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Abstract

This work revisits quantum algorithms for the well-known welded tree prob-
lem, proposing a very succinct quantum algorithm based on the simplest coined
quantum walks. It simply iterates the naturally defined coined quantum walk
operator for a predetermined time and finally measure, where the predetermined
time can be efficiently computed on classical computers. Then, the algorithm
returns the correct answer deterministically, and achieves exponential speedups
over any classical algorithm. The significance of the results may be seen as
follows. (i) Our algorithm is rather simple compared with the one in (Jeffery
and Zur, STOC’2023), which not only breaks the stereotype that coined quan-
tum walks can only achieve quadratic speedups over classical algorithms, but
also demonstrates the power of the simplest quantum walk model. (ii) Our
algorithm theoretically achieves certainty of success, which is not possible with
existing methods. Thus, it becomes one of the few examples that exhibit expo-
nential separation between deterministic (exact) quantum and randomized query
complexities, which may also change people’s perception that since quantum
mechanics is inherently probabilistic, it is impossible to have a deterministic
quantum algorithm with exponential speedups for the welded tree problem.

Keywords: the welded tree problem, quantum walk, quantum algorithm
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1 Introduction

A primary goal of the field of quantum computing is to design quantum algorithms that
can solve problems faster than classical algorithms. Quantum walks have developed
into a fundamental tool for algorithmic design. Since Aharonov et al. [1] first coined the
term “quantum walks” thirty years ago, quantum walks have become a major research
subject both in theory and in experiment [2–5]. There are two kinds of quantum walks:
discrete time quantum walks (DTQW) and continuous time quantum walks (CTQW).
Whereas CTQW evolve a Hamiltonian H (related to the graph under consideration)
for any time t, i.e. simulating eiHt, DTQW can only evolve the system for discrete time
steps, i.e. applying Uh

walk to the initial state for some integer h and unitary operator
Uwalk.

DTQW can be further divided into many different frameworks. The earliest and
simplest is the coined quantum walks [6, 7] consisting of a coin operator C (usually
the Grover diffusion) and a shift operator S (usually the flip-flop shift, i.e. SWAP
operator). Later, Szegedy proposed a quantum walk framework [8] from the perspective
of Markov chains. In this direction, a series of variant frameworks for spatial search
have been developed: the MNRS framework [9], the interpolated walk [10], the electric
network framework [11] and its finding version [12]. Quantum algorithms based on
these frameworks have provided only at most a quadratic speedup when comparing
to the best classical algorithm. Typical examples include quantum algorithms for the
element distinctness problem [13], matrix product verification [14], triangle finding
[15], group commutativity [16], and so on.

In sharp contrast, exponential algorithmic speedups can be obtained based on
CTQW for the welded tree problem [17], which makes the welded tree problem of great
interest, as it is one of the few problems for which quantum walk-based algorithms are
exponentially faster than classical algorithms. Note that earlier studies have shown
that quantum walks can solve problems exponentially faster than classical walks [18,
19], but there exist classical efficient algorithms which are not based on a random walk
for those problems [17].

Recently, Jeffery and Zur [20] proposed a new DTQW framework—
multidimensional quantum walks (an extension of the electric network framework),
and then presented a quantum algorithm based on it to solve the welded tree problem,
which achieves exponential speedups over classical algorithms. The pursuit of expo-
nential algorithmic speedups based on DTQW is one of the reasons for proposing the
framework of multidimensional quantum walks. Actually, Jeffery and Zur [20] claimed
that the major drawback of the existing DTQW frameworks is that they can achieve
at most a quadratic speedup over the best classical algorithm, but this drawback does
not hold for the multidimensional quantum walk framework 1.

In this work, we revisit quantum algorithms for the welded tree problem, proposing
a quite succinct quantum algorithm based purely on the simplest coined quantum

1Ref. [20] claimed “While quantum walk frameworks make it extremely easy to design quantum algo-
rithms, even without an in-depth knowledge of quantum computing, as evidenced by their wide application
across domains, the major drawback is that they can achieve at most a quadratic speedup over the best
classical algorithm. This is because a quantum walk search algorithm essentially takes a classical random
walk algorithm, and produces a quantum algorithm that is up to quadratically better. This drawback does
not hold for the multidimensional quantum walk framework”.
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walks, which not only maintains the exponential speedup, but also achieves certainty of
success theoretically. Thus, our work demonstrates the power of the simplest quantum
walk model, and verifies that a good quantum algorithm does not necessarily resort
to complex techniques.

1.1 Coined Quantum Walk

For a graph G = (V,E) and u ∈ V , deg(u) = {v : (u, v) ∈ E} denotes the set of
neighbours of u, and the degree of u is denoted as du = |deg(u)|. A coined quantum

walk on G = (V,E) is defined on the state space H
N2

= span{|uv⟩ , u, v ∈ V } with
N = |V |. The evolution operator of the coined quantum walk at each step is Uwalk =
SC. C, the coin operator, is defined by C =

∑

u∈V |u⟩ ⟨u| ⊗Cu, where Cu is typically
the Grover diffusion coin operator Cu = 2 |su⟩ ⟨su| − I, with |su⟩ = 1√

du

∑

v∈deg(u) |v⟩.
S, the flip-flop shift operator, is defined as S |uv⟩ = |vu⟩, where |uv⟩ = |u⟩ ⊗ |v⟩
denotes a particle at vertex u pointing towards vertex v. Given the initial state |Ψ0⟩,
the walker’s state after h steps is |Ψh⟩ = Uh

walk |Ψ0⟩.

1.2 The welded tree problem

The welded tree problem was proposed in [17] as a black-box (oracle) problem to show
that a quantum algorithm can be exponentially faster than any classical algorithm
with the help of CTQW. To achieve exponential algorithmic speedup, the graph to be
traversed is carefully designed: the welded treeGn consists of two horizontal-positioned
full binary trees of height n with their 2n leaves in the middle. The root of the left tree
is the entrance denoted by s, and the root of the right tree is the exit denoted by t.
The leaves in the middle are connected by a random cycle that alternates between the
leaves of the two trees instead of identifying them in the direct way. (See the dashed
line in Fig. 1) This makes the leaves have degree 3 instead of 2, indistinguishable from
all the other internal nodes.

The number of vertices in Gn is |V (Gn)| = 2(2n+1 − 1), thus (n + 2)-bit string
is enough to encode all the vertices. However, to ensure the classical hardness of the
problem [17, Lemma 7], each vertex u ∈ V (Gn) is randomly assigned a distinct 2n-bit
string as its name, except that the entrance is fixed as s ≡ 02n. We retain ⊥≡ 12n as
the special symbol, so that the graph Gn can be specified by an 22n× 3 adjacency list
Γ (See the table in Fig. 1). Note that when u ∈ {0, 1}2n is the root s or t, exactly one
of {Γ(u, i) : i = 1, 2, 3} is ⊥.

The adjacency list Γ is provided in the form of an oracle (black box) O, so that
the only way to know about Γ is to query O with a name u ∈ {0, 1}2n, and the oracle
will output all the items in row u of Γ:

O(u) = {Γ(u, i) : i = 1, 2, 3}. (1)
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Γ 1 2 3

0 ⊥ 2 14

1 14 7 3

2 0 4 8

3 6 1 10

4 2 11 7

5 11 9 12

6 3 7 9

7 1 3 6

8 2 11 12

9 6 5 ⊥
10 3 12 14

11 5 4 8

12 8 5 10

13 ⊥ ⊥ ⊥
14 0 1 10

15 ⊥ ⊥ ⊥
Fig. 1 A welded tree Gn for n = 2 and its 22n × 3 adjacency list Γ. s = 0 is the entrance and
t = 9 = (1001)2 is the exit. The dashed lines in the middle is the random cycle connecting the two
trees.

We are concerned with the number of times an algorithm queries the oracle O (a.k.a
query complexity) to find the exit name t. In the quantum model, the effect of O is

O |u⟩
3⊗

i=1

|vi⟩ = |u⟩
3⊗

i=1

|vi ⊕ Γ(u, i)⟩ , (2)

where u, vi are all 2n-bit string and ⊕ denotes bit-wise modulo 2 addition. The welded
tree problem can now be formally stated as Definition 1.1.
Definition 1.1 (the welded tree problem). Given the entrance name s = 02n, find
the exit name t of the welded tree Gn with as few queries as possible to its adjacency
list oracle O.

Since the degree of each vertex in Gn is no more than 3, even if the quantum oracle
O is provided in its weaker form such that it returns only one adjacent vertex Γ(u, i)
when queried with (u, i), as is the case in [17], the influence on the query complexity
is at most by a constant factor and can be neglected.

1.3 Our contribution

In this paper, we propose a rather succinct quantum algorithm (Algorithm 1 in
Section 4) to solve the welded tree problem, which is simply to walk on the welded
tree with the operator Uwalk = SC from an initial state |Ψs⟩ that is constructed from
the entrance vertex s. We will show that the coin operator C can be implemented with
4 queries to the given oracle O and the shift operator S has no queries to O. Also,
we will prove that after T ∈ O(n log n) steps which can be predetermined efficiently
on classical computers, the walker reaches the exit vertex t with probability at least
Ω( 1n ). More exactly, there is | ⟨Ψt|UT

walk |Ψs⟩ |2 > c 1
n for constant c, where |Ψt⟩ encodes

the exit t. Therefore, the query complexity of the algorithm is O(n2 log n). Further-
more, the algorithm can be improved to a deterministic one with O(n1.5 log n) queries
by using deterministic (or exact) amplitude amplification as shown by Algorithm 2
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in Section 5. In addition, we conjecture that the actual complexity of our algorithm
is O(n4/3) (Conjecture 6.1 in Section 6), which is strongly supported by numerical
simulation for n = 6, · · · , 1000, with the strict proof left as an open problem.

