
ar
X

iv
:1

51
1.

02
80

1v
1 

 [
cs

.D
S]

  9
 N

ov
 2

01
5

Parameterized complexity of length-bounded

cuts and multi-cuts ⋆
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Abstract. We show that theMinimal Length-Bounded L-But prob-
lem can be computed in linear time with respect to L and the tree-width
of the input graph as parameters. In this problem the task is to find a
set of edges of a graph such that after removal of this set, the shortest
path between two prescribed vertices is at least L long. We derive an
FPT algorithm for a more general multi-commodity length bounded cut
problem when parameterized by the number of terminals also.
For the former problem we show a W[1]-hardness result when the param-
eterization is done by the path-width only (instead of the tree-width) and
that this problem does not admit polynomial kernel when parameterized
by tree-width and L. We also derive an FPT algorithm for the Minimal
Length-Bounded Cut problem when parameterized by the tree-depth.
Thus showing an interesting paradigm for this problem and parameters
tree-depth and path-width.

Keywords: length bounded cuts, parameterized algorithms, W[1]-hardness

1 Introduction

The study of network flows and cuts begun in 1960s by the work of Ford and
Fulkerson [10]. It has many generalizations and applications now. We are inter-
ested in a generalization of cuts related to the flows using only short paths.

Length bounded cuts Let s, t ∈ V be two distinct vertices of a graph G = (V,E)
– we call them source and sink, respectively. We call a subset of edges F ⊆ E of
G an L-bounded cut (or L-cut for short), if the length of the shortest path
between s and t in the graph (V,E \F ) is at least L+1. We measure the length
of the path by the number of its edges. In particular, we do not require s and
t to be in distinct connected components as in the standard cut, instead we do
not allow s and t to be close to each other. We call the set F a minimum L-cut
if it has the minimum size among all L-bounded cuts of the graph G.

We state the cut problem formally:
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PROBLEM: Minimum Length Bounded Cut (MLBC)
Instance: graph G = (V,E), vertices s, t and integer L ∈ N

Goal: find a minimum L-bounded s, t cut F ⊂ E
Length bounded flows were first considered by Adámek and Koubek [1]. They

showed that the max-flow min-cut duality cannot hold and also that integral
capacities do not imply integral flow. Finding a minimum length bounded cut is
NP-hard on general graphs for L ≥ 4 as was shown by Itai et al. [14]. They also
found algorithms for finding L-bounded cut with L = 1, 2, 3 in polynomial time
by reducing it to the usual network cut in an altered graph. The algorithm of
Itai et al. [14] uses the fact that paths of length 1, 2 and 3 are edge disjoint from
longer paths, while this does not hold for length at least 4.

Baier et al. [2] studied linear programming relaxation and approximation of
MLBC together with inapproximability results for length bounded cuts. They
also showed instances of the MLBC having O(L) integrality gap for their linear
programming approach, which are series-parallel graphs and thus have constant
bounded tree-width. The first parametrized complexity study of this and similar
topics was made by Golovach and Thilikos [11] who studied parametrization by
paths-length (that is in our setting the parameter L) and the size of the solution
for cuts. They also proved hardness results – finding disjoint paths in graphs of
bounded tree-width is a W[1]-hard problem.

The MLBC problem has its applications in the network design and in the
telecommunications. Huygens et al. [13] use a MLBC as a subroutine in the
design of 2-edge-connected networks with cycles at most L long. The MLBC
problem is called hop constrained in the telecommunications and the number L
is so called number of hops. The main interest is in the constant number of hops,
see for example the article of Dahl and Gouveia [5].

Note that the standard use of the Courcelle theorem [3] gives for each fixed
L a linear time algorithm for the decision version of the problem. But there is no
apparent way of changing these algorithms into a single linear time algorithm.
Moreover there is a nontrivial dependency between the formula (and thus the
parameter L) and the running time of the algorithm given by Courcelle theorem.

Now we give a formal definition of a rather new graph parameter, for which
we give one of our results:

Definition 1 (Tree depth [16]). The closure Clos(F ) of a forest F is the
graph obtained from F by making every vertex adjacent to all of its ancestors.
The tree-depth td(G) of a graph G is one more than the minimum height of a
rooted forest F such that G ⊆ Clos(F ).

Our Contribution Our main contribution is an algorithm for the MLBC prob-
lem, its consequences and an algorithm for a more general multi-terminal version
problem.

