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Abstract We investigate the problem of automatically

determining what type of shoe left an impression found

at a crime scene. This recognition problem is made dif-

ficult by the variability in types of crime scene evidence

(ranging from traces of dust or oil on hard surfaces to

impressions made in soil) and the lack of comprehen-

sive databases of shoe outsole tread patterns. We find

that mid-level features extracted by pre-trained convo-

lutional neural nets are surprisingly effective descrip-

tors for this specialized domains. However, the choice

of similarity measure for matching exemplars to a query

image is essential to good performance. For matching

multi-channel deep features, we propose the use of multi-

channel normalized cross-correlation and analyze its ef-

fectiveness. Our proposed metric significantly improves

performance in matching crime scene shoeprints to lab-
oratory test impressions. We also show its effectiveness

in other cross-domain image retrieval problems: match-

ing facade images to segmentation labels and aerial pho-

tos to map images. Finally, we introduce a discrimina-

tively trained variant and fine-tune our system through

our proposed metric, obtaining state-of-the-art perfor-

mance.
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1 Introduction

We investigate the problem of automatically determin-

ing what type (brand/model/size) of shoe left an im-

pression found at a crime scene. In the forensic footwear

examination literature [1], this fine-grained category-

level recognition problem is known as determining the

class characteristics of a tread impression. This is dis-

tinct from the instance-level recognition problem of match-

ing acquired characteristics such as cuts or scratches

which can provide stronger evidence that a specific shoe

left a specific mark.

Analysis of shoe tread impressions is made difficult

by the variability in types of crime scene evidence (rang-

ing from traces of dust or oil on hard surfaces to im-

pressions made in soil) and the lack of comprehensive
datasets of shoe outsole tread patterns (see Fig. 1).

Solving this problem requires developing models that

can handle cross-domain matching of tread features be-

tween photos of clean test impressions (or images of

shoe outsoles) and photos of crime scene evidence. We

face the additional challenge that we would like to use

extracted image features for matching a given crime

scene impression to a large, open-ended database of ex-

emplar tread patterns.

Cross-domain image matching arises in a variety of

other application domains beyond our specific scenario

of forensic shoeprint matching. For example, match-

ing aerial photos to GIS map data for location discov-

ery [28,3,6], image retrieval from hand drawn sketches

and paintings [2,30], and matching images to 3D mod-

els [27]. As with shoeprint matching, many of these ap-

plications often lack large datasets of ground-truth ex-

amples of cross-domain matches. This lack of training

data makes it difficult to learn cross-domain matching

metrics directly from raw pixel data. Instead traditional
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Fig. 1 We would like to match crime scene prints to a database of test impressions despite significant cross-domain differences
in appearance. We utilize a Siamese network to perform matching using a multi-channel normalized cross correlation. We find
that per-exemplar, per-channel normalization of CNN feature maps significantly improves matching performance. Here U and
V are the linear projection parameters for laboratory test impression and crime scene photo domains respectively. W is the
per-channel importance weights. And x and y are the projected features of each domain used for matching.

approaches have focused on designing feature extrac-

tors for each domain which yield domain invariant de-

scriptions (e.g., locations of edges) which can then be

directly compared.

Deep convolutional neural net (CNN) features hier-

archies have proven incredibly effective at a wide range

of recognition tasks. Generic feature extractors trained

for general-purpose image categorization often perform

surprising well for novel categorization tasks without

performing any fine-tuning beyond training a linear clas-

sifier [29]. This is often explained by appealing to the

notion that these learned representations extract im-

age features with invariances that are, in some sense,

generic. We might hope that these same invariances

would prove useful in our setting (e.g., encoding the

shape of a tread element in a way that is insensitive to

shading, contrast reversals, etc.). However, our prob-

lem differs in that we need to formulate a cross-domain

similarity metric rather than simply training a k-way

classifier.

Building on our previous work [12], we tackle this

problem using similarity measures that are derived from

normalized cross-correlation (NCC), a classic approach

for matching gray-scale templates. For CNN feature

maps, it is necessary to extend this to handle multi-

ple channels. Our contribution is to propose a multi-

channel variant of NCC which performs normalization

on a per-channel basis (rather than, e.g., per-feature

volume). We find this performs substantially better than

related similarity measures such as the widely used co-

sine distance. We explain this finding in terms of the

statistics of CNN feature maps. Finally, we use this

multi-channel NCC as a building block for a Siamese

network model which can be trained end-to-end to op-

timize matching performance.

2 Related Work

Shoeprint recognition The widespread success of auto-

matic fingerprint identification systems (AFIS) [16] has

inspired many attempts to similarly automate shoeprint

recognition. Much initial work in this area focused on

developing feature sets that are rotation and transla-

tion invariant. Examples include, phase only correla-

tion [9], edge histogram DFT magnitudes [37], power

spectral densities [5,4], and the Fourier-Mellin trans-

form [9]. Some other approaches pre-align the query and

database image using the Radon transform [22] while

still others sidestep global alignment entirely by com-

puting only relative features between keypoints pairs [31,

23]. Finally, alignment can be implicitly computed by

matching rotationally invariant keypoint descriptors be-

tween the query and database images [23,32]. The re-

cent study of Richetelli et al. [26] carries out a compre-

hensive evaluation of many of these approaches in a va-

riety of scenarios using a carefully constructed dataset

of crime scene-like impressions. In contrast to these pre-

vious works, we handle global invariance by explicitly

matching templates using dense search over transla-

tions and rotations.