The significance of our results, in our opinion, lies at least in the following two
aspects:

1. Our algorithm is rather succinct compared with the one in [20], which not only
changes the stereotype that coined quantum walks can only achieve quadratic
speedups over classical algorithms, but also demonstrates the power of the simplest
quantum walk models.

2. Our algorithm can be made deterministic theoretically, whereas existing meth-
ods cannot (see Table 1). Thus, it becomes one of the few examples that exhibits
exponential separation between deterministic (exact) quantum and randomized
query complexities, and may have potential applications in graph property testing
problems [21, 22]. Previous examples of this kind of separation include Simon’s
problem [23] and its generalization [24]. This deterministic algorithm may also
change people’s perception that since quantum mechanics is inherently probabilis-
tic, deterministic quantum algorithms with exponential speedups for the welded
tree problem are out of the question.

1.4 Technical overview

Despite the succinctness of our algorithms, there are some non-trivial steps in designing
and analyzing it, without losing technical challenges:

1. Constructing the operator Uwalk = SC from the given oracle O (Lemma 2.1). As
the flip-flop shift operator S requires no oracle queries, the key is to construct
the coin operator C. Our implementation of C is inspired by [20], but it is much
simpler as alternative neighbourhoods technique is not needed in this paper.

2. Reducing the Θ(2n)-dimensional state space to a (4n + 2)-dimensional invariant
subspace (Lemma 3.1). In this subspace, the operator Uwalk = SC takes the
form of a (4n + 2)-dimensional square matrix MU = MSMC , and the initial
state corresponds to the first base vector |0⟩ (whose transpose is [1, 0, · · · , 0]) and
the target state corresponds to the last base vector |4n+ 1⟩ (whose transpose is
[0, · · · , 0, 1]. The reduction is done by grouping the vertices according to their
layers, which is inspired by [17], but since our coined quantum walk is carried out
on the edges of the graph, there is some nontrivial difference.

3. Analyzing the success probability, which is probably the most technical step. This
is shown in two steps:
(i) Obtaining the spectral decomposition of matrix MU =

∑

j e
iϕj |Ej⟩ ⟨Ej |

(Lemma 4.1). This is inspired by a spectral decomposition result in [25], but we
improve it with an observation concerning Chebyshev polynomial of the sec-
ond kind. The improvements make the equation that the eigenvalues need to
satisfy become clear, explicit and easy to analyze.

(ii) Instead of directly considering a fixed iteration number t (the difficulty of this
approach is noted in Remark 4.4), we will prove that the average success prob-
ability E| ⟨4n+ 1|M t

U |0⟩ |2 has a Ω( 1n ) lower bound when t is chosen according
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to a specific distribution over {0, 1, · · · , O(n log n)}. A key component of the
proof is the helper Lemma 4.2 (inspired by [26, Lemma 3]), which relates the
lower bound of E| ⟨4n+ 1|M t

U |0⟩ |2 with, roughly speaking, the first and last
component of eigenvector |Ej⟩ and the characteristic of eigenvalue angles ϕj .
Thus, the spectral decompositionMU =

∑

j e
iϕj |Ej⟩ ⟨Ej | in step (i) is of crucial

importance.

1.5 Related work

The original algorithm proposed by Childs et al. [17] is based on CTQW and they prove
that the CTQW will find the exit with probability Ω(1/n) at a time of O(n4). They
also showed that the CTQW eiHt can be simulated for time t with O(t2) oracle queries.
Thus combined with fixed-point amplitude amplification [27, 28], the overall query
complexity is O(n8.5), where n8.5 = n1/2 ·n4·2. Lately it was improved to O(n2.5log2n)
[26]. In contrast, any classical algorithm requires 2Ω(n) queries [17, 29]. It was claimed
in [30] that there exist exponential algorithmic speedups based on DTQW for the
welded tree problem, but no explicit algorithm was given there. Recently, a quantum
algorithm based on the multidimensional quantum walk framework was proposed by
Jeffery and Zur [20], solving the problem with O(n) queries and O(n2) time complexity.
The framework uses phase estimation [31] to gain one-bit information about the exit
name, and then uses the Bernstein-Vazirani algorithm [32] to obtain the whole name.
We summarize previous results on the welded tree problem in Table 1.

Table 1 Summary of previous work on the welded tree problem.

algorithmic type queries succinct? deterministic?

classical [17, 29] 2Ω(n) *1

CTQW [17] O(n8.5) Yes No
CTQW [26] O(n2.5log2n) Yes No
DTQW [20] O(n) No No
DTQW, this work O(n1.5 logn) Yes Yes

1The lower bound holds for any classical randomized algorithm
and thus also holds for deterministic algorithm.

Compared to the recent quantum algorithm based on multidimensional quantum
walks [20], our algorithm has the following advantages:

1. Succinct algorithmic procedure. Our algorithm (see Algorithm 1) simply iterates
the coined quantum walk operator Uwalk for a predetermined time T and then
measure the first register to obtain the result. In contrast, [20] has to combine with
Bernstein-Vazirani algorithm [32] in order to learn the whole name, because their
multidimensional quantum walk framework using phase estimation can only obtain
one-bit information about the exit name (which corresponds to the inner-product
oracle in BV algorithm).

2. Simpler implementation of the quantum walk operator. Our implementation of
Uwalk is simpler as the coin operator C can be easily implemented with two oracle
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queries and the shift operator S is merely 2n parallel SWAP gates. In contrast, it
was said in [20, Remark 4.8] that one has to carefully assign different weights to the
graph’s edges in order to balance between the positive and negative witness size,
so that the polynomial query complexity is possible. The weight assigning scheme
makes the implementation of the quantum walk operator much more complicated:
(i) The alternative neighbourhoods technique has to be used since the oracle does
not provide information about which neighbouring vertex is closer to the root. The
technique works as follows: instead of reflecting around the uniform superposition
of neighbours (which is what our coin operator C does), one has to reflect around
a subspace spanned by some easily preparable states. This makes the operator’s
implementation more complicated. (ii) Due to the specific weight assigning scheme,
one has to handle separately the cases when n is odd or even, and determine
the parity of the layers at which each vertex lies, and also assign different weight
w0 = wM = 1/(cn) to the edges (s,⊥), (t,⊥).

3. Certainty of success theoretically. Since the multidimensional framework [20] uses
phase estimation which is intrinsically randomized, it cannot be made determin-
istic, but our simple coined quantum walk algorithm can be made deterministic
theoretically (Algorithm 2).

Compared to the algorithms based on CTQW [17, 26], our algorithms has a better
query complexity, and can be adapted to succeed with certainty. On the contrary, the
implementation of the CTQW operator eiHt from oracle O involves the use of linear
combination tool in Hamiltonian simulation, thus error is introduced inevitably. Also,
choosing the quantum walk time t according to some distribution leads to additional
randomness.

1.6 Paper organization

The rest of the paper is organized as follows. In Section 2 we define the coined quantum
walk operator Uwalk and give a detailed implementation of Uwalk from the quantum
oracle O. In Section 3 we reduce the full state space to a (4n+2)-dimensional invariant
subspace and deduce the reduced matrix MU , which lays an important first step for
the correctness and complexity analysis of our algorithms. In Section 4 we present a
succinct algorithm (Algorithm 1) and prove a rigorous query upper bound. In Section 5
we present the theoretically deterministic algorithm (Algorithm 2). Numerical simu-
lation is shown in Section 6 indicating that the actual performance of our algorithms
is better. We conclude this paper in Section 7.

2 Implementing the coined quantum walk operator

As the adjacency list Γ of the welded tree Gn defined in Section 1.2 is unknown and
can only be accessed through the oracle O, the implementation of the coined quantum
walk operator Uwalk on Gn needs some careful design as presented in this section.

First, the state space of the coined quantum walk is:

H = span{|u⟩r1 |v⟩r2 : u, v ∈ {0, 1}2n}, (3)
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which is the state space of 4n qubits. The subscript ri of the two registers will serve
later for the convenience of describing the construction of

Uwalk = SC. (4)

Let ϕ(u) = 1√
3

∑3
i=1 |Γ(u, i)⟩ be the uniform superposition of the adjacent vertices of

u and let Cu = 2 |ϕ(u)⟩ ⟨ϕ(u)| − I. Then the coin operator C is given by

C =
∑

u∈{0,1}2n

|u⟩ ⟨u| ⊗ Cu (5)

= 2
∑

u∈{0,1}2n

|u, ϕ(u)⟩ ⟨u, ϕ(u)| − I. (6)

Note that we allow the sum to include u /∈ V (Gn), so that the implementation of Ref⊥
(see Eq. (12)) does not need to check whether u is indeed a vertex in Gn or not. When
r ∈ {s, t} and Γ(r, i1) =⊥, we let

ϕ(r) =
1√
2
(|Γ(r, i2)⟩+ |Γ(r, i3)⟩), (7)

reflecting the fact that r →⊥ is not an edge in the graph.
The shift operator S is the SWAP operator on the vertex pair {u, v}:

S =
∑

u,v∈{0,1}2n

|v, u⟩ ⟨u, v| , (8)

which is actually a reflection operator as well:

S = 2
∑

u≤v

|ψu,v⟩ ⟨ψu,v| − I, (9)

where

|ψu,v⟩ =
{ |u,v⟩+|v,u⟩√

2
, u < v;

|u, v⟩ , u = v.
(10)

Lemma 2.1. The coined quantum walk operator Uwalk = SC can be implemented with
2 oracle queries and O(n) elementary operations.

Proof. First, the implementation of S is quite simple, just apply the SWAP gate to
the corresponding 2n pairs of qubits between registers r1 and r2, which takes O(n)
basic operations. The implementation of C is more complicated and requires 2 oracle
queries as shown below.

