Abstract
In this paper, a gain enhanced transconductance amplifier having high bandwidth and improved phase margin has been proposed. Miller compensation technique, using a series connected capacitor and resistor branch has been utilized to improve the phase margin of adaptively-biased cross-coupled high gain transconductance amplifier (proposed OTA-I). Further, gate compensation resistor is utilized to achieve bandwidth extension (proposed OTA-II). This proposed structure offers improvement in phase margin and bandwidth without increasing the power consumption or supply voltage requirement, while maintaining DC gain and linear range of the gain enhanced transconductance amplifier. The simulation results have been carried out in EldoSpice using TSMC based level 53, 0.18 µm CMOS technology with ± 0.6V supply voltage. These results show that for peaking free response in proposed OTA-II, phase margin of 59.40° and bandwidth of 33.31MHz can be achieved compared to values of 51.92° and 16.10MHz in conventional OTA. Monte Carlo and temperature analysis demonstrate robustness of the proposed circuit against process and temperature variations.






















Similar content being viewed by others
Availability of Data Material
Not applicable
Code Availability
Not applicable.
References
Geiger, R. L., & Sinencio, E. S. (1985). Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Magazine, 1(2), 20–32.
Barúqui, F. A. P., & Petraglia, A. (2006). Linearly tunable CMOS OTA With constant dynamic range using source-degenerated current mirrors. IEEE Trans. Circuits Syst-II: Express Briefs, 53(9), 797–801.
Kachare,M., Angulo, J. R., Martín,A. J. L., Carvajal, R. G. (2004) Compact tunable CMOS OTA with high linearity, Proceedings of International Symposium on Circuits and Systems (ISCAS '04), pp. I-693–I-697.
Banchuin, R., Chipipop, B., Sirinaovakul, B., (2007) novel practically applicable passive equivalent circuit model of the alternatively structured higher performance practical OTA-based floating inductor, Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, pp. 447–450.
Kwawsibsam, A., Lahiri, A., & Jaikla, W. (2013). Conception of simulating grounded negative inductor and implementation using operational transconductance amplifiers, IEEE 13th International Symposium on Communications and Information Technologies (ISCIT) (pp. 347–349). Surat Thani.
Raczy,J. P. Z., Vargas,C. V., Amado,O. O., (2008) High Value Resistance for Neural Signals Acquisition System using OTA topologies IEEE Proceedings of the Argentine School of Micro-Nanoelectronics, Technology and Applications, Aires, Argentina, pp. 115–118.
Singh, V. (2003). Floating operational transconductance amplifier based grounded impedance. IEEE Proceedings - Circuits, Devices and Systems, 150(1), 27. https://doi.org/10.1049/ip-cds:20030367
Suksang,T., Loedhammacakra, W., Pirajnanchai, e., (2012) Implement the fractional-order, half integrator and differentiator on the ota base PIλDμ controller circuit, IEEE 9th international conference on electrical engineering/electronics, computer, telecommunications and information technology, pp. 1–4.
Thanapitak, S., OTA-C Differentiator for large time constant applications, IEEE 12th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), 2015, Hua Hin, Thailand.
Lo, T. Y., & Hung, C. C. (2007). A wide tuning range Gm–C continuous-time analog filter. IEEE Trans. Circuits SystI: Regular Papers, 54(4), 713–722.
Hung, C. C., Halonen, K. A. I., Ismail, M., Porra, V., Hyogo, A., & Low-Voltage, A. (1997). Low-Power CMOS fifth-order elliptic gm-c filter for baseband mobile, wireless communication. IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 584–593.
Thyagarajan, S. V., Pavan, S., & Sankar, P. (2011). Active-RC filters using the Gm-assisted OTA-RC technique. IEEE Journal of Solid-State Circuits, 46(7), 1522–1533.
Kumar, A., Srivastava, B. M. C., Kumar, C. U., Voltage mode OTA Based KHN Filter, IEEE 55th international midwest symposium on circuits and systems (MWSCAS), 2012, Boise, ID, USA, pp. 698–700.
Chang, C. M., Hou, C. L., Chung, W. Y., Horng, J. W., & Tu, C. K. (2006). Analytical synthesis of high-order single-ended-input ota-grounded c all-pass and band-reject filter structures. IEEE Trans. Circuits Syst-II: Regular Papers, 53(3), 489–498.
Bhanja, M., Ghosh, K., Ray, B., (2012) Design of Multifunction Biquad Structure using OTA, IEEE 5th International conference on computers and devices for communication (CODEC), Kolkata, India.
Hung, C. C., & Ismail, M. (1999). A Low-Voltage Rail-To-Rail CMOS V-I Converter, IEEE Trans. Circuits Syst-II: Analog and Digital Signal Processing, 46(6), 816–820.