One-shot learning While we must match our crime scene

evidence against a large database of candidate shoes,

our database contains very few examples per-class. As

such, we must learn to recognize each shoe category

with as little as one training example. This can be

framed as a one-shot learning problem [17]. Prior work
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has explored one-shot object recognition with only a

single training example, or “exemplar” [18]. Specifically

in the domain of shoeprints, Kortylewski et al. [15] fit a

compositional active basis model to an exemplar which

could then be evaluated against other images. Alter-

natively, standardized or whitened off-the-shelf HOG

features have proven very effective for exemplar recog-

nition [10]. Our approach is similar in that we examine

the performance of one-shot recognition using generic

deep features which have proven surprisingly robust for

a huge range of recognition tasks [29].

Similarity metric learning While off-the-shelf deep fea-

tures work well [29], they can be often be fine tuned to

improve performance on specific tasks. In particular, for

a paired comparison tasks, so-called “Siamese” archi-

tectures integrate feature extraction and comparison in

a single differentiable model that can be optimized end-

to-end. Past work has demonstrated that Siamese net-

works learn good features for person re-identification,

face recognition, and stereo matching [36,21,33]; deep

pseudo-Siamese architectures can even learn to embed

two dissimilar domains into a common co-domain [35].

For shoe class recognition, we similarly learn to embed

two types of images: (1) crime scene photos and (2)

laboratory test impressions.

3 Multi-variate Cross Correlation

In order to compare two corresponding image patches,

we extend the approach of normalized cross-correlation

(often used for matching gray-scale images) to work

with multi-channel CNN features. Interestingly, there

is not an immediately obvious extension of NCC to

multiple channels, as evidenced by multiple approaches

proposed in the literature [7,20,8,24]. To motivate our

approach, we appeal to a statistical perspective.

Normalized correlation Let x, y be two scalar random

variables. A standard measure of correlation between

two variables is given by their Pearson’s correlation co-

efficient [20]:

ρ(x, y) = E[x̃ỹ] =
σxy√

σxx
√
σyy

(1)

where

x̃ =
x− µx√
σxx

is the standardized version of x (similarly for y) and

µx = E[x]

σxx = E[(x− µx)2]

σxy = E[(x− µx)(y − µy)]

Intuitively, the above corresponds to the correlation

between two transformed random variables that are

“whitened” to have zero-mean and unit variance. The

normalization ensures that correlation coefficient will

lie between −1 and +1.

Normalized cross-correlation Let us model pixels x from

an image patch X as corrupted by some i.i.d. noise pro-

cess and similarly pixels another patch Y (of identical

size) as y. The sample estimate of the Pearson’s coeffi-

cient for variables x, y is equivalent to the normalized

cross-correlation (NCC) between patches X,Y :

NCC(X,Y ) =
1

|P |
∑
i∈P

(x[i]− µx)
√
σxx

(y[i]− µy)
√
σyy

(2)

where P refers to the set of pixel positions in a patch

and means and standard deviations are replaced by

their sample estimates.

From the perspective of detection theory, normal-

ization is motivated by the need to compare correlation

coefficients across different pairs of samples with non-

stationary statistics (e.g., determining which patches

{Y 1, Y 2, . . .} are the same as a given template patch X

where statistics vary from one Y to the next). Estimat-

ing first and second-order statistics per-patch provides

a convenient way to handle sources of “noise” that are

approximately i.i.d. conditioned on the choice of patch

P but not independent of patch location.

Multivariate extension Let us extend the above formu-

lation for random vectors x,y ∈ RN where N corre-

sponds to the multiple channels of values at each pixel

(e.g., N = 3 for a RGB image). The scalar correlation

is now replaced by a N ×N correlation matrix. To pro-

duce a final score capturing the overall correlation, we

propose to use the trace of this matrix, which is equiv-

alent to the sum of its eigenvalues. As before, we add

invariance by computing correlations on transformed

variables x̃, ỹ that are “whitened” to have a zero-mean

and identity covariance matrix:

ρmulti(x,y) =
1

N
Tr(E[x̃ỹT ]) (3)

=
1

N
Tr(Σ

− 1
2

xx ΣxyΣ
− 1

2
yy )

where:

x̃ = Σ
− 1

2
xx (x− µx),

Σxx = E[(x− µx)(x− µx)T ],

Σxy = E[(x− µx)(y − µy)T ].
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Fig. 2 Distribution of patch channel means: For each
query image (patch) we match against the database, our
proposed MCNCC similarity measure normalizes ResNet-50
‘res2x’ feature channels by their individual mean and stan-
dard deviation. For uniformly sampled patches, we denote the
normalizing mean for channel c using the random variable µc.
For each channel, we plot the standard deviation of µc above
with channels sorted by increasing standard deviation. When
the mean response for a channel varies little from one patch
to the next (small std, left), we can expect that a global,
per-dataset transformation (e.g., PCA or CCA whitening)
is sufficient to normalize the channel response. However, for
channels where individual patches in the dataset have very
different channel means (large std, right), normalizing by the
local (per-patch) statistics provides additional invariance.

The above multivariate generalization of the Pearson’s

coefficient is arguably rather natural, and indeed, is

similar to previous formulations that also make use of

a trace operator on a correlation matrix [20,24]. How-

ever, one crucial distinction from such past work is that

our generalization (3) reduces to (1) for N = 1. In par-

ticular, [20,24] propose multivariate extensions that

are restricted to return a nonnegative coefficient. It is

straightforward to show that our multivariate coeffi-

cient will lie between −1 and +1.

