( )kq  

and ( )i k  are statistically independent is necessary. With 

this assumption and using the Gaussian moment factoring 

theorem [1], [7], and after some manipulations, we have  

2
, D ( ) ( 1) ( ) ( )MSD( 1)

i

T
i i uE e k k k k k    w u ,  (10) 

2 2
, D ( ) ( ) ( ) ( )

i

T
i i q uE e k k k M k    q u ,      (11) 

2 2 2
, D

4 2

( ) ( ) ( ) ( )

( 2) ( ) MSD( 1)

i i

i

T
i i i u

u q

E e k k k M k

M k k M

 

 

   

     

u u
.      (12) 

Substituting (10)-(12) into (9), then (9) becomes  

MSD( ) ( ,  )MSD( 1) ( ,  )k k            (13) 

where  

 

2 41 1
2

2 22
0 0

( ,  )

( ) ( 2) ( )
1 2

( ) ( )

i i

i
i

N N
u u

i iu u

k M k

M k M k
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 
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 

 



 
 

  
    

 
,  (14) 

 

2 21
2 2

22
0

( )
( ,  ) ( ,  )

( )

i i

i

N
u

q
i

u

M k
M

M k


 
      

 





 


 .  (15) 

Evidently, the relation (13) consists of two parts, i.e., 

( ,  )    and ( ,  )   , which reveal the convergence and 

misadjustment behavior of the NSAF, respectively. 

Remark 1: The term ( ,  )    controls the 

convergence rate of the algorithm in mean square sense. As 

can be seen, the convergence rate is dependent on the step 

size, regularization parameter, filter length, number of 

subbands, and subband input variances. Interestingly, the 

convergence rate is not influenced by the subband noise 

variances 2

i
  and the model uncertainties 2

q . In addition, 

some classical convergence conclusions can be obtained by 

analyzing the convergence term ( ,  )   : 
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1) The fastest convergence rate of the algorithm is 

obtained when the value of ( ,  )    is minimum. 

Therefore, setting the derivative of ( ,  )    with 

respect to the step size to zero, the optimal step size 

for ensuring the fastest convergence rate is 

obtained as 

1 22 2 2

0
opt-con 1 24 2

0

( ) ( ) ( )

( 2) ( ) ( )

i i i

i i

N

u u u
i

N

u u
i

k M k M k

M k M k

    



  








          


    




. (16) 

After neglecting the regularization parameter (i.e., 

0  ) and supposing a long filter (i.e., 2M  ), 

(16) can be approximated as opt-con 1  , which is 

a well-known result for the standard NSAF[3]. 

2) To ensure the mean square stability of the NSAF 

algorithm, the range of the step size can be 

formulated by imposing ( ,  ) 1     as  

stability opt-con0 2   .         (17) 

By again taking 0   and 2M  , we obtain 

the stability  range presented in [3], [8], i.e., 

stability0 2  . 

Remark 2: The term ( ,  )    in (13) determines the 

misadjustment of the NSAF algorithm. Evidently, the 

misadjustment depends on 2
q  and 2

i
 , and increases as 

these two quantities increase. It is worth to note that the 

smallest misadjustment of the algorithm can be obtained by 

the minimization of  ( ,  )   . As a consequence, by setting 

the derivative of ( ,  )    with respect to the step size to 

zero, the optimal step size for obtaining the smallest 

misadjustment is expressed as  

opt-mis

1 22 2 2 2

0

1 22 4 2 2 2

0

( ) ( ) ( )

( 2) ( ) ( ) ( ) ( )

i i i

i i i i

N

q u u u
i

N

q u u u
i

k M k M k

M k k k M k
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


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
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          

           





.(18) 

Assuming that the unknown system is stationary, i.e., 

2 0q  , (18) will lead to opt-mis 0  . This result implies 

that the step size should be very small (e.g., close to zero) to 

obtain small misadjustment. 

Remark 3: From Remarks 1 and 2, it is concluded that 

the fixed step size determines the convergence rate and 

misadjustment of the NSAF algorithm in opposite directions. 

In other words, using the fixed step size is unrealistic to 

obtain the NSAF’s desired performance including both fast 

convergence rate and small misadjustment. Hence, this 

conclusion motivates the VSS methods to meet these two 

performances. In all the VSS schemes, there is a common 

fact that the step size gradually decreases as the algorithm 

converges from the starting stage to the steady-state stage. 