Theorem 1. Let G be a graph of tree-width k. Let s and t be two distinct vertices
of G. Then for any L ∈ N an minimum L-cut between s and t can be found in
time O((Lk2

)2 · 2k
2

· n).
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Corollary 1. Let G be a graph, k = td(G) and s and t be two distinct vertices
of G. Then for any L ∈ N an minimum L-cut between s and t can be found in
time f(k)n, where f is a computable function.

Proof As k is the tree depth of G it follows that the length of any path in G
can be upper-bounded by 2k. It is a folklore fact, that k is also a upper-bound
on the tree-width of G. So we can use the Theorem 1 for L < 2k and any other
polynomial algorithm for minimum cut problem otherwise. ⊓⊔

Corollary 2. Let G = (V,E) be a graph of tree-width k, s 6= t ∈ V and L ∈ N.
There exists a computable function f : N → N, such that a minimum L-cut
between s and t can be found in time O(nf(k)), where n = |V |.

Theorem 2. Minimal Length Bounded Cut parametrized by path-width is
W[1]-hard.

Tree-width versus tree-depth Admitting an FPT algorithm for a problem when
parameterized by the tree-width implies an FPT algorithm for the problem
when parameterized by the tree-depth, as parameter-theoretic observation easily
shows. On the other hand, the FPT algorithm parameterized by the tree-width
usually uses exponential (in the tree-width) space, while the tree-depth version
uses only polynomial space (in the tree-depth).

From this point of view, it seems to be interesting to find problems that are
”on the edge between path-width and tree-depth”. That is problems that admit
an FPT algorithm when parameterized by the tree-depth, but being W[1]-hard
when parameterized by the path-width.

The only other result of this type, we a re aware of in the time of writing this
article is by Gutin et al. [12]. The Minimum Length Bounded Cut problem
is also a problem of this kind—as Theorems 2 and 1 demonstrate.

Theorem 1 gives us that the MLBC problem is fixed parameter tractable
(FPT) when parametrized by the length of paths and the tree-width and that it
belongs to XP when parametrized by the tree-width only (and thus solvable in
polynomial time for graph classes with constant bounded tree-width).

Theorem 3. There is no polynomial kernel for the Minimum Length Bounded
Cut problem parameterized by the tree-width of the graph and the length L, un-
less NP ⊆ coNP/poly.

We want to mention that our techniques apply also for more general version
of the MLBC problem.

Length-bounded multi-cut We consider a generalized problem, where instead of
only two terminals, we are given a set of terminals. For every pair of terminals,
we are given a constraint—a lower bound on the length of the shortest path
between these terminals. More formally:

Let S = {s1, . . . , sk} ⊂ V be a subset of vertices of the graph G = (V,E)
and let a : S × S → N be a mapping. We call a subset of edges F ⊆ E of G

3



an a-bounded multi-cut if length of the shortest path between si and sj in the
graph (V,E \F ) is at least a(si, sj) long for every i 6= j. Again if F has smallest
possible size, we call it minimum a-bounded {s1, . . . , sk}-multi-cut. We call the
vertices s1, . . . , sk terminals. Finally, as there are only finitely many values of
the mapping a we write as,t instead of a(s, t), we also write a instead of function
a. Let L ≥ maxs,t∈S a(s, t), we say that the problem is L-limited.

PROBLEM: Minimum Length Bounded Multi-Cut (MLBMC)
Instance: graph G = (V,E), set S ⊂ V and as,t ∈ N for all s, t ∈ S,

satisfying the triangle inequalities
Goal: find a minimum length bounded S multi-cut F ⊂ E

Theorem 4. Let G = (V,E) be a graph of tree-width k, S ⊆ V with |S| = t and
let p := t+ k. Then for any L ∈ N and any L-limited length-constraints a on S
an minimum a-bounded multi-cut can be computed in time O((Lp)2 · 2p

2

· n).

2 Preliminaries

In this section we recall some standard definitions from the graph theory and
state what a tree decomposition is. After this we introduce changes of the tree
decomposition specific for our algorithm. We proceed by the notion of auxiliary
graphs used in proofs of our algorithm correctness. Finally, in Section 2.1 we
summarize the results allowing us to prove that it is unlikely for a parameterized
problem to admit a polynomial kernelization procedure.

We use the notion of tree decomposition of the graph:

Definition 2. A tree decomposition of a graph G = (V,E) is a pair T =
({Bi : i ∈ I}, T = (I, F )), where T is a rooted tree and {Bi : i ∈ I} is a family
of subsets of V, such that

1. for each v ∈ V there exists an i ∈ I such that v ∈ Bi,
2. for each e ∈ E there exists an i ∈ I such that e ⊆ Bi,
3. for each v ∈ V, Iv = {i ∈ I : v ∈ Bi} induces a subtree of T.