Decorrelated channel statistics The above formulation

can be computationally cumbersome for large N , since

it requires obtaining sample estimates of matrices of

size N2. Suppose we make the strong assumption that

all N channels are uncorrelated with each other. This

greatly simplifies the above expression, since the covari-

ance matrices are then diagonal matrices:

Σxy = diag({σxcyc})
Σxx = diag({σxcxc

})
Σyy = diag({σycyc})

Plugging this assumption into (3) yields the simplified

expression for multivariate correlation

ρmulti(x,y) =
1

N

N∑
c=1

σxcyc√
σxcxc

√
σycyc

(4)

where the diagonal multivariate statistic is simply the

average of N per-channel correlation coefficients. It is

easy to see that this sum must lie between −1 and +1.
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Fig. 3 Normalizing channel statistics: As shown in
the histograms of Fig. 2, for some feature channels, patches
have wildly different means and standard deviations. For
channel 14 (left), the statistics (and hence normalization)
are similar from one patch to the next while for channel
256 (right), means and standard deviations vary substan-
tially across patches. CNN channel activations are positive
so means and standard deviations are strongly correlated.

Multi-channel NCC The sample estimate of (4) yields
a multi-channel extension of NCC which is adapted to
the patch:

MCNCC(X,Y ) =
1

N |P |

N∑
c=1

∑
i∈P

(xc[i]− µxc
)

√
σxcxc

(yc[i]− µyc
)

√
σycyc

The above multi-channel extension is similar to the

final formulation in [7], but is derived from a statistical

assumption on the channel correlation.

Cross-domain covariates and whitening Assuming a di-

agonal covariance makes strong assumptions about cross-

channel correlations. When strong cross-correlations ex-

ist, an alternative approach to reducing computational

complexity is to assume that cross-channel correlations

lie within a K dimensional subspace, where K ≤ N . We

can learn a projection matrix for reducing the dimen-

sionality of features from both patch X and Y which

decorrelates and scales the channels to have unit vari-

ance:

x̂ = U(x− µx), U ∈ RK×N , E[x̂x̂T ] = I

ŷ = V (y − µy), V ∈ RK×N , E[ŷŷT ] = I

In general, the projection matrix could be different for

different domains (in our case, crime scene versus test

prints). One strategy for learning the projection ma-

trices is applying principle component analysis (PCA)

on samples from each domain separately. Alternatively,

when paired training examples are available, one could

use canonical correlation analysis (CCA) [19], which

jointly learn the projections that maximize correlation

across domains. An added benefit of using orthogonal-

izing transformations such as PCA/CCA is that trans-

formed data satisfies the diagonal assumptions (glob-

ally) allowing us to estimate patch multivariate corre-

lations in this projected space with diagonalized covari-

ance matrices of size K ×K.
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Global versus local whitening There are two distinct as-

pects to whitening (or normalizing) variables in our

problem setup to be determined: (1) assumptions on

the structure of the sample mean and covariance ma-

trix, and (2) the data over which the sample mean and

covariance are estimated. In choosing the structure, one

could enforce an unrestricted covariance matrix, a low-

rank covariance matrix (e.g., PCA), or a diagonal co-

variance matrix (e.g., estimating scalar means and vari-

ances). In choosing the data, one could estimate these

parameters over individual patches (local whitening)

or over the entire dataset (global whitening). In Sec-

tion 5, we empirically explore various combinations of

these design choices which are computationally feasible

(e.g., estimating a full-rank covariance matrix locally

for each patch would be too expensive). We find a good

tradeoff to be global whitening (to decorrelate features

globally), followed by local whitening with a diagonal

covariance assumption (e.g., MCNCC).

To understand the value of global and per-patch

normalization, we examine the statistics of CNN fea-

ture channels across samples of our dataset. Fig. 2 and

Fig. 3 illustrate how the per-channel normalizing statis-

tics (µc, σc) vary across patches and across channels.

Notably, for some channels, the normalizing statistics

change substantially from patch to patch. This makes

the results of performing local, per-patch normalization

significantly different from global, per-dataset normal-

ization.

One common effect of both global and local whiten-

ing is to prevent feature channels that tend to have

large means and variances from dominating the cor-

relation score. However, by the same merit this can

have the undesirable effect of amplifying the influence

of low-variance channels which may not be discrimina-

tive for matching. In the next section we generalize both

PCA and CCA using a learning framework which can

learn channel decorrelation and per-channel importance

weighting by optimizing a discriminative performance

objective.

4 Learning Correlation Similarity Measures

In order to allow for additional flexibility of weighting

the relevance of each channel we consider a channel-

weighted variant of MCNCC parameterized by vector

W :

MCNCCW (X,Y )

=
N∑

c=1

Wc

 1

|P |
∑
i∈P

(xc[i]− µxc )√
σxcxc

(yc[i]− µyc )√
σycyc

 (5)

This per-channel weighting can undo the effect of scal-

ing by the standard deviation in order to re-weight

channels by their informativeness. Furthermore, since

the features x, y are themselves produced by a CNN

model, we can consider the parameters of that model

as additional candidates for optimization. In this view,

PCA/CCA can be seen as adding an extra linear net-

work layer prior to the correlation calculation. The pa-

rameters of such a layer can be initialized using PCA/CCA

and then discriminatively tuned. The resulting “Siamese”

architecture is illustrated in Fig. 1.

Siamese loss: To train the model, we minimize a hinge-

loss:

arg min
W,U,V,b

α

2
‖W‖22 +

β

2

(
‖U‖2F + ‖V ‖2F

)
(6)

+
∑
s,t

max
(
0, 1− zs,t MCNCCW (φU (Xs), φV (Y t)) + b

)
where we have made explicit the function φ which com-

putes the deep features of two shoeprints Xs and Y t,

with W , U , and V representing the parameters for the

per-channel importance weighting and the linear pro-

jections for the two domains respectively. b is the bias

and zs,t is a binary same-source label (i.e., +1 when Xs

and Y t come from the same source and −1 otherwise).

