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A PSO optimized novel PID Neural Network model 

for Temperature Control of Jacketed CSTR: Design, 

Simulation, and a Comparative Study 

Abstract 

This paper proposes a Particle Swarm Optimization (PSO) tuned novel Proportional Integral Derivative 

(PID) like neural network (PID-NN). The structure of proposed PID-NN is very simple having only 3 

neurons in the hidden layer and a single output neuron. The proportional, integral, and derivative gains 

of the PID controller are represented by the three weights in the neural network's output layer, 

respectively. The suggested approach uses the PSO method to optimize the output layer weights, which 

correspond to PID gains. The non-linear Continuous Stirred Tank Reactor (CSTR) plant, one of the 

most popular chemical industry processes, is utilized to test the suggested approach. A jacketed CSTR's 

temperature is controlled via a Particle Swarm Optimization tuned PID like neural network (PSO-NN-

PID) controller. In terms of time domain specifications, the performance of the PSO-based NN-PID 

controller, the back propagation-based NN-PID controller (BP-NN-PID), and the conventionally tuned 

PID controller are compared. Mean square error is the objective function used in PSO-NN-PID and BP-

NN-PID to optimize PID settings. The results show that the overshoot decreases from 44.13% in case 

of Zeigler- Nichols tuned PID controller to 26.33% in case of BPNN-PID controller, and further reduces 

to 23.13% in case of proposed PSO-based NN-PID controller. The decrease in rise time is observed 

from 0.2727 seconds in case of BPNN tuned PID to 0.1283 seconds in case of proposed PSO-NN-PID 

controller.  

Keywords: Backpropagation, Neural network, PID controller, CSTR, Particle swarm optimization 

1. Introduction 

Most of the linear control problems have been solved because of intensive study on linear control 

systems during the past few decades. However, most systems in the real world including those that 

govern vehicles, biological systems, aircrafts, and robots are inherently nonlinear in nature. In recent 

years, nonlinear control issues have received a lot of attention. Certain laws, like superposition and 

homogeneity, are observed only in linear systems. A nonlinear system does not operate uniformly 

according to a common law. A nonlinear system displays various behavior in several operating 

regions[1]. Therefore, it becomes difficult to develop an effective controller for non-linear system. In 

industrial applications, the PID controller has perhaps been the most successful controller. Despite the 

development of numerous nonlinear system control strategies, such as artificial neural networks, fuzzy 

logic control, adaptive control, and model predictive control. 90% of industrial controllers are PID 

controllers. The controller's ongoing success serves as evidence that in engineering, simplicity and ease 

of use are most important aspect. The crucial step while implementing a PID controller is the effective 

tuning of three gains, 𝐾𝑝 proportional gain, 𝐾𝑖 integral gain and 𝐾𝑑 derivative gain[2]. A study found 

that 30% of installed controllers employ manual PID tuning and that 65% of them are improperly tuned. 

Numerous adjustments are performed to account for the nonlinear effects when employing a PID 

controller on a nonlinear system. In past few decades several intelligent optimization techniques have 

been used to tune PID gains. A lot of research has been done on controlling linear systems with PID 

controllers and in most cases, we attain desirable results[3]. But the problem arises when PID controller 

is applied to a nonlinear system. Many researchers have addressed this problem and proposed various 

methods of handling the nonlinear effects. Some of the methods used in past are linearizing the plant 



around a stable operating point, gain scheduling, anti-reset windup etc. [4]. Following are the four 

primary divisions of classical PID tuning methods: The first method involves analytically calculating 

the PID parameters from algebraic equations between the plant and the performance objectives. 

Analytical tuning methods include lambda tuning and internal model control. These may produce a 

straightforward formula that can be used for online tuning, but the model must be accurate, and the 

objective must take the form of an analytical formula. Among the methods used in the second category 

are Zeigler Nichols[5] tuning, Cohen Coon tuning[5], and other heuristic PID tuning strategies. Once 

more, these can be employed as a formula or rule-based system for online use, frequently with trade-

off design goals. 

 Because of the above-mentioned challenges while applying PID controller, hybrid form of PID 

parameter adjustments is becoming more popular. The advantages of simple PID and soft computing 

techniques can be combined to tune PID parameters effectively. This method can improve robustness 

of the system. With the development of AI techniques in few decades, application of these methods to 

the PID parameter tuning has proved to be efficient than conventional methods. To address this problem 

in past few decades, a lot of researchers have applied different optimization algorithms to tune PID 

parameters. The ANN is used as an intelligent controller for modelling and control of nonlinear system. 