We call the elements Bi the nodes, and the elements of the set F the decompo-
sition edges.

We define a width of a tree decomposition T = ({Bi : i ∈ I}, T ) as maxi∈I |Bi|−1
and the tree-width tw(G) of a graph G as the minimum width of a tree decompo-
sition of the graph G. Moreover, if the decomposition is a path we speak about
the path-width of G, which we denote as pw(G).

Nice tree decomposition [15] For algorithmic purposes it is common to define
a nice tree decomposition of the graph. We naturally orient the decomposition
edges towards the root and for an oriented decomposition edge (Bj , Bi) from Bj

to Bi we call Bi the parent of Bj and Bj a child of Bi. If there is an oriented
path from Bj to Bi we say that Bj is a descendant of Bi.
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We also adjust a tree decomposition such that for each decomposition edge
(Bi, Bj) it holds that ||Bi| − |Bj || ≤ 1 (i.e. it joins nodes that differ in at most
one vertex). The in-degree of each node is at most 2 and if the in-degree of the
node Bk is 2 then for its children Bi, Bj holds that Bi = Bj = Bk (i.e. they
represent the same vertex set).

We classify the nodes of a nice decomposition into four classes—namely in-
troduce nodes, forget nodes, join nodes and leaf nodes. We call the node Bi an
introduce node of the vertex v, if it has a single child Bj and Bi \ Bj = {v}.
We call the node Bi a forget node of the vertex v, if it has a single child Bj and
Bj \Bi = {v}. If the node Bk has two children, we call it a join node (of nodes
Bi and Bj). Finally we call a node Bi a leaf node, if it has no child.

Proposition 1. [15] Given a tree decomposition of a graph G with n vertices
that has width k and O(n) nodes, we can find a nice tree decomposition of G
that also has width k and O(n) nodes in time O(n).

So far we have described a standard nice tree decomposition. Now we change
the introduce nodes. Let Bj be an introduce node and Bi its parent. We add
another two copies Bp

j , B
s
j of Bj to the decomposition. We remove decompo-

sition edge (Bj , Bi) and add three decomposition edges (Bj , B
p
J ), (B

s
j , B

p
j ) and

(Bp
j , Bi). Note that after this operation, Bs

j is a leaf of the decomposition, Bj

remains an introduce node and Bp
j is a join node. We call Bs

j a sibling of Bj .
Note that by these further modifications we preserve linear number of nodes in
the decomposition.

Bi

Bj

Bi

B
p
j

Bs
j Bj

Fig. 1. Change of Introduction nodes in the nice tree decomposition

Auxiliary subgraphs Recall that for each edge there is at least one node containing
that particular edge. Note that after our modification of the decomposition for
each edge e there is at least one leaf Bi of the decomposition satisfying e ⊆ Bi.
To see this, suppose this is not true and that some edge, say e, must be placed
into a non-leaf node Bj . We may suppose that Bj is an introduce node (for
join or forget node choose its descendant). However, in our construction any
introduce node Bj has a sibling Bs

j such that is a leaf in the decomposition tree
and their bags are equal.
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Thus, for every edge e ∈ E(G) we choose an arbitrary leaf node Bi such that
e ∈ Bi and say that the edge e belongs to the leaf node Bi. By this process we
have chosen set Ei ⊂ E(G) for each leaf node Bi. We further use the notion
of auxiliary graph GBi

, or Gi for short. For a leaf node Bi we set a graph
Gi = (Vi = Bi, Ei). For a non-leaf node Bi we set a graph Gi = (V,E), where
V = Bi ∪

⋃

Bj child of Bi
Vj and E =

⋃

Bj child of Bi
Ej .

2.1 Preliminaries on refuting polynomial kernels

Here we present simplified review of a framework used to refute existence of
polynomial kernel for a parameterized problem from Chapter 15 of a monograph
by Cygan et al. [4].

In the following we denote by Σ a final alphabet, by Σ∗ we denote the set of
all words over Σ and by Σ≤n we denote the set of all words over Σ and length
at most n.