Finally, α is the regularization hyperparameter for W

and β is the same for U and V .

We implement φ using a deep architecture, which is

trainable using standard backpropagation. Each chan-

nel contributes a term to the MCNCC which itself is

just a single channel (NCC) term. The operation is sym-

metric in X and Y , and the gradient can be computed

efficiently by reusing the NCC computation from the

forward pass:

d NCC(xc, yc)

d xc[j]
=

1

|P |√σxcxc

(ỹc[j] + x̃c[j] NCC(xc, yc)) (7)

Derivation of NCC gradient: To derive the NCC gra-

dient, we first expand it as a sum over individual pixels

indexed by i and consider the total derivative with re-

spect to input feature x[j]

d NCC(x, y)

d x[j]
=

1

|P |
∑
i∈P

ỹ[i]

(
∂x̃[i]

∂x[j]
+
∂x̃[i]

∂µx

∂µx

∂x[j]
+
∂x̃[i]

∂σxx

∂σxx

∂x[j]

)
(8)

where we have have dropped the channel subscript for

clarity. The partial derivative ∂x̃[i]
∂x[j] = 1√

σxx
, if and only

if i = j and is zero otherwise. The remaining partials
derive as follows:

∂x̃[i]

∂µx

= −
1
√
σxx

∂µx

∂x[j]
=

1

|P |
∂x̃[i]

∂σxx

=
1

2σ
3/2
xx

(x[i]− µx)
∂σxx

∂x[j]
=

2 (x[j]− µx)

|P |
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Fig. 4 Comparing MCNCC to baselines for image retrieval within the same domain. The methods are denoted by two
operations in square brackets: centering and normalization, respectively. µ and σ denote computing the statistics across all
channels, µc and σc denote computing per-channel statistics, and · denotes the absence of the operation (e.g., MCNCC is
denoted as [µc, σc], whereas cross-correlation is denoted as [·, ·]. Finally, µ̄c and σ̄c denote computing the average per-channel
statistics across the dataset. The left panel shows the performance on the raw features, whereas the right panel compares
globally whitened features using PCA (solid lines) against their corresponding raw features (dotted lines). (Best viewed in
color.)

Substituting them into Eq. 8, we arrive at a final ex-
pression:

d NCC(x, y)

d x[j]

=
ỹ[j]

|P |√σxx

+
1

|P |
∑
i∈P

ỹ[i]

(
−1

|P |√σxx

+
2 (x[i]− µx) (x[j]− µx)

2|P |σ3/2
xx

)

=
1

|P |√σxx

ỹ[j] + 1

|P |
∑
i∈P

ỹ[i]

(
−1 +

(x[i]− µx) (x[j]− µx)

σxx

)
=

1

|P |√σxx

ỹ[j]− 1

|P |
∑
i∈P

ỹ[i] +
1

|P |
∑
i∈P

ỹ[i]x̃[i]x̃[j]


=

1

|P |√σxx

(ỹ[j] + x̃[j] NCC(x, y)) (9)

where we have made use of the fact that ỹ is zero-mean.

5 Diagnostic Experiments

To understand the effects of feature channel normaliza-

tion on retrieval performance, we compare the proposed

MCNCC measure to two baseline approaches: simple

unnormalized cross-correlation and cross-correlation nor-

malized by a single µ and σ estimated over the whole 3D

feature volume. We note that the latter is closely related

to the “cosine similarity” which is popular in many re-

trieval applications (cosine similarity scales by σ but

does not subtract µ). We also consider variants which

only perform partial standardization and/or whitening

of the input features.

Partial print matching: We evaluate these methods in a

setup that mimics the occurrence of partial occlusions

in shoeprint matching, but focus on a single modal-

ity of test impressions. We extract 512 query patches

(random selected 97× 97 pixel sub-windows) from test

impressions that have two or more matching tread pat-

terns in the database. The task is then to retrieve from

the database the set of relevant prints. As the query

patches are smaller than the test impressions, we search

over spatial translations (with a stride of 1), using the

maximizing correlation value to score the match to the

test impression. We do not need to search over rota-

tions as all test impressions were aligned to a canonical

orientation. When querying the database, the original

shoeprint the query was extracted from is removed (i.e.,

the results do not include the self-match).

We carry out these experiments using a dataset that

contains 387 test impression of shoes and 137 crime
scene prints collected by the Israel National Police [34].

As this dataset is not publicly available, we used this

dataset primarily for the diagnostic analysis and for

training and validating learned models. In these diag-

nostic experiments, except where noted otherwise, we

use the 256-channel ‘res2bx’ activations from a pre-

trained ResNet-50 model1. We evaluated feature maps

at other locations along the network, but found those

to performed the best.

Global versus local normalization: Fig. 4 shows retrieval

performance in terms of the tradeoff of precision and

recall at different match thresholds. In the legend we

denote different schemes in square brackets, where the

first term indicates the centering operation and the sec-

ond term indicates the normalization operation. A · in-

dicates the absence of the operation. µ and σ indicate

1 Pretrained model was obtained from http://www.vlfeat.

org/matconvnet/models/imagenet-resnet-50-dag.mat

http://www.vlfeat.org/matconvnet/models/imagenet-resnet-50-dag.mat
http://www.vlfeat.org/matconvnet/models/imagenet-resnet-50-dag.mat
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Fig. 5 Comparing MCNCC with uniform weights (denoted as [µc, σc]), learned per-channel weights (denoted as [µc, σc ·
Wc]), learned linear projections (denoted as CCA [µc, σc]), piece-wise learned projection and per-channel weights (denoted as
CCA [µc, σc ·Wc]), and jointly learned projection and per-channel weights (denoted as CCA [µc, σc ·Wc] ft) for retrieving
relevant shoeprint test impressions for crime scene prints. The left panel shows our five methods on the Israeli dataset. The
right panel compares variants of our proposed system against the current state-of-the-art, as published in: ACCV14 [14],
BMVC16 [15] and LoG16 [13] using cumulative match characteristic (CMC).