Fuzzy logic has also been used as controller for tuning PID parameters. The fuzzy controller uses error 

and change in error to obtain PID gain values. However, fuzzy logic requires expert knowledge to 

determine appropriate membership functions[6]. Therefore, NN can solve the problem because they 

have high computational speed and have been used in past for determining PID parameters efficiently. 

Metaheuristic algorithms have also been used to address complex nonlinear problems. With the research 

of several algorithms like GA, PSO, ACO, CSA etc. They suffer from the drawback of right selection 

of parameters and slow computational speed. These algorithms mostly do not give desired results 

because it becomes difficult to choose several parameters correctly. So, there is a need to develop hybrid 

method combining NN and PSO. PSO being an algorithm widely used for lot of complex problems has 

proved its efficiency[7]–[11].  Neural network can be utilized for tuning PID gains. A Back propagation 

neural network can be modified as a PID like structure and provide with the advantages of both BP 

neural network and PID control. This technique has been utilized and being applied to several nonlinear 

problems[6], [12]–[14]. 

In this study a novel hybrid approach is proposed utilizing Particle swarm optimization for weight 

initialization and optimization for PID like neural network structure. The above proposed technique is 

compared with the BP-NN-PID, and conventionally tuned Zeigler Nichols tuned PID controller. The 

proposed controllers are applied on temperature control of a Jacketed CSTR which is a nonlinear 

benchmark control problem. 

The structure of the paper is as follows: section 1 contains the introduction, literature review, research 

gaps identified and contributions of the paper, section 2 describes the problem statement, section 3 

describes the mathematical modelling of the CSTR temperature control, section 4 discusses the 

proposed PSO based NN -PID structure and algorithm, section 5 describes the classical Back 

propagation tuned NN-PID controller, section 6 describes the simulation results and finally conclusion 

is given in section 7. 

Literature Review 

In past a lot of researchers have done a substantial amount of research in PID controller tuning. Earlier 

classical tuning methods like Zeigler Nichols[5], Cohen coon and IMC type tuning[15] was mostly used 

for PID tuning. In [16] authors, have reviewed the various issues and problems while tuning of PID 

controller. In [2] authors, have discussed various problems in tuning PID controller when multi 

objectives are to be achieved. The intelligent methods were proposed to tune PID controller. In [3], 

authors proposed an extended PID controller while controlling nonlinear systems with uncertainty. In 

[17], authors have presented an review of various conventional and intelligent tuning methods and 



compared their performance on an level control system. In [18] authors have proposed tuning method 

for an AVR system using chaotic optimization method and compared the performance in terms of rise 

time, settling time and overshoot. In [8], authors have applied PSO and TLBO algorithm to tune PID 

controller for concentration and temperature control of CSTR. In [7], authors have used cuckoo search 

algorithm to tune PID parameters of quadrotor. The simulation results proved that this method is more 

efficient than classical tuned methods. In [19], authors have used fuzzy logic to tune PID  parameters 

applied to control airway pressure of respiratory system. The fuzzy logic based PID controller proved 

better as compared conventionally tuned methods in terms of rise time, overshoot, settling time etc. In 

[20], authors have applied PSO to tune PID gains of an artificial ventilation system. The results proved 

that PSO tuned controller gave better response as compared to conventional methods. In [21], authors 

proposed an improved teaching learning based optimization algorithm by adding concept of number of 

teachers, teaching factor adaptability etc. The improved teaching learning-based optimization algorithm 

was tested on benchmark functions. The results showed its superiority. In [22], authors have compared 

hybrid genetic algorithm type fractional order PID controller, Fmincon based pattern search based PID 

controller and hybrid MPC controller. Hybrid genetic algorithm based FOPID gives better response in 

terms of performance indices. In [23], authors have proposed gravitational search based fuzzy logic 

control for controlling position of nonlinear ball and beam system. The results showed that the results 

were better as compared to conventional controller. In [24] proposed a new algorithm to optimize PID 

parameters by combining swarm algorithms and learning processes. The proposed algorithm was better 

as compared to GA, PSO and NN tuned controllers. In [25], authors described the methods to develop 

fuzzy controllers for tuning PID gains. In [26], authors proposed a multi-objective fuzzy based 

fractional order PID controller tuned by evolutionary algorithms to control a hydraulic turbine 

governing system. In [27], authors applied an arithmetic optimization algorithm called empirical 

identification algorithm to find best PID values. In [28], authors have implemented hybrid optimization 

algorithms combining PSO with GWO and GSA to tune PID parameters. The proposed controllers were 

implemented to three bench mark nonlinear problems. The hybrid optimization techniques proved to be 

faster and less convergence error as compared to earlier used evolutionary algorithms. In [29], authors 

have proposed a new intelligent controller design based on sequential quadratic programming to derive 

the transfer function. 