Definition 3 (Polynomial equivalence relation). An equivalence relation R
on the set Σ∗ is called polynomial equivalence relation if the following conditions
are satisfied:

1. There exists an algorithm such that, given strings x, y ∈ Σ∗, resolves whether
x ≡R y in time polynomial in |x|+ |y|.

2. Relation R restricted to the set Σ≤n has at most p(n) equivalence classes
for some polynomial p(·).

Definition 4 (Cross-composition). Let L ⊆ Σ∗ be an unparameterized lan-
guage and Q ⊆ Σ∗×N be a parametrized language. We say that L cross-composes
into Q if there exists a polynomial equivalence relation R and an algorithm A,
called the cross-composition, satisfying the following conditions. The algorithm
A takes on input a sequence of strings x1, x2, . . . , xt ∈ Σ∗ that are equivalent
with respect to R, runs in polynomial time in

∑t

i=1 |xi|, and outputs one instance
(y, k) ∈ Σ∗ × N such that:

1. k ≤ p(maxt
i=1|xi|, log t) for some polynomial p(·, ·), and

2. (y, k) ∈ Q if and only if xi ∈ L for all i.

With this framework, it is possible to refute even stronger reduction techniques—
namely polynomial compression—according to the following definition:

Definition 5 (Polynomial compression). A polynomial compression of a
parameterized language Q ⊆ Σ∗ × N into an unparameterized language R ⊆ Σ∗

is an algorithm that takes as an input an instance (y, k) ∈ Σ∗ × N, works in
polynomial time in |x|+ k, and returns a string y such that:

1. |y| ≤ p(k) for some polynomial p(·), and

2. y ∈ R if and only if (x, k) ∈ Q.
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It is possible to refute existence of polynomial kernel using Definitions 3,4
and 5 with the help of use of the following theorems and a complexity assumption
that is unlikely to hold—namely NP ⊆ coNP/poly.

Theorem 5 ([7]). Let L,R ⊆ Σ∗ be two languages. Assume that there exists
an AND-distillation of L into R. Then L ∈ coNP/poly.

Theorem 6. Assume that an NP-hard language L AND-cross-composes to a
parameterized language Q. Then Q does not admit a polynomial compression,
unless NP ⊆ coNP/poly.

3 Minimal Length Bounded Multi-cuts

In this section we give a more detailed study of the length constraints for the
length-bounded multi-cut and the triangle inequalities. From this we derive
Lemma 1 for merging solutions for edge-disjoint graphs.

The triangle inequalities Note that the solution for MLBMC problem has to
satisfy the triangle inequalities with respect to its instance. This means that
for any three terminals s, t, u ∈ S and the distance function dist it holds that
dist(s, u) + dist(u, t) ≥ dist(s, t) ≥ as,t. Thus, we can restrict instances of
MLBMC problem only to those satisfying these triangle inequalities.

Definition 6 (Length constraints). Let G = (V,E) be a graph, S ⊂ V and
let k = |S|. We call a vector a = (as1,s2 , . . . , ask−1,sk) a length constraint if for
every s, t, u ∈ S it holds that as,u + au,t ≥ as,t.

For our approach it is important to see the structure of the solution on a
graph composed from two edge disjoint graphs.

Lemma 1. Let G1 = (V1, E1), G2 = (V2, E2) be edge disjoint graphs. Then for
the graph G = G1 ∪ G2 and S = V1 ∩ V2 and an arbitrary length constraints

a ∈ N
(|S|

2
) it holds that the minimum length bounded (S, a) multi-cut F for G is

a disjoint union of the (S, a) multi-cuts F1 and F2 for G1 and G2.

Proof First we prove that there cannot be smaller solution than F1∪F2. To see
this observe that for every (S, a) cut F ′ on G it holds that F ′ ∩ E1 is an (S, a)
cut on G1 (and vice versa for G2). Hence if F ′ would be a cut of smaller size
then F , we would get a contradiction with the minimality of choice of F1 and
F2, because we would have |F ′| < |F | = |F1|+ |F2|.

Now we prove that F1 ∪ F2 is a valid solution. To see this we prove that
every path between two terminals is not short. We prove that there cannot be
such P by an induction on number of h := |V (P ) ∩ S|. If h = 2 then because
G1 and G2 are edge disjoint, we may (by symmetry) assume that P ⊂ G1, a
contradiction with the choice of F1. If h > 2 then there is a vertex u ∈ S \ {s, t}
such that the path P is composed from two segments P1 and P2, where P1 is
a path between s and u and P2 is a path between u and t. And so we have
|P | = |P1|+ |P2| ≥ as,u + au,t ≥ as,t, what was to be demonstrated. ⊓⊔
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4 Restricted bounded multi-cut

In this section we present our approach to the L-bounded cut for the graphs of
bounded tree-width. We present our algorithm together with some remarks on
our results.