We implement C in two steps: first to construct a unitary operator Uϕ that has
the following effect

Uϕ : |u,⊥⟩ 7→ |u, ϕ(u)⟩ , (11)
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and then to construct the reflection

Ref⊥ = 2
∑

u∈{0,1}2n

|u,⊥⟩ ⟨u,⊥| − I = Ir1 ⊗ (2 |⊥⟩ ⟨⊥| − Ir2). (12)

Thus, we have

C = Uϕ Ref⊥U
†
ϕ, (13)

where U†
ϕ can be implemented by executing the conjugate of quantum gates composing

Uϕ in reverse order.
As global phase shift can be neglected, we will implement −Ref⊥. Observe that

−Ref⊥ simply adds a relative phase shift of (−1) to |v⟩r2 when v =⊥= 12n. Thus,
using phase kick-back effect, −Ref⊥ can be easily constructed by flipping an auxiliary
qubit register |−⟩ conditioned on all the 2n qubits in register r2 being in state |1⟩ (i.e.
apply a C2n −NOT gate, which decomposes to O(n) basic gates).

The implementation of Uϕ requires 2 oracle queries and O(n) basic operations,
which is a bit lengthy due to the special handling of ϕ(r) (Eq. (7)) and is thus deferred
to Appendix A. Note that Ref⊥ is carried out on register r2 and leaves register r1
unchanged, so the 2 oracle queries in Uϕ and U†

ϕ closest to Ref⊥ in C = Uϕ Ref⊥U†
ϕ

is cancelled out. Thus C can be implemented with 2 oracle queries.
As can be seen form the italics, the implementation of Uwalk takes O(n) basic

operations in total.

Remark 2.1. If we enable the oracle to return all the neighbours coherently, i.e.
O : |u,⊥⟩ 7→ |u, ϕ(u)⟩, which is a common assumption in the Markov chain based
DTQW framework, then the implementation of Uϕ shown above is unnecessary. But
if this is the case, we will need an additional oracle to check if u is the exit.

The initial state of the coined quantum walk is

|s, ϕ(s)⟩ = 1√
2
(|Γ(s, i2)⟩+ |Γ(s, i3)⟩), (14)

which can be obtained with 2 oracle queries from |s,⊥⟩ similar to step 4 in Appendix A.
We denote this state preparation unitary by

Up : |s,⊥⟩ 7→ |s, ϕ(s)⟩ . (15)

3 Reducing to the low-dimensional invariant
subspace

In this section, we will determine the (4n + 2)-dimensional invariant subspace H0 of
the coined quantum walk operator Uwalk based on layers of vertices in Gn, so that the
amplitude on the target state |t, ϕ(t)⟩ after applying UT

walk to the initial state |s, ϕ(s)⟩
can be calculated exactly when n is fixed, regardless of the vertices’ random naming
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or the random cycle in the middle of Gn. This lays an important first step for the
correctness and complexity analysis of our algorithms.

Specifically, we have the following lemma.
Lemma 3.1. The coined quantum walk operator Uwalk for the welded tree Gn has a
(4n+ 2)-dimensional invariant subspace

H0 = span{|0, R⟩ , |1, L⟩ , |1, R⟩ , · · · , |2n, L⟩ , |2n,R⟩ , |2n+ 1, L⟩}, (16)

where |0, R⟩ = |s, ϕ(s)⟩ is the initial state, |2n+ 1, L⟩ = |t, ϕ(t)⟩ is the target state,
and the other sates |k, L⟩ , |k,R⟩ are defined respectively in Eqs. (17) (18) for k = 1 ∼ n
in the left tree, and similarly for k = (n + 1) ∼ 2n in the right tree. In this basis,
the coined quantum walk operator Uwalk can be represented by a (4n+ 2)-dimensional
square matrix MU = MS · MC , where MC and MS are shown in Eqs. (22), (24)
respectively.

Proof. The welded tree Gn has 2(n + 1) layers of vertices, and we denote by Vk the
set of vertices in the k-th layer. Thus in the left tree, |Vk| = 2k for k ∈ {0, 1, · · · , n};
and in the right tree, |Vn+k| = 2n+1−k for k ∈ {1, 2, · · · , n+ 1}. The two basis states
|k, L⟩ , |k,R⟩ with k ∈ {1, · · · , n} of H0 are related to Vk in the left tree, and are
defined as the superpositions of the directed edges pointing to the root and to the
random cycle, respectively:

|k, L⟩ := 1√
2k

∑

u∈Vk

|u,Γ(u, i1)⟩ (17)

where Γ(u, i1) is the adjacent vertex of u closest to the root s, and

|k,R⟩ := 1√
2k

∑

u∈Vk

1√
2

(
|u,Γ(u, i2)⟩+ |Γ(u, i3)⟩

)
. (18)

Note that the composing computational basis states of |k, L⟩ , |k,R⟩ with k ∈
{1, · · · , n} are all distinct, since they represent different directed edges in the welded
tree graph. Thus these basis states are mutually orthogonal. The two basis states
|n+ k, L⟩ , |n+ k,R⟩ with k ∈ {1, · · · , n} related to Vn+k in the right tree are defined
similarly. Note that |0, R⟩ := |s, ϕ(s)⟩ is the initial state and |2n+ 1, L⟩ := |t, ϕ(t)⟩
is the target state. Note also that there is no |0, R⟩ or |2n+ 1, L⟩. A diagram of the
4n+ 4 = 12 basis states of H0 when n = 2 is shown in Fig. 2.

Observe that

|u, ϕ(u)⟩ =
√

1

3
|u,Γ(u, i1)⟩+

√

2

3

1√
2

(

|u,Γ(u, i2)⟩+ |Γ(u, i3)⟩
)

. (19)

Thus by the definition of the coin operator C (Eq. (6)) and linearity, the 2-dimensional
subspace spanned by {|k, L⟩ , |k,R⟩} is invariant under C, and the matrix expression
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0 1 2 3 4 5

4,L 4,R0,R

1,L 5,L3,R1,R 3,L

2,L 2,R

Fig. 2 Diagram of the basis states of the reduced coined quantum walk subspace H0 when n = 2.
The box with number inside represents the vertex set Vk of the k-th layer. The solid blue arrows
represent basis states |k, L⟩ , |k,R⟩ related to Vk with k ∈ {1, · · · , n} in the left tree, and the black
hollow arrows represent basis states |n+ k, L⟩ , |n+ k,R⟩ related to Vn+k with k ∈ {1, 2, · · · , n} in
the right tree. The state |0, R⟩ := |s, ϕ(s)⟩ and |2n+ 1, L⟩ := |t, ϕ(t)⟩ are the initial and target states
respectively.

of C in this basis is

RA := 2





√
1
3

√
2
3



 · [
√

1

3
,

√

2

3
]− I =

[

− 1
3

2
√
2

3
2
√
2

3
1
3

]

. (20)

Similarly, the matrix expression of C in the basis {|n+ k, L⟩ , |n+ k,R⟩} related to
Vn+k in the right tree is

R′
A := 2





√
2
3

√
1
3



 · [
√

2

3
,

√

1

3
]− I =

[
1
3

2
√
2

3
2
√
2

3 − 1
3

]

. (21)

Note that |0, R⟩ and |2n+ 1, L⟩ are invariant under C by Eq. (7). Thus the matrix
expression of C in the basis {|0, R⟩ , |1, L⟩ , |1, R⟩ , · · · , |2n, L⟩ , |2n,R⟩ , |2n+ 1, L⟩} is

MC := diag(1, RA, · · · , RA
︸ ︷︷ ︸

n

, R′
A, · · · , R′

A
︸ ︷︷ ︸

n

, 1). (22)

Note that |k,R⟩ and |k + 1, L⟩ with k ∈ {0, · · · , 2n} are equal superpositions of
basis states in {|u, v⟩ : u ∈ Vk, v ∈ Vk+1} and {|v, u⟩ : u ∈ Vk, v ∈ Vk+1} respectively,
which represent the same set of edges but the direction are all reversed. Recall that
the shift operator S swaps ‘directed edge’ |u, v⟩ with |v, u⟩, therefore by linearity
S simply swaps |k,R⟩ with |k + 1, L⟩, and the 2-dimensional subspace spanned by
{|k,R⟩ , |k + 1, L⟩} is invariant under S. The matrix expression of S in this two basis
states is

RB :=

[
0 1
1 0

]

= 2 |+⟩ ⟨+| − I. (23)

Thus, the matrix of S in the basis {|0, R⟩ , |1, L⟩ , |1, R⟩ , · · · , |2n, L⟩ , |2n,R⟩ , |2n+ 1, L⟩}
is

MS := diag(RB , · · · , RB
︸ ︷︷ ︸

2n+1

). (24)
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As a result, the operator Uwalk corresponds to a (4n+ 2)-dimensional square matrix

MU =MS ·MC . (25)

In addition, the initial state |0, R⟩ := |s, ϕ(s)⟩ corresponds to the (4n + 2)-
dimensional vector |0⟩ = [1, 0, · · · , 0]T, and the target state |2n+ 1, L⟩ := |t, ϕ(t)⟩
corresponds to |4n+ 1⟩ = [0, 0, · · · , 1]T.

4 Succinct quantum algorithm with O(n2 logn)
queries

Here we present a rather succinct quantum algorithm (i.e., Algorithm 1) for the welded
tree problem, which is to first efficiently compute a walk step number T1 on classical
computers, and then simply perform the walk operator Uwalk with T1 times. The
correctness is guaranteed by Theorem 4.1, from which together with Lemma 2.1 it is
easy to see that the query complexity of Algorithm 1 is O(n2 log n), with an additional
time complexity of O(n · n2 log(n)) = O(n3 log(n)).

