Skip to main content
Log in

A Miller Compensated Gain Enhanced High Bandwidth Transconductance Amplifier

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a gain enhanced transconductance amplifier having high bandwidth and improved phase margin has been proposed. Miller compensation technique, using a series connected capacitor and resistor branch has been utilized to improve the phase margin of adaptively-biased cross-coupled high gain transconductance amplifier (proposed OTA-I). Further, gate compensation resistor is utilized to achieve bandwidth extension (proposed OTA-II). This proposed structure offers improvement in phase margin and bandwidth without increasing the power consumption or supply voltage requirement, while maintaining DC gain and linear range of the gain enhanced transconductance amplifier. The simulation results have been carried out in EldoSpice using TSMC based level 53, 0.18 µm CMOS technology with ± 0.6V supply voltage. These results show that for peaking free response in proposed OTA-II, phase margin of 59.40° and bandwidth of 33.31MHz can be achieved compared to values of 51.92° and 16.10MHz in conventional OTA. Monte Carlo and temperature analysis demonstrate robustness of the proposed circuit against process and temperature variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of Data Material

Not applicable

Code Availability

Not applicable.

References

  1. Geiger, R. L., & Sinencio, E. S. (1985). Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Magazine, 1(2), 20–32.

    Article  Google Scholar 

  2. Barúqui, F. A. P., & Petraglia, A. (2006). Linearly tunable CMOS OTA With constant dynamic range using source-degenerated current mirrors. IEEE Trans. Circuits Syst-II: Express Briefs, 53(9), 797–801.

    Article  Google Scholar 

  3. Kachare,M., Angulo, J. R., Martín,A. J. L., Carvajal, R. G. (2004) Compact tunable CMOS OTA with high linearity, Proceedings of International Symposium on Circuits and Systems (ISCAS '04), pp. I-693–I-697.

  4. Banchuin, R., Chipipop, B., Sirinaovakul, B., (2007) novel practically applicable passive equivalent circuit model of the alternatively structured higher performance practical OTA-based floating inductor, Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, pp. 447–450.

  5. Kwawsibsam, A., Lahiri, A., & Jaikla, W. (2013). Conception of simulating grounded negative inductor and implementation using operational transconductance amplifiers, IEEE 13th International Symposium on Communications and Information Technologies (ISCIT) (pp. 347–349). Surat Thani.

    Google Scholar 

  6. Raczy,J. P. Z., Vargas,C. V., Amado,O. O., (2008) High Value Resistance for Neural Signals Acquisition System using OTA topologies IEEE Proceedings of the Argentine School of Micro-Nanoelectronics, Technology and Applications, Aires, Argentina, pp. 115–118.

  7. Singh, V. (2003). Floating operational transconductance amplifier based grounded impedance. IEEE Proceedings - Circuits, Devices and Systems, 150(1), 27. https://doi.org/10.1049/ip-cds:20030367

    Article  Google Scholar 

  8. Suksang,T., Loedhammacakra, W., Pirajnanchai, e., (2012) Implement the fractional-order, half integrator and differentiator on the ota base PIλDμ controller circuit, IEEE 9th international conference on electrical engineering/electronics, computer, telecommunications and information technology, pp. 1–4.

  9. Thanapitak, S., OTA-C Differentiator for large time constant applications, IEEE 12th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), 2015, Hua Hin, Thailand.

  10. Lo, T. Y., & Hung, C. C. (2007). A wide tuning range Gm–C continuous-time analog filter. IEEE Trans. Circuits SystI: Regular Papers, 54(4), 713–722.

    Article  Google Scholar 

  11. Hung, C. C., Halonen, K. A. I., Ismail, M., Porra, V., Hyogo, A., & Low-Voltage, A. (1997). Low-Power CMOS fifth-order elliptic gm-c filter for baseband mobile, wireless communication. IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 584–593.

    Article  Google Scholar 

  12. Thyagarajan, S. V., Pavan, S., & Sankar, P. (2011). Active-RC filters using the Gm-assisted OTA-RC technique. IEEE Journal of Solid-State Circuits, 46(7), 1522–1533.

    Article  Google Scholar 

  13. Kumar, A., Srivastava, B. M. C., Kumar, C. U., Voltage mode OTA Based KHN Filter, IEEE 55th international midwest symposium on circuits and systems (MWSCAS), 2012, Boise, ID, USA, pp. 698–700.

  14. Chang, C. M., Hou, C. L., Chung, W. Y., Horng, J. W., & Tu, C. K. (2006). Analytical synthesis of high-order single-ended-input ota-grounded c all-pass and band-reject filter structures. IEEE Trans. Circuits Syst-II: Regular Papers, 53(3), 489–498.

    Article  Google Scholar 

  15. Bhanja, M., Ghosh, K., Ray, B., (2012) Design of Multifunction Biquad Structure using OTA, IEEE 5th International conference on computers and devices for communication (CODEC), Kolkata, India.

  16. Hung, C. C., & Ismail, M. (1999). A Low-Voltage Rail-To-Rail CMOS V-I Converter, IEEE Trans. Circuits Syst-II: Analog and Digital Signal Processing, 46(6), 816–820.