Research Gaps 

PID tuning is a challenging process when applied to a nonlinear system, according to the literature 

review. To adjust PID controllers, several researchers have used a variety of techniques. Numerous AI 

techniques, including neural networks, fuzzy logic, and bio-inspired algorithms, are used to fine-tune 

PID controllers. The AI-based tuning techniques have been shown to be superior to the traditional 

techniques. The neural network based intelligent methods have the advantage of high computational 

speed whereas, the evolutionary algorithms can be easily applied to any non-linear system and gives 

accurate results. So, there is a need to combine the advantages of both the techniques and develop hybrid 

controllers. 

Contributions of the paper 

The main contributions of the paper are summarized as below: 

1. A novel PSO tuned PID like neural network is proposed. The structure of PID like neural 

network is kept simple having only three neurons in the hidden layer. Therefore, the 

implementation of the controller is very easy. 

2. The proposed controller is compared with the BP based NN-PID controller and ZN tuned PID 

controller. 

3. The controller developed is tested for robustness under the disturbance application and is found 

to perform better than BP based NN-PID controller and ZN tuned PID controller. 

 



2. Problem Statement 

The structure of the proposed control scheme is shown in Fig.1. In the Figure 1, e(k) is the error between 

actual output and desired reference input. The optimized PID like neural network is connected in 

cascade with the non-linear jacketed CSTR plant. The neural network weights are adjusted with PSO 

algorithm to obtain P, I and D parameters.  

 

Figure 1 Structure of the proposed control scheme 

The cost function is calculated after each iteration. The objective of the controller is to minimize the 

cost function: 𝐸𝑐 = 12∑ (𝑟(𝑘) − 𝑦𝑎𝑐𝑡(𝑘))2𝑇𝑘=1          (1) 

Where, 𝑟(𝑘) is the desired reference input and 𝑦𝑎𝑐𝑡(𝑘) is the actual output. 

  

3. Mathematical Modelling of a Jacketed CSTR 

Continuous Stirred tank Reactor (CSTR) is reactor mostly used in chemical industries. It is generally 

used in processes where continuous flow of product is required to reach a product. Chemical reactors 

have a lot of effect on the output due to heat, so it is important to control heat in a chemical reactor. In 

a jacketed CSTR temperature control can be done by controlling the temperature of jacket around the 

reactor. The jacket temperature can be controlled by a coolant flowing in it. It operates with the 

following assumptions: 

1. The reactor volume is kept constant 𝑉𝑅. 

2. It is operated under steady state conditions with perfect mixing 

In the CSTR considered we consider a simple reaction 𝐴 𝑦𝑖𝑒𝑙𝑑𝑠→    𝐵. The concentration of the feed flown 

initially of product A is donated as 𝐶𝐴𝑅0, the initial temperature of the product A is 𝑇𝑅0 and it is assumed 

that there is a constant flow rate 𝑞𝑅. Irreversible reactions take place inside the reactor. The final 

products generated have a concentration 𝐶𝐴𝑅 and temperature 𝑇𝑅. The heat produced in the exothermic 

reaction is controlled by flowing a coolant in the jacketed layer of the reactor. The coolant temperature 

is 𝑇𝐶𝑅𝑂 and its flow rate is 𝑞𝐶𝑅. 

The material balance of jacketed CSTR can be given as: 𝑑𝑉𝑜𝜌𝑜𝑑𝑡 = 𝑞𝑖𝑛𝜌𝑖𝑛 − 𝑞𝑜𝑢𝑡𝜌𝑜𝑢𝑡         (2) 

Where, 𝑉𝑜 is the reactor volume, 𝜌𝑜 is the density of reactor, 𝜌𝑖𝑛 is the density of feed flow input, 𝑞𝑖𝑛 

and 𝑞𝑜𝑢𝑡 is the flow rates of input and output feed. In this case as per the assumptions 𝜌𝑖𝑛 = 𝜌𝑜𝑢𝑡 = 𝜌𝑜. 

The flow rates are also equal. 