Although the regularization constant in (3) is originally 

introduced to avoid the numerical instability of the NSAF 

when the l2-norm of the subband input signals is very small 

(in extreme case, is zero), its value also influences the 

convergence rate and misadjustment of the algorithm [20]. 

Interestingly, the influence of the regularization constant on 

these two performances is opposite to that of the step size. 

That is to say, as the regularization constant increases, the 

convergence rate will become slow while the misadjustment 

will decrease. As a result, a potential scheme is to control 

these two parameters simultaneously to improve the 

performance of the NSAF, which will be described in 

following subsection. 

3.2 A joint-optimization scheme 

Using a time-varying step size ( )i k  and a time-varying 

regularization parameter ( )i k  for 0,1,..., 1i N  , (13) 

can be rewritten as  

21

2
0

2 41
2
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0

2 2 21

22
0
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MSD( ) 1 2
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( )( 2) ( )
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i

N
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N
i u

q
i

i u

N
i u

i
u
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k
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k M
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k M k
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
   







. (19) 

In order to minimize the MSD of the NSAF at each 

iteration, the following subband constraints are imposed, i.e., 

MSD( )
0

( )i

k

k





 and 

MSD( )
0

( )i

k

k





, 0,1,..., 1i N  . (20) 

Applying (20), a joint-optimization strategy of ( )i k  

and ( )i k  for each subband is obtained as,  

2

2

2 2 2

( )

( ) ( )

MSD( 1)

( 2) ( ) MSD( 1)

i

i i

i

i u

q

u q

k

k M k

k M

M k k M M 



 


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


 

      

.  (21) 

Substituting (21) into (3), we obtain a new tap-weight 

update expression 



 

5  
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, D

2 2 2
0

( ) ( 1)

MSD( 1) ( ) ( )

( 2) ( ) MSD( 1)
i i

N
q i i

i u q

k k

k M e k k

M k k M M

w w

u





  





 

   
     


. (22) 

Likewise, substituting (21) into (19) and after some 

simple computations, the parameter MSD( 1)k   in (22) is 

updated by 

2

2 2
1

2 2 2
0

MSD( ) MSD( 1)

MSD( 1) ( )
1

( 2) ( ) MSD( 1)

i

i i

q

N
q u

i u q

k k M

k M k

M k k M M 



 

  





      
         

          


.(23) 

3.3 Convergence of the proposed algorithm 

Let us define the decimated a priori error of the ith subbands 

as , ( ) ( 1) ( )T
a i ie k k kw u , we have 

2 2
, ( ) MSD( 1) ( )

ia i uE e k k k     
, then (23) can be changed as 

2MSD( ) ( )MSD( 1) ( ) qk k k k M          (24) 

where  

2 2 21
,

2 2 2 2
0 ,

( )

( ) ( )
1

( 2) ( ) ( )

i

i i

N
a i q u

i a i q u

k

E e k M k

M E e k M k M 



 

  







    
        


.  (25) 

By continuously iterating (24), we get 

 

2

1

MSD( ) ( ) (2) (1) MSD(0)

( ) ( )
k

q
j

k k

M j k

  

  


 

 
,      (26) 

 
1

2

1

MSD( 1) ( 1) (2) (1) MSD(0)

( ) ( 1)
k

q
j

k k

M j k

  

  




   

  
.     (27) 

Combining (26) and (27), a relation is founded as 

   2

MSD( ) MSD( ) MSD( 1)

( ) 1 ( 1) (2) (1) MSD(0) ( )q

k k k

k k M k     

    

   
. (28) 

Again using the assumption of a long adaptive filter, i.e., 

2M  , which is the property of echo cancellation 

application (e.g., 512M   in the following simulation 

section), thus from (25) we obtain 

 

2 2 21
,

2 2 2 2
0 ,

max

( ) ( )
( ) 1

( ) ( )

1 1

i

i i

N
a i q u

i a i q u

E e k M k
k

M E e k M k M

N

M



 


  







     
     

      


. (29) 

To ensure the mean square stability of the proposed 

algorithm, the MSD must decrease iteratively, i.e., 

MSD( ) 0k  . Thus, the quantity 2
q  has to satisfy the 

inequality  

 2 1
max

1 ( )
MSD(0)

( )
k

q

k

M k


 




 .        (30) 

Under the condition of (28) the algorithm has reached 

steady-state, and then the following relation holds  

2

1

1
2 max max

max
max

2 max

max

MSD( )

lim ( ) (2) (1)MSD(0) ( ) ( )

lim MSD(0)
1

1

k

q
k

j

k
k

q
k

q

k M j k

M

M

     

 
 















 

         

        






.(31) 

The formula (31) reveals that the convergence of the 

proposed JOSR-NSAF is stable in mean square sense. 