    Google Scholar 

  17. Kim, H., Kim, H. J., & Chung, W. S. (2007). Pulsewidth modulation circuits using CMOS OTAs. IEEE Trans. Circuits Syst.-I: Regular Papers, 54(9), 1869–1878.

    Article  Google Scholar 

  18. Engelen, J. A. E. P. V., Plassche, R. J. V., Stikvoort, E., & Venes, A. G. (1999). A Sixth-Order Continuous-Time Bandpass Sigma-Delta Modulator For Digital Radio If. IEEE Journal of Solid-State Circuits, 34(12), 1753–1764.

    Article  Google Scholar 

  19. Zarabadi, S. R., Ismail, M., & Hung, C. C. (1998). High performance analog vlsi computational circuits. IEEE Journal of Solid-State Circuits, 33(4), 644–649.

    Article  Google Scholar 

  20. Galan, J., Carvajal, R. G., Torralba, A., Muñoz, F., & Angulo, J. R. (2005). A Low-power low-voltage OTA-C sinusoidal oscillator With a Large Tuning Range. IEEE Trans. Circuits Syst-I: Regular Papers, 52(2), 283–291.

    Article  Google Scholar 

  21. Swamy,M. N. S.,Raut, R., Tang,Z., (2004). Generation of new OTA-C oscillator structures using network transposition, IEEE 47th Midwest Symposium on Circuits and Systems (MWSCAS '04), Hiroshima, Japan, I-73–I-76.

  22. Senani, R., Tripathi, M. P., & Kumar, B. A. (1990). Systematic generation of OTA-C sinusoidal oscillators. Electronics Letters, 26(18), 1457–1458.

    Article  Google Scholar 

  23. Jin, J. (2016). Multi-function current differencing cascaded transconductance amplifier (MCDCTA) and Its application to current-mode multiphase sinusoidal oscillator. Wireless Personal Communications, 86, 367–383.

    Article  Google Scholar 

  24. Gupta, S., & Rai, S. K. (2020). New grounded and floating decremental/incremental memristor emulators based on CDTA and Its application. Wireless Personal Communications, 113, 773–798.

    Article  Google Scholar 

  25. Xu, D., Liu, L., & Xu, S. (2016). High DC gain self-cascode structure of OTA design with bandwidth enhancement. Electronics Letters, 52(9), 740–742.

    Article  Google Scholar 

  26. Li, Y., Han, K., Tan, X., Yan, N., & Min, H. (2010). Transconductance enhancement method for operational transconductance amplifiers. Electronics Letters, 46(19), 1321–1323.

    Article  Google Scholar 

  27. Akbari, M., Biabanifard, S., Asadi, S., & Yagoub, M. (2014). Design and analysis of DC gain and transconductance boosted recycling folded cascode OTA. AEU - International Journal of Electronics and Communications, 68(11), 1047–1052.

    Article  Google Scholar 

  28. Sarkar, A., & Panda, S. (2016). Design of a power efficient, high slew rate and gain boosted improved recycling folded cascode amplifier with adaptive biasing technique. Microsystem Technologies, 23(9), 4255–4262.

    Article  Google Scholar 

  29. Rawat, A. S., Rajendran, J., Ramiah, H., Rana, A., & Jugran, S. (2021). 88-dB Gain with Improved Phase Margin Telescopic Cascode OTA for RF-IoT Applications. In Krishan Kant Singh. Mer, Vijay Bhaskar Semwal, Vishwanath Bijalwan, & Rubén González. Crespo (Eds.), Proceedings of Integrated Intelligence Enable Networks and Computing: IIENC 2020 (pp. 413–420). Singapore: Springer. https://doi.org/10.1007/978-981-33-6307-6_41

    Chapter  Google Scholar 

  30. Kulej, T., & Khateb, F. (2020). A 0.3-V 98-dB Rail-to-Rail OTA in 0.18µm CMOS. IEEE Access, 8(2020), 27459–27467. https://doi.org/10.1109/ACCESS.2020.2972067

    Article  Google Scholar 

  31. Rai, S. K., & Gupta, M. (2016). Performance enhancement of current differencing transconductance amplifier (CDTA) by using a new approach of gm boosting and its application. Optik, 127, 6103–6114.

    Article  Google Scholar 

  32. Rai, S. K. (2016). M, Gupta, Current differencing transconductance amplifier (CDTA) with high transconductance and its application in filter and oscillator. Optik, 127, 3388–3396.

    Article  Google Scholar 

  33. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and Design of Analog Integrated Circuits (pp. 624–694). Wiley.

    Google Scholar 

  34. Voo, T., & Toumazou, C. (1995). High-speed current mirror resistive compensation technique. Electronics Letters, 31, 248–250.

    Article  Google Scholar 

  35. Sedra, A. S., & Smith, K. C. (2009). Microelectronic Circuits Theory and Applications (pp. 841–908). Oxford.

    Google Scholar 

  36. Razawi, B. (2011). Design of CMOS analog integrated circuits (pp. 201–245). Tata McGraw-Hill.

    Google Scholar 

Download references

Funding

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Aggarwal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, B., Arora, L., Chaterjee, S. et al. A Miller Compensated Gain Enhanced High Bandwidth Transconductance Amplifier. Wireless Pers Commun 126, 2647–2670 (2022). https://doi.org/10.1007/s11277-022-09834-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09834-4

Keywords