The balance equation for component A is given as, 



𝑉𝑜 𝑑𝐶𝐴𝑅𝑑𝑡 = 𝑞𝑅(𝐶𝐴𝑅0 − 𝐶𝐴𝑅)𝑉𝑅 − 𝑉𝑜𝑟𝐴        (3) 

Where, 𝐶𝐴𝑅 is the concentration of component A in the reactor, 𝑟𝐴 is the rate of reaction and is given as, 𝑟𝐴 = 𝐾𝑅0exp (−𝐸𝑅𝑅𝑇𝑅)𝐶𝐴𝑅     

Where, 𝐾𝑅0 is the frequency factor, 𝐸𝑅 is the activation energy and 𝑇𝑅 is the reactor temperature 

The energy balance equations for the reactor considering above given assumptions and 

neglecting kinetic and potential energy are given as, 

   𝑉𝑅𝜌𝑅𝐶𝑃 𝑑𝑇𝑅𝑑𝑡 = 𝑞𝑅𝜌𝑅𝐶𝑃(𝑇𝑅 − 𝑇) − (−∆𝐻)𝑉𝑅𝑟𝐴 + 𝜌𝐶𝑅𝐶𝑃𝐶𝑞𝐶𝑅 [1 − exp ( −ℎ𝐴𝜌𝐶𝑅𝐶𝑃𝐶𝑞𝐶𝑅)] (𝑇𝑅 − 𝑇) (4) 

In Equation 3 RHS represents heat accumulation in the reactor, in LHS the first term represents 

energy in and out due to flow of component A, the second term represents the heat due to 

reaction in the reactor and the third term represents heat transferred to the jacket. Where, 𝑇𝑅 is 

the reactor temperature and T is the jacket temperature. 

The above equations can be presented in the state variable form choosing 𝐶𝐴𝑅 and 𝑇𝑅 as state variables, 𝑑𝐶𝐴𝑅𝑑𝑡 = 𝑞𝑅𝑉𝑅 (𝐶𝐴𝑅0 − 𝐶𝐴𝑅)−𝐾𝑅0exp (−𝐸𝑅𝑅𝑇𝑅)𝐶𝐴𝑅       (5)

  𝑑𝑇𝑅𝑑𝑡 = 𝑞𝑅𝑉𝑅 ((𝑇𝑅𝑂 − 𝑇𝑅) − ( −∆𝐻𝜌𝑅𝐶𝑃)𝐾𝑅0 exp (−𝐸𝑅𝑅𝑇𝑅)𝐶𝐴𝑅 + (𝜌𝐶𝑅𝐶𝑃𝐶𝜌𝑅𝑉𝑅𝐶𝑃)𝑞𝐶𝑅 [1 − exp ( −ℎ𝐴𝜌𝐶𝑅𝐶𝑃𝐶𝑞𝐶𝑅)] (𝑇𝑅𝑂 − 𝑇𝑅) (6)

             

The steady state solutions can be obtained by putting the two equations 5 & 6 to zero. For this study the parameters 

of jacketed CSTR chosen are shown in Table 1. 

Table 1 Parameters of Jacketed CSTR 

Parameters Values 𝑪𝑨𝑹 Concentration of 

input feed component A 

0.0882 mol/l 

Reactor temperature 𝑻𝑹 

Flow rate of the coolant 𝒒𝑪𝑹 

 

441.2 K 

 

100 l/min 

 

Feed flow rate 𝒒𝑹 100 l/min 

Input Feed temperature 𝑻𝑶 

350 K 

Jacket temperature T 350 K 

 

Volume of reactor 𝑽𝑹 100 l 



Coefficient of heat 

transfer hA 

7× 𝟏𝟎𝟓 𝒄𝒂𝒍/(𝒎𝒊𝒏𝑲) 
Reaction rate constant 𝑲𝑹 

7.2×𝟏𝟎𝟏𝟎 min-1 

 

Activation Energy 
𝑬𝑹𝑹  1×𝟏𝟎𝟒 K 

Heat produced in  

Reaction (−∆𝑯 ) 

-2× 𝟏𝟎𝟓 𝒄𝒂𝒍/𝒎𝒐𝒍 
𝑪𝑯, 𝑪𝑯𝑪 Specific heat 1 Cal (g/K) 

Densities, 𝝆𝑹,𝝆𝑪𝑹 𝟏 × 𝟏𝟎𝟑𝒈/𝒍 
  

  

3. Structure of NN Based PID Controller 

The structure of BPNN Based PID Controller consists of input layer, hidden layer, and output layer. 