3.4 Practical considerations 

To implement the above-presented JOSR-NSAF algorithm, 

some practical considerations about parameters 2 ( )
iu k , 2

 , 

and 2
q  are necessary which are listed below. 

1) The subband input variances 2 ( )
iu k  for 

0,1,..., 1i N   can be estimated by 

2ˆ ( ) ( ) ( )
i

T
u i ik k k Mu u   [7], [23].  

2) The second consideration is to take the 

measurement noise variance 2
 , which also 

appears in many VSS and VR versions of the 

NSAF algorithm, e.g., [12], [13], [15], [16], [19], 

[21]. Usually, in practical applications, 2
  can be 

easily estimated. Also, several different methods 

based on an exponential window have been 

developed to estimate this variance [4], [5], [12]. 

For example, in echo cancellation, it can be 

estimated during silences of the near-end talker, i.e., 

in a single-talk scenario [12]. Importantly, 

discussing the performance of these methods 

estimating 2
  is not the purpose of this work.  

3) The only remaining consideration is how to choose 

2
q , which plays a very important role in the 

performance of the proposed JOSR-NSAF. For a 

small 2
q , the algorithm has a small steady-state 

misadjustment but a poor tracking capability; 

conversely, a large 2
q  results in a good tracking 

performance but increases the steady-state 

misadjustment. To solve this compromise, 
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therefore, 2
q  is estimated as [7], [23] 

22ˆ ( ) ( ) ( 1)q k k k Mw w    .      (32) 

This relation is obtained by taking the l2-norm on 

both sides of (4) and replacing ( )o kw  by its 

estimate ( )kw . As can be seen, in the initial stage 

of adaptation or when the unknown system 

suddenly changes, the value of 2ˆq  is large, thus 

leading to fast convergence rate and good tracking 

capability. Moreover, when the algorithm goes into 

the steady-state, the value of 2ˆq  is small, thus 

obtaining low steady-state misadjustment.  

Based on the above considerations, the proposed 

JOSR-NSAF algorithm is summarized in Table 1. Note that, 

the JOSR-NSAF will reduce to the JO-NLMS in [7] when 

the number of subbands is one. 

Table 1 Summary of the proposed JOSR-NSAF algorithm 

Initializations (0) w 0 , MSD(0) 1  

Parameters 2
 , noise variance known or estimated 

Adaptive 

process 

for 0,1,..., 1i N   

, , ( ) ( ) ( ) ( 1) T
i D i D ie k d k k ku w  

 

2ˆ ( ) ( ) ( )
i

T
i iu

k k k Mu u 
 

end 

2ˆ( ) MSD( 1) ( 1)qg k k M k     

2 2

( )
( )

( 2) ( ) ( )
i i

i

u

g k
k

M k g k M 


 


 

 

1

, D

0

( ) ( 1) ( ) ( ) ( )
N

i i i

i

k k k e k k




  w w u  

1
2

1

MSD( ) 1 ( ) ( ) ( )
i

N

i u
i

k k k g k 





 
 

  
 
 

  

22ˆ ( ) ( ) ( 1)qM k k kw w     

4 Simulation results 

To evaluate the performance of the algorithm, extensive 

simulations are performed in the context of acoustic echo 

cancellation. In our simulations, the unknown vector ow  to 

be identified is a room acoustic echo path with 512M   

taps. Also, to show the tracking capability of the algorithm, 

the unknown vector is changed abruptly from ow  to ow  

in the middle of input samples. The colored input signal is 

either an AR(1) process with a pole at 0.95 or a speech 

signal. The measurement noise ( )n  is white Gaussian 

with a signal-to-noise ratio (SNR) of either 30 dB or 20 dB. 