that standardization was performed using local (i.e.,

per-exemplar) statistics of features over the entire (3D)

feature map. µc and σc indicate local per-channel cen-

tering and normalization. µ̄c and σ̄c indicate global per-

channel centering and normalization (i.e., statistics are

estimated over the whole dataset). Therefore, simple

unnormalized cross-correlation is indicated as [·, ·], co-

sine distance is indicated as [µ, σ], and our proposed

MCNCC measure is indicated as [µc, σc].

We can clearly see from the left panel of Fig. 4 that

using per-channel statistics estimated independently for

each comparison gives substantial gains over the base-

line methods. Centering using 3D (across-channel) statis-

tics is better than either centering using global statistics

or just straight correlation. But cosine distance (which

adds the scaling operation) decreases performance sub-

stantially for the low recall region. In general, removing

the mean response is far more important than scaling

by the standard deviation. Interestingly, in the case of

cosine distance and global channel normalization, scal-

ing by the standard deviation actually hurts perfor-

mance (i.e., [µ, σ] versus [µ, ·] and [µ̄c, σ̄c] versus [µ̄c, ·]
respectively). As normalization re-weights channels, we

posit that this may be negatively effecting the scores

by down-weighing important signals or boosting noisy

signals.

Channel decorrelation: Recall that, for efficiency rea-

sons, our multivariate estimate of correlation assumes

that channels are largely decorrelated. We also explored

decorrelating the channels globally using a full-dimension

PCA (which also subtracts out the global mean µ̄c).

The right panel of Fig. 4 shows a comparison of these

decorrelated feature channels (solid curves) relative to

baseline ResNet channels (dotted curves). While the

decorrelated features outperform baseline correlation

(due to the mean subtraction) we found that full MC-

NCC on the raw features performed better than on

globally decorrelated features. This may be explained

in part due to the fact that decorrelated features show

an even wider range of variation across different chan-

nels which may exacerbate some of the negative effects

of scaling by σc.

Other feature extractors: To see if this behavior was

specific to the ResNet-50 model, we evaluate on three

additional features: raw pixels, GoogleNet, and DeepVGG-

16. From the GoogleNet model2 we used the 192-channel

‘conv2x’ activations, and from the DeepVGG-16 model3

we used the 256-channel ‘x12’ activations. We chose

these particular CNN feature maps because they had

the same or similar spatial resolution as ‘res2bx’ and

were the immediate output of a rectified linear unit

layer.

As shown in Table 1, we see a similar pattern to

what we observed with ResNet-50’s ‘res2bx’ features.

Namely, that straight cross-correlation (denoted as [·, ·])
performs poorly, while MCNCC (denoted as [µc, σc])

performs the best. One significant departure from the

previous results for ‘res2bx’ features is how models us-

ing entire feature volume statistics perform. Center-

ing using 3D statistics (denoted as [µ, ·]) yields per-

formance that is closer to straight correlation, on the

other hand, standardizing using 3D statistics (denoted

as [µ, σ]) yields performance that is closer to MCNCC

2 Pretrained model was obtained from http://www.vlfeat.

org/matconvnet/models/imagenet-googlenet-dag.mat
3 Pretrained model was obtained from http://www.vlfeat.

org/matconvnet/models/imagenet-vgg-verydeep-16.mat

http://www.vlfeat.org/matconvnet/models/imagenet-googlenet-dag.mat
http://www.vlfeat.org/matconvnet/models/imagenet-googlenet-dag.mat
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-16.mat
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-16.mat
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when using GoogleNet’s ‘conv2x’ and DeepVGG-16’s

‘x12’ features.

When we look at the difference between the per-

channel and the across-channel (3D) statistics for query

patches, we observe significant difference in sparsity of

µc compared to µ: ‘conv2x’ is about 2x more sparse

than ‘x12,’ which itself is about 2x more sparse than

‘res2bx.’ The level of sparsity correlates with the perfor-

mance of [µ, ·] compared to straight correlation across

the different features. The features where µc is more

sparse, using µ overshifts across more channels leading

to less performance gain relative to straight correlation.

When we look at the difference between σ and σc, we

observe that σ is on average larger than σc. This means

that compared to σc, using σ dampens the effect of

noisy channels rather than boosting them. Looking at

the change of performance from [µ, ·] to [µ, σ] for dif-

ferent features, we similarly see improvement roughly

correlates to how much larger σ is than σc.

6 Cross-Domain Matching Experiments

In this section, we evaluate our proposed system in

settings that closely resembles various real-world sce-

narios where query images are matched to a database

containing images from a different domain than that

of the query. We focus primarily on matching crime

scene prints to a collection of test impressions, but also

demonstrate the effectiveness of MCNCC on two other

cross-domain applications: semantic segmentation label

retrieval from building facade images, and map retrieval

from aerial photos.4 As in our diagnostic experiments,

we use the same pre-trained ResNet-50 model. We use

the 256-channel ‘res2bx’ activations for the shoeprint

and building facade data, but found that the 1024-

channel ‘res4cx’ activations performed better for the

map retrieval task.