Algorithm 1 succinct quantum algorithm for the welded tree problem

Input: adjacency list quantum oracle O (see Eq. (2)) for the welded tree Gn, and the
entrance name s ≡ 02n.
Output: the exit name t.
Procedure:

1. Classically predetermine the walk step number T1: For the initial vector |ψ0⟩ = |0⟩,
loop “|ψT ⟩ ← MU |ψT−1⟩” (see Eq. (25) for MU ) and “pT ← | ⟨4n+ 1|ψT ⟩ |”, stop
when T > 3.6n log(24n). Record the largest pT1

for 2n < T1 < 3.6n log(24n) and
the corresponding T1.

2. Quantum walk: Apply T1 steps of coined quantum walk, i.e. UT1

walk (Eq. (4)) to the
initial state |s, ϕ(s)⟩ (Eq. (14)) and measure the first register in the computational
basis to obtain the exit name with Ω( 1n ) probability.

3. Classical repetition: Repeat step 2 for O(n) times to obtain the exit name t with
constant probability.

Theorem 4.1. Consider the success probability p(t) := |⟨4n+ 1|M t
U |0⟩|

2
, where MU

is defined by Eq. (25). Then for sufficiently large n and T ≈ 3.6n log(24n), we have

max{p(t) : t ∈ [2n, T ]} > 1

24n
. (26)

The remainder of this section is to prove the above theorem. As mentioned in
Section 1.4, the first and most important step to prove Theorem 4.1 is to obtain the
spectral decomposition of the reduced matrix, i.e. MU =

∑

j e
iϕj |Ej⟩ ⟨Ej |, which will

be shown by Lemma 4.1 in Section 4.1. Then we will present and prove the helper

12



Lemma 4.2 in Section 4.2, a key step in obtaining the lower bound Ω( 1n ) of the average
success probability E| ⟨4n+ 1|M t

U |0⟩ |2, from which Theorem 4.1 follows. In order to
use this helper lemma, we will need the values ⟨4n+ 1|Ej⟩·⟨Ej |0⟩ for j ∈ S, and bound
the gap ∆ES = min{|ϕj−ϕk| : ϕj ∈ S, ϕk ∈ E, k ̸= j} by choosing S ⊆ E = {ϕj} well
(so that ∆ES will be of order Ω( 1n ) as shown by Eq. (58) and Lemma 4.4 in Section 4.3).
Thus, even though the explicit formula shown in Lemma 4.1 is quite complicated, we
only need to pay attention to the the first and last term of the eigenvectors |Ej⟩, and
the gap between the eigenvalue angles ϕj .

4.1 Spectral decomposition of MU

As a preliminary, first notice that MC (see Eq. (22)) can be expressed as 2AA† − I,
where A is the following 2(2n+ 1)× 2(n+ 1) centrosymmetric matrix:

A =














1 √
p√
q
. . . √

p√
q
∗














, (27)

where

p =
1

3
, q = 1− p (28)

represent respectively the probability of walking to the roots and to the random cycle.
The (2n+1)× (n+1) sub-matrix in the bottom right-hand corner denoted by ‘∗’ can
be deduced from the centrosymmetry of A. It’s easy to see that all the columns in A
are orthonormal, thus A†A = I2(n+1).
Lemma 4.1. The matrix MU defined by Eq. (25) has (4n+ 2) different eigenvalues.
Two of which are ±1, and the respective eigenvectors are |u±1⟩ = A |v±1⟩, where the
i-th component of |v±1⟩ denoted by v±1(i) is shown in the following:

v±1(i) =







1, i = 1,

(±
√

q/p)i−1/
√
q, i = 2 ∼ n+ 1,

±(∗) i = n+ 2 ∼ 2n+ 2.

(29)

The (∗) above can be deduced from centrosymmetry of |v±1⟩. The square of norms are:

∥ |u±1⟩ ∥2 = ∥ |v±1⟩ ∥2 =
2

p− q {2p− (q/p)n}. (30)

The other 4n eigenvalues are exp(±iϕ±k) with k = 2 ∼ n + 1, where ϕ±k =
arccosλ±k and λ−k = −λk. Here, λ±k = 2

√
pq cos θ±k, and θ±k (θ−k := π − θk) are

13



the 2n roots of the following equation:

√
q sin(n+ 1)θ ±√p sinnθ = 0. (31)

The eigenvectors corresponding to exp(±iϕ±k) are:

|u±,±k⟩ := |a±k⟩ − exp(±iϕ±k) |b±k⟩ , (32)

where |a±k⟩ = A |v±k⟩ , |b±k⟩ =MS |a±k⟩. The components of |v±k⟩ are as follows:

v±k(i) =







1, i = 1,
λ±k√

p Ui−2(λ±k/
√
pq)− 1√

qUi−3(λ±k/
√
pq), i = 2 ∼ n+ 1

±(∗), i = n+ 2 ∼ 2n+ 2

(33)

where (∗) can be deduced from centrosymmetry, and Ui(x) is the monic Chebyshev of
the second kind:

Ui(x) =
sin(i+ 1) arccos x

2
√

1− (x2 )
2

. (34)

The square of norms are

∥ |u±,±k⟩ ∥2 =
2(1− λ2k)2
q sin2 θk

(

n+

√
q

p

sin((n+ 1)2θk)

2 sin θk

)

. (35)

Proof. The proof is a bit lengthy and is deferred to Appendix B.

Remark 4.1. We suspect the reason that no succinct algorithm for the welded tree
problem based on simple coined quantum walks has been proposed a priori, is that an
enough understanding on the spectral decomposition of the DTQW operator has not
been obtained before. Although Ref. [25] is a big step towards this direction, the results
obtained there are not satisfactory:

1

T

∑

t∈[T ]

| ⟨4n+ 1|M t
U |0⟩ |2 = 2−Ω(n), T →∞, (36)

showing that the average success probability is exponentially small when T →∞.

4.2 The helper lemma

Another key component in proving Theorem 4.1 is the following helper Lemma 4.2,
which is a discrete-time adaptation of [26, Lemma 3]. However, our proof of Lemma 4.2
is simpler than the one for [26, Lemma 3], as it does not involve integral or character-
istic functions of continuous random variables. Moreover, their intermediate step [26,
Lemma 4] considers the Frobenius norm of the difference between density matrices,
which introduces a strange factor of

√
3.

Lemma 4.2 shows that when the iteration number t is chosen according to some
specific distribution on [T ] := {0, 1, · · · , T − 1}, the average success probability has a

14



lower bound that is related to the characteristic of the eigenvalue angles of MU and
the products of the first and the last term of the eigenvectors.
Lemma 4.2. Assume that MU has a spectral decomposition MU =

∑

j e
iϕj |Ej⟩ ⟨Ej |

where ϕj are all distinct, and the initial state is written in this eigenbasis as |ψ0⟩ =∑

j cj |Ej⟩ and the target state as |y⟩ =
∑

j yj |Ej⟩. For a subset S ⊆ E := {ϕj},
denote ∆ES := min{|ϕj − ϕk| : ϕj ∈ S, ϕk ∈ E, k ̸= j}. Let t =

∑k
m=1 tm be the sum

of k i.i.d. uniform random variables tm ∈ [T ]. Consider the average success probability

p̄(y|ψ0) =
1

T k

∑

t∈[T ]k

| ⟨y|M t
U |ψ0⟩ |2, (37)

where t can be regarded as a random vector (t1, t2, · · · , tk) ∈ [T ]k each with equal
probability 1

Tk . Then p̄(y|ψ0) has the following lower bound:

p̄(y|ψ0) ≥
∑

j:ϕj∈S

|y∗j cj |2 −
( π

T ∆ES

)k

. (38)

Proof. Denote by A(t) := ⟨y|M t
U |ψ0⟩ the amplitude of success, then according to

the spectral decomposition of MU , we have A(t) =
∑

j y
∗
j cj e

iϕjt. From |A(t)|2 =
A(t)A(t)∗, we know

p̄(y|ψ0) =
∑

j,j′



y∗j cj yj′ c
∗
j′

∑

t∈[T ]k

1

T k
ei(ϕj−ϕj′ )t



 . (39)

We now divide the sum
∑

j,j′ [· · · ] in Eq. (39) into the following three parts.

1. j = j′ and ϕj ∈ S:
∑

j,j′ [· · · ] =
∑

j∈S |y∗j cj |2.
2. ϕj /∈ S and ϕj′ /∈ S:

∑

j,j′

[· · · ] = 1

T k

∑

t

∑

j

y∗j cje
iϕjt

∑

j′

yj′c
∗
j′e

−iϕj′ t ≥ 0. (40)

3. The rest part, i.e. j ̸= j′, ϕj ∈ S, ϕj′ ∈ S, or ϕj /∈ S, ϕj′ ∈ S, or ϕj ∈ S, ϕj′ /∈ S.

Therefore, we only need to prove that the value of part (3) is greater than −
(

π
T ∆ES

)k

.