There is a single node in the input layer, three nodes in the hidden layer and one node in the output 

layer. The three nodes of the hidden layer correspond to three PID parameter gains, proportional 𝐾𝑝, 

integral gain 𝐾𝑖 and derivative gain 𝐾𝑑. The activation functions used are all linear in nature. To 

produce the integral action the integral node𝑎1 is taken as feedback by using delaying effect. To produce 

the derivative effect the derivative node 𝑎3 is given activation feedback.  The proportional node 𝑎2 is 

the general node without any feedback. The BPNN based PID structure is shown in Figure 2, 

 

Figure 2 Structure of BPNN Based PID controller 

The outputs of the hidden layer 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 at sampling times k may be given as, 𝑎1(𝑘) = 𝑒(𝑘)𝑤𝑖1(𝑘) + 𝑎1(𝑘 − 1)                   (7) 



𝑎2(𝑘) = 𝑒(𝑘)𝑤𝑖2(𝑘)                     (8) 𝑎3(𝑘) = 𝑒(𝑘)𝑤𝑖3(𝑘) − 𝑤𝑖3(𝑘 − 1)𝑒(𝑘 − 1)                  (9)

  

The output of the neural network-based controller is, 𝑢(𝑘) = ∑ 𝑤𝑗𝑜(𝑘)𝑎𝑗(𝑘)3𝑗=1 = 𝑤1𝑜(𝑘)𝑎1(𝑘) + 𝑤2𝑜(𝑘)𝑎2(𝑘) + 𝑤30(𝑘)𝑎3(𝑘)              (10)

  

In the first node 𝑧−1 is added as delay. So, 𝑎(𝑘 − 1) = 𝑎(𝑘)𝑧−1 

Then, 𝑒(𝑘 − 1) = 𝑧−1𝑒(𝑘)         (11) 

The output of the first hidden layer is  𝑎1(𝑘) = 𝑤𝑖1(𝑘)𝑒(𝑘)1−𝑧−1                     (12)

  

This equation represents an integral relationship. Therefore, this node generates a gain proportional to 

the integral of the error. The derivative action was produced by the derivative node using activation 

feedback. 𝑎3(𝑘) = 𝑤𝑖3(𝑘)𝑒(𝑘)[1 − 𝑧−1]                    (13) 

This equation represents differential mode of operation. It is evident from the control output u(k) is that 

the neural network-based controller produces output like a PID controller. The second node of the neural 

network produces action like proportional control, the first node produces output like an integral action 

and third node produces output like a derivative control. A conventional BP based NN is complex 

having several layers, but a PID NN proposed here is simple structure where the output layers produce 

the sum or controller output. In this way by training the weights of PID based NN we can easily tune 

the PID parameters to obtain desired results. 

 

4. PID Like Neural Network tuned by PSO 

In this paper, a novel method is proposed to tune PID NN using PSO. PSO is an evolutionary algorithm 

which is inspired by bird flocking or fish schooling. A random population of particles is initialized in a 

search space. The particles have certain velocity and position. The particles fly in search space to the 

global best position after certain iterations. After each iteration, the particles position and velocity are 

adjusted in accordance with the value of fitness function.  

4.1 Mathematical Formulation 

PSO is used to tune weights of PID like NN proposed in the study. The position of particles represents 

the weights in each iteration. The dimensionality of PSO algorithm chosen is equal to the total number 

of weights i.e., six. There are three weights used connecting input layer to hidden layer and three weights 

connecting hidden layer to output layer. Let the position vector of particles with S search space be 

defined as, 𝑥𝑝 = [𝑥𝑝𝑖1, 𝑥𝑝𝑖2, ……… , 𝑥𝑝𝑖𝑆]𝑇                    (14) 

And the velocity vector denoted as, 𝑣𝑝 = [𝑣𝑝𝑖1, 𝑣𝑝𝑖2, ………… . . 𝑣𝑖𝑆]𝑇                  (15)

  



The optimization is done by PSO and not by classical Back propagation algorithm. The objective 

function used for tuning NN based PID controller weights is Mean square error. Each particle moves in 

accordance to minimize the fitness function. The local best position of the particles is given by, 𝑃𝑎𝑏𝑒𝑠𝑡𝑖𝑗 = [𝑃𝑎𝑏𝑒𝑠𝑡𝑖1, 𝑃𝑎𝑏𝑒𝑠𝑡𝑖2…………… . . 𝑃𝑎𝑏𝑠𝑒𝑡𝑖𝑆]𝑇                (16) 

The global best position is denoted by, 𝐺𝑜𝑏𝑒𝑠𝑡𝑖𝑗 = [𝐺𝑜𝑏𝑒𝑠𝑡𝑖1, 𝐺𝑜𝑏𝑒𝑠𝑡𝑖2…………… . . 𝐺𝑜𝑏𝑠𝑒𝑡𝑖𝑆]𝑇                (17) 