6.1 Shoeprint Retrieval

In addition to the internal dataset described in Sec-

tion 5, we also evaluated our approach on a publicly

available benchmark, the footwear identification dataset

(FID-300) [14]. FID-300 contains 1175 test impressions

and 300 crime scene prints. The task here is similar to

the diagnostic experiments on patches, but now match-

ing whole prints across domains. As the crime scene

prints are not aligned to a canonical orientation, we

search over both translations (with a stride of 2) and

rotations (from -20◦ to +20◦ with a stride of 4◦). For a

4 Our code is available at http://github.com/bkong/MCNCC

given alignment, we compute the valid support region

P where the two images overlap. The local statistics

and correlation is only computed within this region.

As mentioned in Sec. 4, we can learn both the lin-

ear projections of the features and the importance of

each channel for the retrieval task. We demonstrate that

such learning is feasible and can significantly improve

performance. We use a 50/50 split of the crime scene

prints of the Israeli dataset for training and testing,

and determine hyperparameters settings using 10-fold

cross-validation. In the left panel of Fig. 5 we compare

the performance of three different models with vary-

ing degrees of learning. The model with no learning is

denoted as [µc, σc], with learned per-channel weights

is denoted as [µc, σc ·Wc], with learned projections is

denoted as CCA [µc, σc], and with piece-wise learned

linear projections and per-channel weights is denoted

as CCA [µc, σc · Wc]. Our final model, CCA [µc, σc ·
Wc] ft, jointly fine-tunes the linear projections and the

per-channel weights together. The model with learned

per-channel importance weights has 257 parameters (a

scalar for each channel and a single bias term), and

was learned using a support vector machine solver with

a regularization value of α = 100. The linear projections

(CCA) were learned using canoncorr, MATLAB’s canon-

ical correlation analysis function. Our final model, CCA [µc, σc·
Wc] ft, was fine-tuned using gradient descent with an

L2 regularization value of α = 100 on the per-channel

importance weights and β = 1 on the linear projec-

tions. This full model has 131K parameters (2 × 2562

projections, 256 channel importance, and 1 bias).

As seen in the left panel of Fig. 5, learning per-

channel importance weights, [µc, σc·Wc], yields substan-

tial improvements, outperforming [µc, σc] and CCA [µc, σc]

when recall is less than 0.34. When learning both impor-

tance weights and linear projections, we see gains across

all recall values as our Siamese network significantly

outperforms all other models. However, we observe only

marginal gains when fine-tuning the whole model. We

expect this is due in part to the small amount of train-

ing data which makes it difficult to optimize parameters

without overfitting.

We subsequently tested these same models (without

any retraining) on the FID-300 benchmark (shown in

the right panel of Fig. 5). In this, and in later experi-

ments, we use cumulative match characteristic (CMC)

which plots the percentage of correct matches (recall)

as a function of the number of database items reviewed.

This is more suitable for performance evaluation than

other information retrieval metrics such as precision-

recall or precision-at-k since there is only a single cor-

rect matching database item for each query. CMC is

easily interpreted in terms of the actually use-case sce-

http://github.com/bkong/MCNCC
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Features [·, ·] [µ, ·] [µ, σ] [µc, ·] [µc, σc]
Raw Pixels 0.04 0.20 0.45 - -

ResNet-50 (res2bx) 0.15 0.44 0.32 0.55 0.77
GoogleNet (conv2x) 0.07 0.09 0.68 0.61 0.81
DeepVGG-16 (x20) 0.09 0.31 0.73 0.51 0.76

Table 1 Ablation study on the two normalized cross-correlation schemes across different features. We measure performance
using mean average precision, higher is better. As the images are gray-scale single-channel images, for raw pixels [µ, ·] and
[µ, σ] are identical to [µc, ·] and [µc, σc], respectively.

Fig. 6 FID-300 retrieval results. The left column shows the query crime scene prints, the middle column shows the top-8
results for [µc, σc], and the right column shows the top-8 results for CCA [µc, σc ·Wc]. Green boxes indicate the corresponding
ground truth test impression.

nario (i.e., how much effort a forensic investigator must

expend in verifying putative matches to achieve a given

level of recall).

On FID-300, we observe the same trend as on the

Israeli dataset — models with more learned parameters

perform better. However, even without learning (i.e.,

[µc, σc]) MCNCC significantly outperforms using off-

the-shelf CNN features the previously published state-

of-the-art approaches of Kortylewski et al. [14,15,13]

The percentage of correct matches at top-1% and top-

5% of the database image reviewed for ACCV are 14.67

and 30.67, for BMVC16 are 21.67 and 47.00, for LoG16

are 59.67 and 73.33, for [µc, σc] are 72.67 and 82.33,

and for CCA [µc, σc] ft are 79.67 and 86.33. In Fig. 6,

we visualize the top-10 retrieved test impressions for a

subset of crime scene query prints from FID-300. These

results correspond to the CMC curves for [µc, σc] and

CCA [µc, σc ·Wc] of the right panel of Fig. 5.

Partial occlusion: To analyze the effect of partial oc-

clusion on matching accuracy, we split the set of crime

scene query prints into subsets with varying amounts

of occlusion. For this we use the proxy of pixel area

of the cropped crime scene print compared to its corre-

sponding test impression. The prints were then grouped

into 4 categories with roughly equal numbers of exam-

ples: “Full size” prints are those whose pixel-area ratios

fall between [0.875, 1], “3/4 size” between [0.625, 0.875),

“half size” between [0.375, 0.625), and “1/4 size” be-

tween [0, 0.375). In Table 2 we compare the performance

of models [µc, σc], CCA [µc, σc], and CCA [µc, σc ·Wc].