We do this by showing that its absolute value is less than
(

π
T ∆ES

)k

. First, note that

now ϕj ̸= ϕj′ and one of them belongs to S. Thus |ϕj − ϕj′ | ≥ ∆ES , and we have

∣
∣
∣

∑

t∈[T ]k

1

T k
ei(ϕj−ϕj′ )t

∣
∣
∣ =

∣
∣
∣

k∏

m=1

T−1∑

tm=0

1

T
ei(ϕj−ϕj′ )tm

∣
∣
∣ (41)

15



=

k∏

m=1

∣
∣
∣

T−1∑

tm=0

1

T
ei(ϕj−ϕj′ )tm

∣
∣
∣ (42)

=
∣
∣
∣
1− ei(ϕj−ϕj′ )T

T (1− ei(ϕj−ϕj′ ))

∣
∣
∣

k

(43)

≤
( 2

T · 2∆ES/π

)k

=
( π

T∆ES

)k

, (44)

where we have used t =
∑k

m=1 tm in the first equality, and the following identities
|1− eiϕ| = |eiϕ/2− e−iϕ/2| = |2 sinϕ/2| ≥ 2ϕ

π in the last line. Then, we can bound the
value of part (3) using Cauchy-Schwartz as follows:

∣
∣
∣

∑

j,j′

[· · · ]
∣
∣
∣ ≤

( π

T∆ES

)k ∑

j,j′

|y∗j cj yj′ c∗j′ | (45)

≤
( π

T∆ES

)k
√

∑

j,j′

|yj |2|yj′ |2
√
∑

j,j′

|cj |2|cj′ |2 (46)

=
( π

T∆ES

)k

. (47)

Remark 4.2. Lemma 4.2 can be generalized to the case when MU has multiple eige-
nangles with the same value, i.e. MU =

∑

j e
iϕjΠj, where Πj denotes the orthogonal

projection onto the eigenspace corresponding to ϕj ∈ E, and E is the set of all the
different eigenangles. In this case, Eq. (38) becomes

p̄(y|ψ0) ≥
∑

ϕj∈S

∣
∣⟨y|Πϕj

|ψ0⟩
∣
∣
2 −

( π

T ∆ES

)k

. (48)

The proof is almost the same, but to bound the absolute value of part (3), we instead
use the following arguments:

∑

(j,j′)∈(3)

|⟨y|Πj |ψ0⟩ ⟨ψ0|Πj′ |y⟩| (49)

≤
∑

(j,j′)∈(3)

∥Πj |y⟩∥ · ∥Πj |ψ0⟩∥ · ∥Πj′ |ψ0⟩∥ · ∥Πj′ |y⟩∥ (50)

≤
√

∑

j,j′

∥Πj |y⟩∥2 ∥Πj′ |y⟩∥2
√

∑

j,j′

∥Πj |ψ0⟩∥2 ∥Πj′ |ψ0⟩∥2 (51)

= 1. (52)

For an intuitive understanding of Eq. (59), its LHS for n = 8 and the horizontal
lines y = 0,± 1√

2
are plotted in Fig. 5.
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We now present Lemma 4.4 showing that ∆θ = Ω(1/n) with our choice of S′.
Lemma 4.3. When n is sufficiently large, the minimal gap ∆θ of the roots of Eq. (59)
has the following Ω(1/n) lower bound with S′ = (π3 ,

2π
3 ):

∆θ = min{|θ±k − θ±j | : θ±k ∈ S′, θ±j ∈ (0, π), k ̸= j} (53)

≥ π − 2θ0
n

≈ 0.15π

n
, (54)

where tan θ0 =
√
3√

2−1
.

0 /8 2 /8 3 /8 4 /8 5 /8 6 /8 7 /8

0

Fig. 3 Left hand side of Eq. (59) for n = 8.

4.3 Lower bounding ∆ES

With Lemma 4.2 in hand, in order to prove Theorem 4.1, we will need to select a
suitable subset of eigenvalue angles S and an upper bound of iteration times T ′ =
k(T − 1) < kT such that the first term of Eq. (38) is Ω( 1n ), and the second term is a
smaller O( 1n ) term.

We now select the eigenvalue angle subset S in Lemma 4.2 to be those ϕ±k = g(θ±k)
whose θ±k ∈ S′ := (π3 ,

2π
3 ), where g is the following function:

g(θ±k) := arccos(2
√
pq cos θ±k). (55)

Note that g(θ) ∈ [arccos(2
√
pq), π − arccos(2

√
pq)] when θ ∈ [0, π]. Thus the angles

ϕ±k with k = 2 ∼ (n+1) have a constant gap with ϕ±1 = 0, π. Furthermore, it can be
seen from Fig. 4 that g(θ) is monotone increasing on (0, π), and the minimal derivative
when θ ∈ S′ is g′(π/3) =

√

6/7, since

g′(θ) =
2
√
pq sin θ

√

1− 4pq cos2 θ
. (56)
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The minimal angle gap

∆θ := min{|θ±k − θ±j | : θ±k ∈ S′, θ±j ∈ (0, π), k ̸= j} (57)

of θk will result in the minimal angle gap of ϕk to satisfy:

∆ES ≥
√

6/7∆θ, (58)

when n is sufficiently large. This is because we only need to consider the gap between
θ±k and θ±j all belonging to S′, and the gap ∆θ between θ±k ∈ S′ nearest to π/3 and
its adjacent θ±j on the left. In the latter case, we have g(θ±k) − g(θ±j) ≥ g′(π/3 −
∆θ)∆θ. But as g′(π/3 − ∆θ) → g′(π/3) when n → ∞, Eq. (58) holds when n is
sufficiently large. Therefore, in order to bound ∆ES , it’s sufficient to consider ∆θ.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

g( )

g'( )

x= /3

x=2 /3

Fig. 4 The function ϕ = g(θ) defined in Eq. (55), and its derivative g′(θ).

Eq. (31) in Lemma 4.1 shows that the angles θ±k where k = 2 ∼ n+ 1 are the 2n
roots of the following equation in the interval (0, π).

sin(n+ 1)θ

sinnθ
= ∓ 1√

2
. (59)

Remark 4.3. Equation (59) is almost the same as the one presented in Ref. [17],
but the RHS there is ±

√
2. Therefore our analysis shown below is slightly different

from those shown in Ref. [26] (which contains a review and some improvements of the
results in Ref. [17]).

For an intuitive understanding of Eq. (59), its LHS for n = 8 and the horizontal
lines y = 0,± 1√

2
are plotted in Fig. 5.

We now present Lemma 4.4 showing that ∆θ = Ω(1/n) with our choice of S′.
Lemma 4.4. When n is sufficiently large, the minimal gap ∆θ of the roots of Eq. (59)
has the following Ω(1/n) lower bound with S′ = (π3 ,

2π
3 ):

∆θ = min{|θ±k − θ±j | : θ±k ∈ S′, θ±j ∈ (0, π), k ̸= j} (60)
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Fig. 5 Left hand side of Eq. (59) for n = 8.

≥ π − 2θ0
n

≈ 0.15π

n
, (61)

where tan θ0 =
√
3√

2−1
.

Proof. By centrosymmetry, we only need to consider the angle gap between the root
θ = lπ

n − δ corresponding to RHS= − 1√
2
in Eq. (59) and the root θ′ = l′

nπ + δ′

corresponding to RHS= 1√
2
in Eq. (59), where l′ ∈ {l−1, l}. Since the (n−1) zeros lπ

n of

sinnθ correspond to the vertical asymptotes of LHS of Eq. (59), we have δ, δ′ ∈ (0, πn ).

We now consider the lower and upper bound of δ. Substituting θ = lπ
n − δ into

Eq. (59), and using the trigonometric identity sin(a−b) = sin(a) cos(b)−cos(a) sin(b),
we have

−
√
2 sin(nθ + θ) = sin(nθ) (62)

⇔ −
√
2 sin(lπ − nδ + lπ

n
− δ) = sin(lπ − nδ) (63)

⇔ −
√
2 sin(nδ − lπ

n
+ δ) = sin(nδ) (64)

⇔ −
√
2 sin(nδ − θ) = sin(nδ) (65)

⇔ −
√
2[sin(nδ) cos θ − cos(nδ) sin θ] = sin(nδ) (66)

⇔ −
√
2[tan(nδ) cos θ − sin θ] = tan(nδ) (67)

Thus

tan(nδ) =

√
2 sin θ

1 +
√
2 cos θ

. (68)

Since the RHS of Eq. (68) is monotone increasing on (π3 ,
2π
3 ) ∋ θ, we have

√
3√

2+1
<

tan(nδ) <
√
3√

2−1
, from which θ1

n < δ < θ0
n , where θ1 = arctan

√
3√

2+1
.
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We now consider the lower and upper bound of δ′. If we Substitute θ′ = l′

nπ + δ′

into Eq. (59), we have

tan(nδ′) =

√
2 sin θ′

1−
√
2 cos θ′

. (69)

Similarly, it can be shown that θ1
n < δ′ < θ0

n . Therefore, ∆θ ≥ min{πn − 2 θ0
n , 2

θ1
n } =

π−2θ0
n ≈ 0.15π

n .

4.4 Proof of Theorem 4.1

With the help of the above three Lemmas 4.1-4.4, We can now prove Theorem 4.1.
In order to lower bound the items |y∗j cj | of the sum in Eq. (38) in Lemma 4.2, we

first calculate:

⟨2n+ 1, L|u±,±k⟩ ⟨u±,±k|0, R⟩ (70)

= ⟨2n+ 1, L| · (|a±k⟩ − exp(±iϕ±k) |b±k⟩) · (⟨a±k| − exp(±iϕ±k) ⟨b±k|) · |0, R⟩ (71)

= [v±k(1)− e±iϕ±k
√
pv±k(2)] · [v±k(1)− e∓iϕ±k

√
pv±k(2)] · (±k) (72)

= [v±k(1)
2 + pv±k(2)

2 − 2λ±kv±k(1)v±k(2)] · (±k) (73)

= (±k)(1− λ2k). (74)

The last line follows from v±k(1) = 1 and v±k(2) = λ±k/
√
p. Therefore, combined with

the norm ∥ |uk⟩ ∥ shown by Eq. (35) in Lemma 4.1, we have the following identities
when θk ∈ S′.

| ⟨2n+ 1, L|Π|u±,±k⟩ |0, R⟩ | =
1− λ2k
∥ |uk⟩ ∥2

(75)

=
q

2
· sin

2 θk
1− λ2k

(

n+

√
q

p

sin((n+ 1)2θk)

2 sin θk

)−1

(76)

≥ 1

3
· 3
4
· (n+

√
2

1

2 ·
√
3/2

)−1 (77)

≥ 1

4n
+O(

1

n2
). (78)