It is assumed that the variance of the measurement noise, 

2
 , is known, because it can be easily estimated like the 

ways in [4, 5, 12]. A cosine modulated filter bank [3] is used 

in all the SAF algorithms. As a measure of the algorithm 

performance, the normalized MSD (NMSD) (or called the 

misadjustment) is defined as 

2 2

10 2 2
10 log ( ( ) / )o ok w w w  (dB). All results are 

obtained by averaging over 30 independent runs, except for 

speech input (single realization).  

We first examine the performance of the JO-NLMS in 

[7] and proposed JOSR-NSAF (with 2N   and 8 

subbands) algorithms for an AR(1) input, as shown in Fig. 2. 

From this figure, it can be noted that the JOSR-NSAF 

algorithm has faster convergence rate than the JO-NLMS 

(i.e., the JOSR-NSAF with 1N  ) algorithm for the 

colored input signal. Moreover, with an increased number of 

subbands N, the convergence rate is further improved. The 

reason behind this phenomenon is that each decimated 

subband input signal is closer to a white signal for a larger 

number of subbands. In the following simulations, we 

choose 8N   to compare all the NSAF-type algorithms. 

 
Fig. 2. NMSD curves of the JO-NLMS and proposed JOSR-NSAF (with 

2N   and 8) algorithms. SNR 30 dB= , AR(1) input. 

Then, Fig. 3 shows the NMSD performance of the 

standard NSAF (with 1   and 0.05), VSSM-NSAF [12], 

NVSS-NSAF [16], VRM-NSAF [19], and proposed 

JOSR-NSAF algorithms using an AR(1) process as input 

signal. All these VSS and VR algorithms require the priori 

knowledge of the measurement noise variance 2
 , so we 

assume that its value is available to obtain a fair comparison. 

Also, we set the algorithms’ parameters according to the 

recommendations provided in [12], [16], [19]. As can be 

seen, compared with the NSAF algorithm, its VSS and VR 
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5
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versions improve the performance in terms of the 

convergence rate and steady-state misadjustment. 

Importantly, the improvement of the proposed JOSR-NSAF 

in the steady-state performance is more obvious than its 

counterparts. It can also be observed from Fig. 3 that as the 

SNR decreases (or the measurement noise variance 2
  

increases), the steady-state misadjustment of these NSAFs 

increases but the convergence rate of that does not change, 

which is consistent with the previous analysis results in 

Remarks 1 and 2. 

 

(a) 

 

(b) 

Fig. 3. NMSD curves of various NSAF-type algorithms for AR(1) input 

signal. (a) SNR 30 dB= ; (b) SNR 20 dB= . VSSM-NSAF: 6= ; 

NVSS-NSAF: 3,  4= =  ; VRM-NSAF: 0.995,  1000= Q = . The 

regularization parameter for the NSAF, VSSM-NSAF and NVSS-NSAF 

algorithms is chosen as 
210

iu  . 

Finally, Fig. 4 compares the performance of the 

proposed JOSR-NSAF with that of the NSAF (with 

1  ), VSSM-NSAF, NVSS-NSAF, and VRM-NSAF in 

speech input scenario. These results are similar to those 

results with AR(1) input in Fig. 3, which demonstrates 

that the proposed algorithm also works better than the 

existing VSS and VR NSAF algorithms for speech input 

signal. In addition, the proposed algorithm does not 

require any additional parameters to control its 

performance relative to many of its counterparts. 

 
(a) 

 
(b) 

Fig. 4. NMSD curves of various NSAF-type algorithms for speech input 

signal. The choice of the algorithms’ parameters is the same as Fig. 3. (a) 

SNR 30 dB= ; (b) SNR 20 dB= . 

5 Conclusions 

We have analyzed the convergence performance of the 

standard NSAF using a first-order Markov model of the 

optimal tap-weight vector. Based on this model, a 

joint-optimization NSAF algorithm has been derived by 

minimizing the MSD of the NSAF over both the step size 

and the regularization parameter, aiming to simultaneously 

obtain fast convergence rate and low steady-state 

misadjustment. Simulation results in acoustic echo 

cancellation application have shown that the proposed 

algorithm outperforms many existing VSS and VR versions 

of the NSAF in performance. 
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