As expected, the correct match rate generally increases

for all models as the pixel area ratio increases and more

discriminative tread features are available, with the ex-

ception of “full size” prints. While “full size” query

prints might be expected to include more relevant fea-

tures for matching, we have observed that in the bench-

mark dataset they are often corrupted by additional

“noise” in the form of smearing or distortion of the

print and marks left by overlapping impressions.

Background clutter: We also examined how performance

was affected by the amount of irrelevant background

clutter in the crime scene print. We use the ratio of
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[·, ·] [µc, σc] [·, ·] [µc, σc]

Fig. 7 Visualizing image regions that have the greatest influence on positive correlation between image pairs. Each group of
images shows, from left to right, the original crime scene print and test impression being compared, the image regions of the
pair that have the greatest influence on positive correlation score when using raw cross-correlation, and the image regions of
the pair that have greatest influence on positive MCNCC. Each row shows the same crime scene query aligned with a true
matching impression (left) and with a non-matching test impression (right).
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Fig. 8 Segmentation retrieval for building facades. The left panel compares MCNCC with learned linear projections and
per-channel importance weights (denoted as CCA [µc, σc ·Wc]) and MCNCC with no learning (denoted as [µc, σc]) to other
baseline metrics: Cosine similarity, Euclidean distance, and NCC using across-channel local statistics (denoted as [µ, σ]). The
right panel shows example retrieval results for CCA [µc, σc ·Wc]. The left column shows the query facade image. Green boxes
indicate the corresponding ground truth segmentation label.

the pixel area of the cropped crime scene print over the

pixel area of the original crime scene print as a proxy

for the amount of relevant information in a print. Prints

with a ratio closer to zero contain a lot of background,

while prints with a ratio closer to one contain little ir-

relevant information. We selected 257 query prints with

a large amount of background (ratio ≤ 0.5).

When performing matching over these whole images

we found that the percentage of correct top-1% matches

dropped from 72.4% to 15.2% and top-10% dropped

from 88.3% to 33.5%. This drop in performance is not

surprising given that our matching approach aims to

answer the question of what print is present, rather than

detecting where a print appears in an image and was

not trained to reject background matches. We note that
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Fig. 9 Retrieval of maps from aerial imagery. The left panel compares MCNCC with no learning (denoted as [µc, σc]) to
other baseline metrics: Cosine similarity, Euclidean distance, and NCC using across-channel per-exemplar statistics (denoted
as [µ, σ]). The right panel shows retrieval results for [µc, σc]. The left column shows the query aerial photo. Green boxes
indicate the corresponding ground-truth map image.

in practical investigative applications, the quantity of

footwear evidence is limited and a forensic examiner

would likely be willing to mark valid regions of query

image, limiting the effect of background clutter.

Visualizing image characteristics relevant to positive cor-

relations: To get an intuitive understanding of what

image features are utilized by MCNCC, we visualize

what image regions have a large influence the positive

correlation between paired crime scene prints and test

impressions. For a pair of images, we backpropagate

gradients to the image from each spatial bin in the fea-

ture map which has a positive normalized correlation.

We then produce a mask in the image domain marking

pixels whose gradient magnitudes are in the top 20th

percentile. Fig. 7 compares this positive relevance map

for regular correlation (inner product of the raw fea-

tures) and normalized correlation (inner product of the

standardized features). We can see that with normal-

ized correlation, the image regions selected are similar

for both images despite the domain shift between the

query and match. In contrast, the visualization for reg-

ular correlation shows much less coherence across the

pair of images and often attends to uninformative back-

ground edges and blank regions.

6.2 Segmentation Retrieval for Building Facades

To further demonstrate the robustness of MCNCC for

cross domain matching, we consider the task of retriev-

ing segmentation label maps which match for a given

building facade query image. We use the CMP Facade

Database [25] which contains 606 images of facades

from different cities around the world and their cor-

responding semantic segmentation labels. These labels

can be viewed as a simplified “cartoon image” of the

building facade by mapping each label to a distinct gray

level.

In our experiments, we generate 1657 matching pair

by resizing the original 606 images (base + extended

dataset) to either 512×1536 or 1536×512 depending on

their aspect ratio and crop out non-overlapping 512 ×
512 patches. We prune this set by removing 161 patches

which contain more than 50% background pixels to get

our final dataset. Examples from this dataset can be

seen in the right panel of Fig. 8. In order treat the

segmentation label map as an image suitable for the

pre-trained feature extractor, we scale the segmentation

labels to span the whole range of gray values (i.e., from

[1− 12] to [0− 255]).

We compare MCNCC (denoted in the legend as

[µc, σc]) to three baseline similarity metrics: Cosine, Eu-

clidean distance, and normalized cross-correlation using

across-channel local statistics (denoted as [µ, σ]). We

can see in the left panel of Fig. 8 that MCNCC per-

forms significantly better than the baselines. MCNCC

returns the true matching label map as the top scor-

ing match in 39.2% of queries. In corresponding top

match accuracy for normalized cross-correlation using

across-channel local statistics is 25.2%, for Cosine sim-

ilarity is 18.3%, and for Euclidean distance is 6.0%.

When learning parameters with MCNCC (denoted as

CCA [µc, σc ·Wc]), using a 50/50 training-test split, we

see significantly better retrieval performance (96.4% for

reviewing one database item). The right panel of Fig. 8

shows some example retrieval results for this model.
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all prints full size 3/4 size half size 1/4 size
# prints 300 88 78 71 63

Top-1%
[µc, σc] 72.7 78.4 82.1 71.8 53.0

CCA [µc, σc] 76.8 83.0 85.9 73.2 60.3
CCA [µc, σc ·Wc] 79.0 84.1 85.9 78.9 63.5

Top-10%
[µc, σc] 87.7 87.5 92.3 85.9 84.1

CCA [µc, σc] 88.7 93.2 91.0 87.3 81.0
CCA [µc, σc ·Wc] 89.3 93.2 91.0 91.6 79.4

Table 2 Occlusion study on FID-300. The crime scene query prints are binned by looking at the ratio of query pixel area
to the pixel area of the corresponding ground-truth test impression. Performance is measured as the percentage of correct
matches retrieved (higher is better).