The third line above follows from θk ∈ (π3 ,
2π
3 ). Since θk is almost uniformly distributed

in (0, π), we have
∑

j∈S |y∗j cj |2 ≥ 1
3 · 4n · ( 1

4n )
2 = 1

12n .
We set

k ≥ log 24n, (79)

and
T ≥ π

2∆ES
, (80)

20



which is approximately n

0.3
√

6/7
≈ 3.6n by Lemma 4.4 and Eq. (58). Then

(
π

T ∆ES

)k

≤
( 12 )

log 24n = 1
24n . And thus by Eq. (38),

p(y|ψ0) ≥
∑

j∈S

|y∗j cj |2 −
( π

T ∆ES

)k

(81)

≥ 1

12n
− 1

24n
=

1

24n
. (82)

Note that p(t) = |⟨4n+ 1|M t
U |0⟩|

2
= 0 when t < 2n. In fact, MU |0⟩ = |1⟩ and one

iteration of MU can propagate the amplitude from |k⟩ to at furthest |k + 2⟩, thus
p(t) = 0 when t < 2n. Since maximum is greater than average, we have now proven
Theorem 4.1.
Remark 4.4. We can actually obtain an explicit expression of A(t) := ⟨4n+ 1|M t

U |0⟩
for odd t as

A(t) =
p− q

2p− (q/p)n
+ 2q

n+1∑

k=2

cos(t arccos(2
√
pq cos θk))

1− 4pq cos2 θk

sin2 θk

n+
√

q
p
sin((n+1)2θk)

2 sin θk

. (83)

Since the expression is too complicated, our first attempt of directly analyzing A(t)
fails, and thus we have turned to the help of Lemma 4.2.

A(t) can be calculated as follows. By Eq. (74) and the expression of |u±1⟩ shown
in Lemma 4.1, we have

A(t) =
∑

±

∑

±k

n+1∑

k=2

e±itϕ±k
(±k)(1− λ2k)
∥ |uk⟩ ∥2

+
∑

±
(±)t (±)

∥ |u1⟩ ∥2
. (84)

Note that ∑

±
e±itϕ±k = 2 cos(tϕ±k). (85)

Since ϕ−k = π − ϕk, we have

∑

±k

cos(tϕ±k)(±k) = cos(tϕk)(1− (−1)t). (86)

Similarly,
∑

±
(±)t(±) = 1− (−1)t. (87)

Therefore, it can be seen that

A(t) = 0, if t is even. (88)

Thus we will only consider odd t. Substituting the square of norms ∥ |u±k⟩ ∥2, k = 1 ∼
(n+ 1) in Lemma 4.1, we have A(t) as shown in Eq. (83).
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5 Deterministic quantum algorithm with
O(n1.5 logn) queries

With the matrix expression MU =MS ·MC of Uwalk within its reduced invariant sub-
space H0 obtained in Section 3, the exact value of the amplitude on the target state
after T1 = O(n log n) steps of quantum walks, i.e. ⟨4n+ 1|MT1

U |0⟩, can be calculated
exactly. Therefore, combining with one of the deterministic quantum search algo-
rithms [33], for example Long’s algorithm [34], we can design a deterministic quantum
algorithm for the welded tree problem as shown in Algorithm 2.

More precisely, if there is a quantum process (unitary operation) A that transform
some initial state |0⟩ to |ψ⟩ that has known overlap, i.e. p = | ⟨t|ψ⟩ | ∈ (0, 1), with
the desired target state |t⟩. Then Long’s algorithm [34] can amplify the overlap to
1 by applying the generalized Grover’s iteration G(α, β) = AS0(β)A† · St(α), where
St(α) = eiα|t⟩⟨t| and S0(β) = e−iβ|0⟩⟨0|, for T = O(1/p) times to the state |ψ⟩ = A |0⟩.

In the case of the original Grover’s algorithm [35], A := H⊗n is the Hadarmard
gates on n qubits, |0⟩ := |0⟩⊗n

, and |t⟩ is the equal-superposition of all target elements.
In the case of Algorithm 2, A := UT1

walkUp, |0⟩ := |s,⊥⟩, and |t⟩ := |t, ϕ(t)⟩. The
parameters T, α, β are determined by the known overlap p, where in Grover’s case is
the square root of the proportion of target elements in the unstructured database, and
in our case is pT1

= | ⟨4n+ 1|MT1

U |0⟩ | = Ω(1/
√
n).

Algorithm 2 Deterministic quantum algorithm for the welded tree problem

Input: adjacency list quantum oracle O (see Eq. (2)) for the welded tree Gn, and the
entrance name s ≡ 02n.
Output: the exit name t.
Procedure:

1. Same as step 1 in Algorithm 1.
2. Construct quantum circuit of the generalized Grover’s iteration G(α, β) =
AS0(β)A† · St(α) as in Fig. 6, where A := UT1

walkUp. Set the parameters α, β, T2 as

α = −β = 2arcsin
(

sin π
4T2+2

sin θ

)

and T2 = ⌈π/2−θ
2θ ⌉, where θ = arcsin(pT1

).

3. Apply G(α, β)T2 to |ψT1⟩ = A |s,⊥⟩. This will result in |t, ϕ(t)⟩ exactly and thus
measuring register r1 leads to the exit name t with certainty.

6 Numerical simulation suggests better query
complexity

We find that the actual performance of our algorithms is better than O(n1/2 ·n log n),
since results of numerical simulation (conducted by MATLAB) show that the success
amplitude will be Ω(n−1/3) when Uwalk is applied for O(n) times. We formalize it in
the following Conjecture 6.1 (an improved version of Theorem 4.1). Then the query
complexity of Algorithm 2 will be O(n1/3 · n) = O(n4/3).
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𝑢 𝑟1 𝐹𝑡†0 𝐹𝑡
𝑆𝑡 𝛼 𝑆0 𝛽

𝒜† 𝒜 0𝑣 𝑟2 𝑅𝑧 𝛼 𝑅𝑧 −𝛽

Fig. 6 Quantum circuit implementing the generalized Grover’s iteration G(α, β) = AS0(β)A† ·
St(α). Single qubit operation Rz(α) := diag(1, eiα). Operator S0(β) add phase shift e−iβ to the
initial state |s,⊥⟩ = |02n, 12n⟩, and operator Ft flip the last auxiliary qubit conditioned on |u⟩r1 = |t⟩.
Determining that u = t can be done by querying the three adjacent vertices of u and checking that
exactly one of them is ⊥ and u ̸= s.

Conjecture 6.1. There exists odd number T ∈ [2n, 2.5n] (T ≈ n/√pq ≈ 2.1213n for
sufficient large n) such that

|A(T )| =
∣
∣⟨4n+ 1|MT

U |0⟩
∣
∣ > n−1/3. (89)

Remark 6.1. We only consider odd T because Eq. (88) shows that pT = 0 when T is
even. The constant

√
pq may come from the fact that g′(π/2) = 2

√
pq (see Eq. (56))

and 2π/g′(π/2) = 1/
√
pq.

One can obtain the exact value of the largest |A(t)| with t ∈ [2n, 2.5n] (denoted
by AT ) using, for example, MATLAB’s Symbolic Math Toolbox. The exact value of
AT when n = 50, 100, 150 is shown in Table 2.

Table 2 The exact value of AT when
n = 50, 100, 150.

n T AT

50 109 2152 · 19 · 38861/3108

100 215 2300 · 318388779301/3214

150 323 2451 · 274739 · 1231103390273/3322

The scatter diagram of AT for n = 3, · · · , 1000 is shown in Fig. 7. It can be seen that
log2(AT ) > −1/3 · log2(n) holds for all n ∈ [6, 1000], which supports Conjecture 6.1.

The scatter diagram of the ratio T/n for n = 3, · · · , 1000 is shown in Fig. 8. It can
be seen that T/n tends to 1√

pq = 3√
2
≈ 2.12 as n→∞.

We also depict, as an example n = 200, evolution of the (4n + 2)-dimensional
vector |ψT ⟩ =MT

U |0⟩ for odd T ranging from 1 to 2.5n in video [36]. The frame when
T = 429 of the video is shown in Fig. 9. It can be seen that the amplitude of the state
vector |ψT ⟩ can be positive or negative, showing the periodic coherent and destructive
nature of quantum walk.
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Fig. 7 Scatter diagram of log2(AT ) for n = 3, · · · , 1000. Orange solid line represents −1/3 · log2(n).
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Fig. 8 Scatter diagram of T/n for n = 3, · · · , 1000. The horizontal line represents 1√
pq

= 3√
2
.

7 Conclusion

In this paper, we have revisited quantum algorithms for the welded tree problem
and proposed a rather succinct algorithm based purely on the simplest coined quan-
tum walks. A rigorous polynomial query upper bound is provided based on spectral
decomposition of the reduced quantum walk matrix. The succinctness of our algorithm
re-displays the power of the simplest framework of quantum walks, changing the stereo-
type that coined quantum walks can only achieve a quadratic speedup over classical
algorithms. Our algorithm for the welded tree problem can also be made deterministic
theoretically, making it one of the few examples of an exponential separation between
the deterministic (exact) quantum and the randomized query complexities. Numeri-
cal simulation indicates that the actual performance of our algorithms is better, and
a natural follow-up work is to rigorously prove Conjecture 6.1.
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Appendix A Implementing Uϕ in Lemma 2.1

In this appendix, we will implement the unitary operator Uϕ : |u,⊥⟩ 7→ |u, ϕ(u)⟩ in
Lemma 2.1. We first introduce five auxiliary registers

|0⟩q1 |0⟩q2 |0⟩q3 |0⟩a |0⟩b |0⟩c , (A1)
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where register qi consists of 2n qubits storing the query result, register a is a qutrit
with state space H

3 = span{|0⟩ , |1⟩ , |2⟩} used for generating |ϕ(u)⟩ when u is an
internal node, register b is a qudit with state space H

5 = span{|0⟩ , · · · , |4⟩} storing
conditions, and register c is a qubit used for generating |ϕ(u)⟩ when u is one of the
roots. Now Uϕ can be implemented as follows, where oracle query happens in the first
and last step.