The particles change their position by updating the synaptic weights of the neural network to reduce the 

value of fitness function. The process of updating velocity after each iteration k is given by the following 

equation, 𝑣𝑖𝑗(𝑘 + 1) = 𝑤𝑜𝑣𝑖𝑗(𝑘) + 𝑐1𝑟1[𝑃𝑎𝑏𝑒𝑠𝑡𝑖𝑗(𝑘) − 𝑥𝑖𝑗(𝑘)] + 𝑐2𝑟2[𝐺𝑜𝑏𝑒𝑠𝑡𝑖𝑗(𝑘) − 𝑥𝑖𝑗(𝑘)]              (18)    

  

Where, 𝑤𝑜 is the weight of the algorithm, 𝑐1 and 𝑐2 are social factors and 𝑟1 and 𝑟2 are random numbers 

in interval [0,1]. 

The position of particles at (𝑘 + 1)𝑡ℎ iteration is, 𝑥𝑖𝑗(𝑘 + 1) = 𝑥𝑖𝑗(𝑘) + 𝑣𝑖𝑗(𝑘)                   (19) 

After the updating the velocity and position, the values of 𝑃𝑎𝑏𝑒𝑠𝑡𝑖 and 𝐺𝑜𝑏𝑒𝑠𝑡𝑖 vectors also change 

accordingly. The two vectors are updated by the following law, 𝑃𝑎𝑏𝑒𝑠𝑡𝑖(𝑘 + 1) = { 𝑃𝑎𝑏𝑒𝑠𝑡𝑖(𝑘) 𝑖𝑓 𝑓(𝑥𝑖(𝑘) ≥ 𝑓(𝑃𝑎𝑏𝑒𝑠𝑡(𝑘)𝑥𝑖(𝑘)                                                          𝑒𝑙𝑠𝑒                (20) 

   𝐺𝑜𝑏𝑒𝑠𝑡𝑖(𝑘 + 1) = min [𝑃𝑎𝑏𝑒𝑠𝑡𝑖(𝑘 + 1)        (21) 

 

The flowchart of the PSO Algorithm is shown in Figure 3. 

 



 

Figure 3 Flowchart of PSO 

Despite of the development of several metaheuristic algorithms, PSO remains one of the most widely 

used algorithm to solve various non-linear problems. The main advantages of PSO are its simple 

structure, ease of implementation, fast computational efficiency, and robustness to the selection of 

parameters. The block diagram explaining the function of PSO-NN-PID is shown in Figure 4. 



 

Figure 4 Block Diagram of PSO based novel NN-PID controller 

It can be seen in the Figure 2 that the NN like PID controller parameters are tuned by PSO. The objective 

function used is mean square error (MSE). The PSO tuned NN based PID controller then gives the 

control signal to the Jacketed CSTR for temperature control. The algorithm of proposed PSO tuned NN-

PID Controller is described below: 

 

4.2 Algorithm of the proposed PSO tuned NN-PID Controller 

1. Define PID like neural network having one neuron in the input layer, three neurons in the 

hidden layer and one neuron in the output layer. 

2. Initialize random weights within the range [-1,1].  

3. PSO is initialized with dimension size 3, population size 25 and maximum number of 

iterations as 50. 

4. The fitness function is chosen as Mean square error. 

5. For all particles do  

6. Calculation of the control law 𝑢(𝑘) by initial weights. 

7. Calculation of output 𝑦𝑖(𝑘) 
8. Evaluate current position and velocity in the search space 

9. Calculate the value of objective function for the current iteration 

10. If current position gives best objective function, then, 

11. 𝑃𝑎𝑏𝑒𝑠𝑡𝑖 = 𝑤𝑖𝑘 

12. Else If the current objective function is the best overall objective function, then, 

13. 𝐺𝑎𝑏𝑒𝑠𝑡𝑖 = 𝑤𝑖𝑘 

14. Endif 

15. Move the particles in the search space 

16. Update the position and velocity of the particles,  

17. Do until stopping criteria is met 

18. END 

5. Classical Back propagation algorithm for tuning NN PID controller 

The objective of the controller is to minimize the error between the actual output and the desired 

reference input. The output error can be written mathematically as, 



𝑒𝑟𝑟𝑜𝑟𝑖(𝑘) = 𝑟𝑖(𝑘) − 𝑦𝑜𝑢𝑡𝑖(𝑘)                   (22) 

Where, I = 1,2,….S and 𝑦𝑜𝑢𝑡𝑖(𝑘) are the output variables measured and 𝑟𝑖(𝑘)  is the reference input 

The fitness function MSE is given as, 𝑀𝑆𝐸(𝑘) = ∑ 𝑀𝑆𝐸𝑖(𝑘)𝑠𝑖=1                     (23) 