6.3 Retrieval of Maps from Aerial Imagery

Finally, we evaluate matching performance on the prob-

lem of retrieving map data corresponding to query aerial

photos. We use a dataset released by Isola et al. [11]

that contains 2194 pairs of images scraped from Google

Maps. For simplicity in treating this as a retrieval task,

we excluded map tiles which consisted entirely of water.

Both aerial photos and map images were converted from

RGB to gray-scale prior to feature extraction (see the

right panel of Fig. 9 for examples). We compare MC-

NCC to three baseline similarity metrics: Cosine, Eu-

clidean distance, and normalized cross-correlation using

across-channel local statistics (denoted as [µ, σ]).

The results are shown in the left panel of Fig. 9. MC-

NCC outperforms the baseline Cosine and Euclidean

distance measures, but this time performance of nor-

malized cross-correlation using local per-exemplar statis-

tics averaged over all channels and Cosine similarity are

nearly identical. For top-1 retrieval performance, MC-

NCC is correct 98.7% of the time, normalized cross-

correlation using across-channel local statistics and Co-
sine similarity are correct 95.8%, and Euclidean dis-

tance is correct 28.6% of the time when retrieving only

one item. We show example retrieval results for MC-

NCC in the right panel of Fig. 9. We did not evaluate

any learned models in this experiment since the perfor-

mance of baseline MCNCC left little room for improve-

ment.

7 Conclusion

In this work, we proposed an extension to normalized

cross-correlation suitable for CNN feature maps that

performs normalization of feature responses on a per-

channel and per-exemplar basis. The benefits of per-

forming per-exemplar normalization can be explained

in terms of spatially local whitening which adapts to

non-stationary statistics of the input. Relative to other

standard feature normalization schemes (e.g., cosine sim-

ilarity), per-channel normalization accommodates vari-

ation in statistics of different feature channels.

Utilizing MCNCC in combination with CCA pro-

vides a highly effective building block for construct-

ing Siamese network models that can be trained in

an end-to-end discriminative learning framework. Our

experiments demonstrate that even with very limited

amounts of data, this framework achieves robust cross-

domain matching using generic feature extractors com-

bined with piece-wise training of simple linear feature-

transform layers. This approach yields state-of-the art

performance for retrieval of shoe tread patterns match-

ing crime scene evidence. We expect our findings here

will be applicable to a wide variety of single-shot and

exemplar matching tasks using CNN features.
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25. Radim Tyleček, R.Š.: Spatial pattern templates for recog-
nition of objects with regular structure. In: Proc. GCPR.
Saarbrucken, Germany (2013)

26. Richetelli, N., Lee, M.C., Lasky, C.A., Gump, M.E.,
Speir, J.A.: Classification of footwear outsole patterns us-
ing fourier transform and local interest points. Forensic
science international 275, 102–109 (2017)

27. Russell, B.C., Sivic, J., Ponce, J., Dessales, H.: Automatic
alignment of paintings and photographs depicting a 3d

scene. In: Computer Vision Workshops (ICCV Work-
shops), 2011 IEEE International Conference on, pp. 545–
552. IEEE (2011)

28. Senlet, T., El-Gaaly, T., Elgammal, A.: Hierarchical se-
mantic hashing: Visual localization from buildings on
maps. In: Pattern Recognition (ICPR), 2014 22nd In-
ternational Conference on, pp. 2990–2995. IEEE (2014)

29. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson,
S.: Cnn features off-the-shelf: an astounding baseline for
recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
pp. 806–813 (2014)

30. Shrivastava, A., Malisiewicz, T., Gupta, A., Efros, A.A.:
Data-driven visual similarity for cross-domain image
matching. ACM Transactions on Graphics (ToG) 30(6),
154 (2011)

31. Tang, Y., Srihari, S.N., Kasiviswanathan, H., Corso,
J.J.: Footwear print retrieval system for real crime scene
marks. In: International Workshop on Computational
Forensics, pp. 88–100. Springer (2010)

32. Wei, C.H., Gwo, C.Y.: Alignment of core point for
shoeprint analysis and retrieval. In: Information Science,
Electronics and Electrical Engineering (ISEEE), 2014 In-
ternational Conference on, vol. 2, pp. 1069–1072. IEEE
(2014)

33. Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep
feature representations with domain guided dropout for
person re-identification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pp. 1249–1258 (2016)

34. Yekutieli, Y., Shor, Y., Wiesner, S., Tsach, T.: Expert as-
sisting computerized system for evaluating the degree of
certainty in 2d shoeprints. Tech. rep., Technical Report,
TP-3211, National Institute of Justice (2012)

35. Zagoruyko, S., Komodakis, N.: Learning to compare im-
age patches via convolutional neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4353–4361 (2015)

36. Zbontar, J., LeCun, Y.: Computing the stereo matching
cost with a convolutional neural network. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1592–1599 (2015)

37. Zhang, L., Allinson, N.: Automatic shoeprint retrieval
system for use in forensic investigations. In: UK Work-
shop On Computational Intelligence (2005)


	1 Introduction
	2 Related Work
	3 Multi-variate Cross Correlation
	4 Learning Correlation Similarity Measures
	5 Diagnostic Experiments
	6 Cross-Domain Matching Experiments
	7 Conclusion