1. Query the oracle O on registers r1, q1, q2, q3 to obtain

|u⟩r1 |⊥⟩r2
3⊗

i=1

|Γ(u, i)⟩qi |0⟩a |0⟩b |0⟩c . (A2)

2. Apply the transformation |q⟩ |b⟩ 7→ |q⟩ |b+ f(q)⟩ on register q := (q1, q2, q3) and b.
The function f : {0, 1}6n → {0, · · · , 4} is defined as: f(q) = 0 iff there’s no qi =⊥,
so that u is an internal node; f(q) = i for i = 1, 2, 3 iff there’s one and only one
qi =⊥, so that u ∈ {s, t}, and the ith register qi stores the value ⊥; f(q) = 4
iff there’s more than one qi =⊥, so that u /∈ V (Gn). It can be easily seen that
calculating f takes O(n) basic operations.

3. Conditioned on b = 0, i.e. u is an internal node, apply the following two steps.
3.1. Flip all the qubits of register r2 so that it’s set to |02n⟩. Apply quantum Fourier

transform QFT3 to register a, and then controlled by |i⟩a , i ∈ {0, 1, 2}, add (i.e.
bit-wise modulo 2 addition) the value of register q(i+1) to register r2, obtaining

|u⟩r1 (
1√
3

2∑

i=0

|Γ(u, i+ 1)⟩r2 |i⟩a)
2⊗

i=0

|Γ(u, i+ 1)⟩q(i+1)
|b⟩b |0⟩c . (A3)

This controlled addition can be done in O(n) basic operations.
3.2. Compare |Γ(u, i)⟩r2 with |Γ(u, j)⟩qj for j = 1, 2, 3 and subtract |i⟩a with (j− 1),

where j is the unique index j such that |Γ(u, i)⟩r2 = |Γ(u, j)⟩qj , obtaining

|u⟩r1 |ϕ(u)⟩r2
3⊗

i=1

|Γ(u, i)⟩qi |0⟩a |b⟩b |0⟩c . (A4)

The uniqueness of the index j can be easily seen from the condition that all of
u’s neighbours Γ(u, i) are distinct. This compare (between binary strings) and
subtract operation can be done in O(n) basic operations.

4. Conditioned on b ∈ {1, 2, 3}, i.e. u is one of the two roots and register qb stores ⊥,
apply the following steps.

4.1. Swap register qb and q3 so that the first two auxiliary registers store the genuine
adjacent vertex name of u ∈ {s, t}. The conditioned SWAP operation can be
done in O(n) basic operations.

4.2. similar to step 3.1 and 3.2, transform |⊥⟩r2 to |ϕ(u)⟩r2 with the help of H |0⟩c =
1√
2
(|0⟩+ |1⟩).
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4.3. Repeat step 4.1 so that the order of register qi is restored, ensuring the success
of step 7.

5. Conditioned on b = 4, apply the identity transformation I, since register r1 already
stores ϕ(u) =⊥ (the three ‘neighbours’ of u /∈ V (Gn) are all ⊥).

6. Similar to step 2, apply the transformation |q⟩ |b⟩ 7→ |q⟩ |b− f(q)⟩ to register q, b,
where the subtraction is modulo 5. Therefore, register b is recovered to |0⟩b.

7. Query the oracle O once more as in step 2, so that all the auxiliary registers are
restored back to zero.

Thus Uϕ can be implemented with 2 oracle queries and O(n) basic operations.

Appendix B Spectral decomposition of the
reduced matrix

In this Appendix, we prove Lemma 4.1 about the spectral decomposition of the reduced
coined quantum walk matrix MU = MSMC . The proof is inspired by [25]. However,
since its analysis is not perfect (as they did not obtain analytical expression of Uk

shown in Eq. (B42) by comparing with Chebyshev polynomial of the second kind), we
will show in detail the complete proof for the sake of completeness and convenience of
the readers.

We also expand or improve some of the implicit or complicated steps in [25], and
point out a connection with another commonly used technique for analyzing quan-
tum walk operators, i.e. the singular value decomposition, or more precisely, Jordan’s
Lemma [37] about common invariant subspaces of two reflection operator, which has
been used in Refs. [8, 10, 27, 38].

We first present the following helper Lemma B.1, which is implicit in [25] and
similar to [30, Theorem 1], saying that in order to obtain the spectral decomposition
of MU =MSMC , we can instead consider the spectral decomposition of the following
matrix

A†MSA =: J2n. (B5)

Lemma B.1. Consider the quantum walk operator U = RefB RefA, where RefA =
(2AA† − I) and A is a matrix with full column rank satisfying A†A = I. Let

|a⟩ := A |v⟩ , |b⟩ := RefB |a⟩ , (B6)

where ∥ |v⟩ ∥2 = 1. If
A†RefBA |v⟩ = λ |v⟩ . (B7)

Then, when |λ| < 1, we have

U |u⟩ := U
(
|a⟩ − e±iϕ |b⟩

)
= e±iϕ |u⟩ , (B8)

where ϕ := arccosλ, and ∥ |u⟩ ∥2 = 2(1− λ2). And when λ = ±1, we have

U |a⟩ = ± |a⟩ . (B9)

30



Proof. We first consider the case when |λ| < 1. From Eq. (B7) we know

U |b⟩ = RefB(2AA
† − I)(RefBA |v⟩) (B10)

= 2RefBAλ |v⟩ −A |v⟩ (B11)

= 2λ |b⟩ − |a⟩ . (B12)

Therefore, span{|a⟩ , |b⟩} is an invariant subspace of U , and U takes the following
matrix form:

L =

[
0 −1
1 2λ

]

. (B13)

Let λ = cosϕ, then we obtain the eigenvalues and eigenvectors of L: e±iϕ and
[1,−e±iϕ]T . This can be easily verified by the following identities:

1− 2λe±iϕ = 1− 2 cos(±ϕ)e±iϕ (B14)

= 1− 2 cos2(±ϕ)− 2i cos(±ϕ) sin(±ϕ) (B15)

= − cos(±2ϕ)− i sin(±2ϕ) (B16)

= −e±2iϕ = e±iϕ · (−e±iϕ). (B17)

Therefore, we obtain two eigenvalues e±iϕ of U and their respective eigenvectors |u⟩ :=
|a⟩ − e±iϕ |b⟩. We now calculate the square of its norm:

⟨u|u⟩ = 2− 2Re(e±iϕ ⟨a|b⟩) (B18)

= 2(1− λ2). (B19)

The second line follows from ⟨a|b⟩ = ⟨v|A†RefBA |v⟩ = λ and the fact that A†RefBA
is Hermitian whose eigenvalue λ is a real number.

We now consider the case when λ = ±1. From Eq. (B7), we know ⟨v|A†RefBA |v⟩ =
±1, and thus RefBA |v⟩ = ±A |v⟩. Therefore,

U |a⟩ = UA |v⟩ (B20)

= RefB(2AA
† − I)A |v⟩ (B21)

= RefBA |v⟩ (B22)

= ±A |v⟩ (B23)

= ± |a⟩ . (B24)

Remark B.1. Suppose RefB = 2BB† − I. Let D := A†B, and consider its singular
value decomposition

∑

i si |vi⟩ ⟨wi|, which is a common approach in Refs. [8, 10, 27,
38]. Then the connection between the eigenvalue λ of A† RefB A and the singular value
s of D is:

arccos(λ) = 2 arccos(s). (B25)
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Proof. Since DD† |vi⟩ = s2i |vi⟩, we have

A† RefB A = A†(2BB† − I)A (B26)

= 2(A†B)(A†B)† − I (B27)

= 2DD† − I. (B28)

Therefore,

A† RefB A |v⟩ = λ |v⟩ ⇔ DD† |v⟩ = λ+ 1

2
|v⟩ . (B29)

From the identity cosφi+1
2 = cos2 φi

2 , we obtain Eq.(B25).

We now analyze the eigenvalues and eigenvectors of J2n = A†MSA. First, we will
need the matrix expression of J2n. Recalling A as defined in Eq. (27), and since MS

swaps two adjacent rows (columns), we have:

A†MS =












0 1√
p 0 0

√
q√

p 0 0
√
q

. . .√
p 0 0

√
q√

q ∗












2(n+1)×2(2n+1)

. (B30)

Thus J2n is a special tridiagonal and centrosymmetric matrix as shown below:

J2n =













0
√
p√

p 0
√
pq

√
pq 0

. . .

. . .
. . .
√
pq√

pq 0 q
q ∗













2(n+1)×2(n+1)

. (B31)

I. eigenvalues of J2n
In order to calculate the characteristic equation p(λ) := |λI − J2n| of J2n, first

introduce the following two principal submatrices. We use the notation J2n[l : k] to
represent the main sub-matrix from l to k rows (columns) of J2n, so as to save space.

Ek := λI − J2n[1 : k], (B32)

Fk := λI − J2n[2 : k + 1]. (B33)

Denote by |M | := det(M) the determinant of matrix M . Then we have

|E2| = λ|E1| − p|E0|, (B34)

|Ek| = λ|Ek−1| − pq|Ek−2|, (3 ≤ k ≤ n+ 1) (B35)

32



|Ek| = λ|Fk−1| − p|Fk−2|, (2 ≤ k ≤ n+ 1) (B36)

|Fk| = λ|Fk−1| − pq|Fk−2|, (2 ≤ k ≤ n) (B37)

where the first two terms are |F1| = λ, |F0| := 1 and |E1| = λ, |E0| := 1. Note that
Eq. (B35) is obtained by expanding |Ek| from its lower right corner, while Eq. (B36)
is obtained by expanding |Ek| from its upper left corner. Eq. (B37) can be obtained
by expanding |Fk| from either from its upper left corner or its lower right corner.
Dividing all the elements in Fk by

√
pq and denoting

|Fk|/
√
pq

k
:= Uk(λ/

√
pq), (B38)

Eq. (B37) is now transformed to Uk(λ/
√
pq) = λ/

√
pq Uk−1(λ/

√
pq)− Uk−2(λ/

√
pq).