Now, we state the rules for updating weights of neural network controller 𝜕𝑀𝑆𝐸(𝑘)𝜕𝑤𝑖𝑗(𝑘−1) = ∑ [𝜕𝑀𝑆𝐸𝑖(𝑘)𝜕𝑦𝑜𝑢𝑡𝑖(𝑘) . 𝜕𝑦𝑜𝑢𝑡𝑖(𝑘)𝜕𝑢(𝑘−1) ]𝑆𝑖=1 𝜕𝑢(𝑘−1)𝜕𝑤𝑖𝑗(𝑘−1)                  (24) 

𝜕𝑦𝑜𝑢𝑡𝑖(𝑘)𝜕𝑢(𝑘−1) ≈ Δ𝑦𝑜𝑢𝑡𝑖(𝑘)Δ𝑢(𝑘−1) ≈ 𝑦𝑜𝑢𝑡𝑖(𝑘)−𝑦𝑜𝑢𝑡𝑖(𝑘−1)𝑢(𝑘−1)−𝑢(𝑘−2)                  (25) 

We use sign function to find the result. The final rule of updating weights is, ∆𝑤𝑖𝑗(𝑘 − 1) = −𝛼𝑟𝑖𝑗 𝜕𝑀𝑆𝐸(𝑘)𝜕𝑤𝑖𝑗(𝑘−1)=𝛼𝑟𝑖𝑗 ∑ 𝑒𝑟𝑟𝑜𝑟𝑖(𝑘). 𝑠𝑖𝑔𝑛𝑠𝑖=1 Δ𝑦𝑜𝑢𝑡𝑖(𝑘)Δ𝑢(𝑘−1) . 𝑒𝑟𝑟𝑜𝑟𝑖(𝑘 − 1)                         (26)          

Where, j=1,2,3 

Weights of output layer are, 𝑤𝑜𝑖 = 1, 𝑖 = 1,2,3                    (27)

  

The function of back propagation based NN PID controller is shown in Figure 6. 

 

Figure 2 Block Diagram of BP-NN based PID controller 

 

The BP based NN like PID controller shown in the Figure 3 gives the optimized PID parameters. The 

NN based PID controller gives the control signal to control the temperature of jacketed CSTR. 

6. Simulation Results 



The proposed hybrid PSO-NN technique is implemented to tune PID parameters for temperature control 

of jacketed CSTR and compared with BPNN-PID and ZN-PID tuning method. The parameters chosen 

while applying PSO algorithm are presented in Table 2 

Table 2 PSO Parameters 

S.no. Parameters Values 

1. 

𝐶1&𝐶2 
Acceleration 

Constants 

2 

2. 𝑤𝑚𝑎𝑥 0.9 

3. 𝑤𝑚𝑖𝑛 0.4 

4. 
Maximum no. of 

Iterations 
50 

 

The comparative step responses for various controllers for temperature control of jacketed CSTR is 

given in Figure 7. 

 

 

Figure 3 Comparative Step responses of Various Controllers 

The performance indices explaining the step responses quantitatively is presented in Table 3. 

Table 3 Comparative Step performance indices of various Controllers 

S.no. Method 

used 

Rise time 

(in secs) 

Overshoot 

% 

Peak 

time (in 

secs) 

Settling 

time (in 

secs) 

1.  Zeigler 

Nichols 

0.1810 44.08 0.4900 1.6731 

2.  BPNN-PID 0.2727 26.33 0.6200 1.8194 

3.  PSO-NN-

PID 

0.1283 23.13 0.2900 0.7480 



It is evident from Figure 4 and Table 3 that rise time, tr is lowest 0.1283 in case of PSO-NN-PID tuned 

controller as compared to BPNN-PID and ZN tuned PID. The maximum overshoot has also reduced 

from 44.08% in ZN tuned PID to 26.33% in BPNN-PID and has further reduced to 23.13% in PSO-

NN-PID. The settling time is also lowest 0.7480 in case of PSO-NN-PID controller. The values of 

different optimized PID gains Kp, Ki and Kd is given in Table 4. 

 

Table 4 𝑲𝒑, 𝑲𝒊 and 𝑲𝒅 parameters of various Controllers 

S.no. Method Used 𝑲𝒑 𝑲𝒊 𝑲𝒅 

1. ZN Tuned 4.0795 0.8703 12.019 

2. PSO-NN-PID 9.9000 2.0272 9.4000 

3. BPNN-PID 4.3300 0.3100 6.1100 

 

The proposed controller is also tested for disturbance rejection. The comparative step responses of 

different controllers in case of disturbance application from time=1 second to time=2 seconds is 

presented in Figure 8.  The performance indices of the responses presented in Figure 5 are quantitatively 

compared in Table 5. 