Kim, H., Kim, H. J., & Chung, W. S. (2007). Pulsewidth modulation circuits using CMOS OTAs. IEEE Trans. Circuits Syst.-I: Regular Papers, 54(9), 1869–1878.
Engelen, J. A. E. P. V., Plassche, R. J. V., Stikvoort, E., & Venes, A. G. (1999). A Sixth-Order Continuous-Time Bandpass Sigma-Delta Modulator For Digital Radio If. IEEE Journal of Solid-State Circuits, 34(12), 1753–1764.
Zarabadi, S. R., Ismail, M., & Hung, C. C. (1998). High performance analog vlsi computational circuits. IEEE Journal of Solid-State Circuits, 33(4), 644–649.
Galan, J., Carvajal, R. G., Torralba, A., Muñoz, F., & Angulo, J. R. (2005). A Low-power low-voltage OTA-C sinusoidal oscillator With a Large Tuning Range. IEEE Trans. Circuits Syst-I: Regular Papers, 52(2), 283–291.
Swamy,M. N. S.,Raut, R., Tang,Z., (2004). Generation of new OTA-C oscillator structures using network transposition, IEEE 47th Midwest Symposium on Circuits and Systems (MWSCAS '04), Hiroshima, Japan, I-73–I-76.
Senani, R., Tripathi, M. P., & Kumar, B. A. (1990). Systematic generation of OTA-C sinusoidal oscillators. Electronics Letters, 26(18), 1457–1458.
Jin, J. (2016). Multi-function current differencing cascaded transconductance amplifier (MCDCTA) and Its application to current-mode multiphase sinusoidal oscillator. Wireless Personal Communications, 86, 367–383.
Gupta, S., & Rai, S. K. (2020). New grounded and floating decremental/incremental memristor emulators based on CDTA and Its application. Wireless Personal Communications, 113, 773–798.
Xu, D., Liu, L., & Xu, S. (2016). High DC gain self-cascode structure of OTA design with bandwidth enhancement. Electronics Letters, 52(9), 740–742.
Li, Y., Han, K., Tan, X., Yan, N., & Min, H. (2010). Transconductance enhancement method for operational transconductance amplifiers. Electronics Letters, 46(19), 1321–1323.
Akbari, M., Biabanifard, S., Asadi, S., & Yagoub, M. (2014). Design and analysis of DC gain and transconductance boosted recycling folded cascode OTA. AEU - International Journal of Electronics and Communications, 68(11), 1047–1052.
Sarkar, A., & Panda, S. (2016). Design of a power efficient, high slew rate and gain boosted improved recycling folded cascode amplifier with adaptive biasing technique. Microsystem Technologies, 23(9), 4255–4262.
Rawat, A. S., Rajendran, J., Ramiah, H., Rana, A., & Jugran, S. (2021). 88-dB Gain with Improved Phase Margin Telescopic Cascode OTA for RF-IoT Applications. In Krishan Kant Singh. Mer, Vijay Bhaskar Semwal, Vishwanath Bijalwan, & Rubén González. Crespo (Eds.), Proceedings of Integrated Intelligence Enable Networks and Computing: IIENC 2020 (pp. 413–420). Singapore: Springer. https://doi.org/10.1007/978-981-33-6307-6_41
Kulej, T., & Khateb, F. (2020). A 0.3-V 98-dB Rail-to-Rail OTA in 0.18µm CMOS. IEEE Access, 8(2020), 27459–27467. https://doi.org/10.1109/ACCESS.2020.2972067
Rai, S. K., & Gupta, M. (2016). Performance enhancement of current differencing transconductance amplifier (CDTA) by using a new approach of gm boosting and its application. Optik, 127, 6103–6114.
Rai, S. K. (2016). M, Gupta, Current differencing transconductance amplifier (CDTA) with high transconductance and its application in filter and oscillator. Optik, 127, 3388–3396.
Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and Design of Analog Integrated Circuits (pp. 624–694). Wiley.
Voo, T., & Toumazou, C. (1995). High-speed current mirror resistive compensation technique. Electronics Letters, 31, 248–250.
Sedra, A. S., & Smith, K. C. (2009). Microelectronic Circuits Theory and Applications (pp. 841–908). Oxford.
Razawi, B. (2011). Design of CMOS analog integrated circuits (pp. 201–245). Tata McGraw-Hill.
Funding
Nil.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aggarwal, B., Arora, L., Chaterjee, S. et al. A Miller Compensated Gain Enhanced High Bandwidth Transconductance Amplifier. Wireless Pers Commun 126, 2647–2670 (2022). https://doi.org/10.1007/s11277-022-09834-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-022-09834-4