If we let x := λ√
pq , then Eq. (B37) further simplifies to

U0(x) = 1, U1(x) = x, (B39)

Uk(x) = xUk−1(x)− Uk−2(x). (B40)

Comparing the above equations with the recurrence relation of Chebyshev polynomial
of the second kind :

Ũ0(x) = 1, Ũ1(x) = 2x,

Ũk(x) = 2xŨk−1(x)− Ũk−2(x), for k ≥ 2, (B41)

we know Uk(x) = Ũk(x/2). From the general term formula Ũk(cos θ) =
sin(k+1)θ

sin θ , we

let θ be such that it satisfies cos θ := x/2 = λ
2
√
pq . Therefore,

Uk(λ/
√
pq) = Ũk(cos θ) =

sin(k + 1)θ

sin θ
. (B42)

We now calculate p(λ) = |λI − J2n| by expanding its n + 1 row as follows (cf.
Eq. (B31) for J2n). Denote by E′

k = λI−J2n[2n+2−k+1 : 2n+2] the last k rows and
columns of λI−J2n. It is easy to see that |E′

k| = |Ek| from the centrosymmetry of J2n.

p(λ) =
√
pq

∣
∣
∣
∣
∣
∣

En−1

−√pq −√pq
−q E′

n+1

∣
∣
∣
∣
∣
∣

+ λ

∣
∣
∣
∣

En

En+1

∣
∣
∣
∣
+ q

∣
∣
∣
∣
∣
∣

En −
√
pq
−q −√pq

E′
n

∣
∣
∣
∣
∣
∣

(B43)

= −pq|En−1| · |En+1|+ λ|En| · |En+1| − q2|En|2 (B44)

= (λ2 − q2)|En|2 − 2pqλ|En| · |En−1|+ (pq)2|En−1|2 (B45)

=
(
(λ− q)|En| − pq|En−1|

)(
(λ+ q)|En| − pq|En−1|

)
. (B46)
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Note that when choosing −q as the pivot to expand the first determinant in Eq. (B43),
the following sub-determinant is zero.

∣
∣
∣
∣
∣
∣

En−1

−√pq
−√pq E′

n

∣
∣
∣
∣
∣
∣

= 0. (B47)

This is because the first n rows are rank deficient as there are only n−1 columns with
non zero elements. The same reasoning applies to expanding the third determinant in
Eq. (B43). The third line (Eq. (B45)) uses Eq. (B35) to further expand |En+1|.

We can further simplify the two components of p(λ) in Eq. (B46) by using
Eqs. (B36), (B37) to expand until |Fn−1|, |Fn−2|:

(λ∓ q)|En| − pq|En−1| (B48)

= λ|Fn| − p|Fn−1| ∓ q(λ|Fn−1| − p|Fn−2|) (B49)

= λ(λ|Fn−1| − pq|Fn−2|) + (∓(1− p)λ− p)|Fn−1| ± pq|Fn−2| (B50)

= [λ(λ∓ 1)± p(λ∓ 1)] · |Fn−1| − pq(λ∓ 1)|Fn−2| (B51)

= (λ∓ 1) (|Fn| ± p|Fn−1|). (B52)

Using Eq. (B38), we now obtain the eigenvalues of J2n: ±1 and λ±k := 2
√
pq cos θ±k,

where λ±k are the 2n roots of the following equation:

√
q Un(λ/

√
pq)±√pUn−1(λ/

√
pq) = 0. (B53)

Combining with Eq. (B42), we obtain Eq. (31) in Lemma 4.1. It can also be seen that
when θk corresponds to a root with ‘+’, then θ−k := π−θk corresponds to a root with
‘−’, thus λ−k = −λk.

II. eigenvectors of J2n
We now consider the eigenvectors of J2n. Using Eqs. (B34), (B35), and “(λk ∓

q)|En| − pq|En−1| = 0” by Eq. (B48), it is not difficult to verify that the respective
(unnormalized) eigenvector |v±k⟩ (which satisfies (λI − J2n) |v±k⟩ = 0) is

[1,
|E1|√
p
,
|E2|√
p
√
pq
, · · · , |En−1|√

p
√
pqn−2 ,

|En|√
p
√
pqn−1 ,±(∗)], (B54)

Where (∗) can be deduced from centrosymmetry. Combing with the relation of the
sub-determinant |Ek|, |Fk| shown in Eqs. (B36), (B37), the components and the square
of the norm of the eigenvector |v±k⟩ can be calculated as follows.
1. λ = ±1

Since λ2 = (±)2 = 1, we have

|Fk| = ±|Fk−1| − pq|Fk−2| (B55)

= ±q|Fk−1| ± p(±|Fk−2| − pq|Fk−3|)− pq|Fk−2| (B56)
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= ±q(|Fk−1| − p2|Fk−3|)− p2|Fk−2|. (B57)

Thus we know the difference between every other term, i.e. |Fk|−p2|Fk−2|, is a power
series. Therefore,

|Ek| = ±|Fk−1| − p|Fk−2| (B58)

= ±|Fk| − p2|Fk−1| (B59)

= (±q)k−2(|F2| − p2|F0|) (B60)

= (±q)k−2(1− pq − p2) (B61)

= (±)kqk−1. (B62)

The second line follows from substituting q = 1 − p into the second equality of
Eq. (B37). Thus the (i+ 1)-th component of |v±1⟩ is

⟨i|v±1⟩ =
|Ei|√
p
√
pqi−1

(B63)

=
(±)iqi−1

√
p
√
pqi−1

(B64)

= (±)i(
√

q/p)i/
√
q, (B65)

which is Eq. (29) in Lemma 4.1. Hence, the square of the norm of |v±1⟩ is:

∥ |v±1⟩ ∥2 = 2(1 +
1

q

n∑

i=1

(
q

p
)i) (B66)

= 2(1 +
1

p

1− (q/p)n

1− q/p ) (B67)

=
2

q − p ((q/p)
n − 2p), (B68)

which is Eq. (30) in Lemma 4.1.

2. λ±k for k = 2 ∼ (n+ 1)
The (i+1)-th component of |v±k⟩ can be calculated as follows, where we omit the

subscript “±k” for simplicity.

⟨i|vλ⟩ =
λ|Fi−1| − p|Fi−2|√

p
√
pqi−1

(B69)

=
λ
√
pqi−1Ui−1(λ/

√
pq)− p√pqi−2Ui−2(λ/

√
pq)

√
p
√
pqi−1

(B70)

=
λ√
p
Ui−1(λ/

√
pq)− 1√

q
Ui−2(λ/

√
pq), (B71)
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which is Eq. (33) in Lemma 4.1, and the next Eq. (34) follows from Eq. (B42).
We now consider ∥ |vλ⟩ ∥2. We first calculate the square of the (i+1)-th component.

For simplicity we denote Ui(λ/
√
pq) by Ui in the following.

| ⟨i|vλ⟩ |2 =
λ2

p
U2
i−1 −

2λ√
pq
Ui−1Ui−2 +

1

q
U2
i−2 (B72)

=
λ2

p
U2
i−1 + (U2

i −
λ2

pq
U2
i−1 − U2

i−2) +
1

q
U2
i−2 (B73)

=
p

q
U2
i−2 −

λ2

q
U2
i−1 + U2

i . (B74)

The second line is obtained by squaring both sides of the relation Ui =
λ√
pqUi−1−Ui−2

which follows from Eq. (B40). In order to make the relation true for i ≥ 1, we set
U−1 := 0. Then, using the identity p/q − λ2/q + 1 = (1− λ2)/q, we have

∥ |vλ⟩ ∥2/2 = 1 +

n∑

i=1

| ⟨i|vλ⟩ |2 (B75)

= 1 + 0 +
p

q
− λ2

q
+

1− λ2
q

n−2∑

i=1

U2
i −

λ2

q
U2
n−1 + U2

n−1 + U2
n (B76)

=
1− λ2
q

+
1− λ2
q

n−2∑

i=1

U2
i + (−λ

2

q
+ 1 +

p

q
)U2

n−1 (B77)

=
1− λ2
q

n−1∑

i=0

U2
i . (B78)

The third line uses Eq. (B53) satisfied by the eigenvalue λ. From the trigonometric
expression of Ui (Eq. (B42)), we have

n−1∑

i=0

U2
i =

1

sin2 θ

n−1∑

i=0

sin2(i+ 1)θ (B79)

=
1

sin2 θ

n∑

i=1

1− cos i2θ

2
(B80)

=
1

2 sin2 θ
(n− sinnθ · cos(n+ 1)θ

sin θ
) (B81)

=
1

2 sin2 θ
(n±

√
q

p

sin 2(n+ 1)θ

2 sin θ
). (B82)

Hence combined with ∥ |u⟩ ∥2 = 2(1−λ2) in Lemma B.1 and the identity θ−k = π−θk,
we obtain Eq. (35) in Lemma 4.1. Note that the last line above uses Eq. (31) satisfied
by θ. The third line uses the identity obtained from comparing the real part of the
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following identities:

n∑

k=1

cos kx+ i sin kx (B83)

=

n∑

k=1

eikx =
eix(einx − 1)

eix − 1
(B84)

=
eixe

inx
2 2i sin nx

2

e
ix
2 2i sin x

2

=
sin nx

2

sin x
2

ei
(n+1)x

2 (B85)

=
sin nx

2

sin x
2

(cos
(n+ 1)x

2
+ i sin

(n+ 1)x

2
). (B86)
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