 

 

Figure 4 Comparative Step responses of various controllers under disturbance application 

 

 

 



Table 5 Comparative Step performance indices of various controllers under disturbance 

application 

S.no. 
Method 

used 

Rise time 

(in secs) 

Overshoot 

% 

Peak 

time (in 

secs) 

Settling 

time (in 

secs) 

1.  
Zeigler 

Nichols 
0.1839 47.03 1.21 2.77 

2.  BPNN-PID 0.2713 30.00 1.21 2.36 

3.  
PSO-NN-

PID 
0.1289 50.00 1.20 1.88 

 

The Table 5 shows that the PSO-NN-PID has the best rise time of 0.1289 seconds as compared to 0.2713 

seconds in BPNN-PID and 0.1839 seconds in ZN-PID. There is slight increase in maximum overshoot 

in case of PSO-NN-PID controller but if we compare the settling time, it shows that the controller 

efficiently reduces the effect of disturbance quickly. Settling time is lowest 1.88 seconds in case of 

PSO-NN-PID controller. The values of controller gains are given in Table 6. 

Table 6 𝑲𝑷, 𝑲𝒊 and 𝑲𝒅 parameters of various Controllers under disturbance application 

S.no. 
Method 

Used 
𝑲𝑷 𝑲𝒊 𝑲𝒅 

1. ZN Tuned 4.0795 0.8703 12.019 

2. 
PSO-NN-

PID 
9.9000 1.9983 9.4000 

3. BPNN-PID 4.2145 0.2909 6.2350 

 

The comparative analysis of the performance indices is shown in the Figure 9.  

 

Figure 5 Comparative graph of rise time, overshoot, peak time and settling time for various 

controllers 



The control signal u(t) and error signal e(t) are shown in Figure 10 & 11. 

 

Figure 6 Control Signal in case of PSO-NN-PID controller 

 

Figure 7 Error Signal in case of PSO-NN-PID controller 

 

The graph showing variation in 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑  with respect to time is shown in Figure 12. 

 

Figure 8 Variation or Kp, Ki and Kd values with time 



The comparative bar graph of MSE in the case of three controllers, ZN-PID, BPNN-PID and PSO-NN-

PID is shown in Figure 13.  

 

 

Figure 9 Comparative bar graph of MSE values for various controllers 

 

6.1 Discussion 

A comparison of simulation results of the three controllers are presented in the above section. ZN- tuned 

PID, BP tuned PID-NN and PSO tuned PID-NN are compared on a non-linear jacketed CSTR plant. 

From the results it is evident that in case of PSO tuned PID-NN controller there is a decrease of 33% in 

rise time and 47.7% in overshoot. To test the robustness of the proposed scheme a disturbance signal 

of amplitude 1.5 was applied. In case of PSO tuned PID-NN controller there is slight increase in 

overshoot but it can be observed that the controller was able to subside the disturbance quickly in 1.88 

seconds as compared to ZN tuned PID taking 2.77 seconds and BP tuned PID-NN taking 2.36 seconds. 

Figure 6 shows a comparative graph of rise time, peak time, overshoot, peak time and settling time. It 

can be seen from the graph that there is a reduction in rise time, overshoot and settling time in case of 

PSO-PID-NN. Figure 8 & 9 represent the variation of control signal and error signal with time in case 

of PSO-PID-NN. Figure 10 represents the variation of 𝐾𝑝, 𝐾𝑖 𝑎𝑛𝑑 𝐾𝑑 with respect to time in case of 

PSO-PID-NN. Figure 11 shows a comparative bar graph of different controllers. The value of cost 

function MSE is least in case of PSO-PID-NN and largest in case of ZN tuned PID. 

7. Conclusion 

The study proposes a novel NN based PID controller based on PSO tuning method. The two techniques 

used combine the advantage of high computational speed, in case of neural network and accuracy in 

case of PSO. The NN is modified as a PID like structure where the hidden layer has three neurons and 

the output layer has three weights which are proportional to P, I and D gains respectively. The weights 

are optimized using PSO algorithm. The proposed technique is compared with Back propagation 

algorithm tuned NN-PID controller. The simulation results show that overshoot reduces to 23.13% to 



44.08% in case of PSO-NN-PID. The rise time also reduces from 0.18 seconds to 0.1283 seconds. The 

controller developed was also tested for robustness under the application of disturbance and is found to 

be better than BP based NN-PID controller and conventionally tuned PID controller. 
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