Recall that we use dynamic programming techniques on a tree decomposition
of an input graph. First we want to root the decomposition in a node containing
both source and sink of the L-cut problem. This can be achieved by adding the
source to all nodes on the unique path in the decomposition tree between any
node containing the source and any node containing the sink. Note that this
may add at most 1 to the width of the decomposition.

Length vectors and tables As it was mentioned in the previous section, we solve
the L-cut by reducing it to simple instances of generalized MLBMC problem.
We begin with a mapping a : S × S → N with meaning a(s, t) = ls,t. For
simplicity we represent the mapping a by a vector, calling it a length vector a and

relax it for a node X a = (ax1,x2
, . . . , axk−1,xk

) ∈ N
(k
2
), where k = |X | and X =

{x1, . . . , xk}. We reduce the problem to the a-bounded multi-cut for k terminals,
where k = tw(G)+2 (the additional two is for changing the decomposition). Let

us introduce a relation on length vectors a,b ∈ N
(k
2
) on X of the same size. We

write a � b, if axi,xj
≤ bxi,xj

for all 1 ≤ i < j ≤ |X |.
Let the set of vertices X = {x1, . . . , xk}, a be a length vector, let I ⊂ [k] and

let Y = {xi ∈ X : i ∈ I}. By a|Y we denote the length vector a containing axi,xj

if and only if both i ∈ I and j ∈ I (in an appropriate order) – in this case we
say a|Y is a contracted on the set Y .

Recall that for each node X we have defined the auxiliary graph GX (see
Section 2 for the definition). With a node X we associate the table TabX . The
table entry for constraints a = (a1,2, . . . , ak−1,k) of TabX (denoted by TabX [a])
for the node X = {x1, . . . , xk} contains the size of the a-bounded multi-cut for
the set X in the graph GX . Note that for two length vectors a � b it holds that
TabX [a] ≤ TabX [b].

4.1 Node Lemmas

The leaf nodes are the only nodes bearing some edges. We use an exhaustive
search procedure for building tables for these nodes. For this we need to compute
the lengths of the shortest paths between all the vertices of the leaf node, for
which we use the well known procedure due to Floyd and Warshall [8,17]:

Proposition 2 ([8,17]). Let G be a graph with nonnegative length f : G(E) →
N. It is possible to compute the table of lengths of the shortest paths between any
pair u, v ∈ V (G) with respect to f in time O(|V (G)|3).

Lemma 2 (Leaf Nodes). For all L-limited length vectors and a leaf node X
the table TabX of sizes of minimum length-bounded multi-cuts can be computed
in time O(Lk2

· 2k
2

· k3), where k = |X |.
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Proof Fix one L-limited length vector a. We run the Floyd-Warshall algorithm
(stated as Proposition 2) for every possible subgraph of GX . As |E(GX)| ≤

(

k

2

)

there are O(2k
2

) such subgraphs. This gives us a running time O(2k
2

· k3) for a
single length vector a – we check all O(k2) length constraints if each of them is
satisfied and set

TabX [a] := min
F⊆E(GX) : F satisfies a

(|E(GX) \ F |).

Finally there are O(Lk2

) L-bounded length vectors, this gives our result. ⊓⊔

We now use Lemma 1 to prove time complexity of finding a dynamic pro-
gramming table for join nodes from the table of its children.

Lemma 3 (Join Nodes). Let X be a join node with children Y and Z, let L
be the limit on length vectors components and let k = |X |. Then the table TabX
can be computed in time O(Lk2

) from the table TabY and TabZ.

Proof Recall that graphs GY and GZ are edge disjoint and that we store sizes
of a-bounded multi-cuts. Note also that X = V (GY ) ∩ V (GZ) and so we can
apply Lemma 1 and set TabX [a] := TabY [a] +TabZ[a], for each a satisfying the
triangle inequalities.

As there are O(Lk2

) entries in the table TabX we have the complexity we
wanted to prove. ⊓⊔

As the forget node expects only forgetting a vertex and thus forgetting part
of the table of the child. This is the optimizing part of our algorithm.

Lemma 4 (Forget Nodes). Let X be a forget node, Y its child, let L be the
limit on length vectors components and let k = |X |. Then the table TabX can be

computed in time O((Lk2

)2) from the table TabY .

Proof Fix one length vector a and compute the set A(a) of all Y -augmented
length vectors. Formally b ∈ A(a) if b is a length vector satisfying the triangle
inequalities for Y and b|X = a. After this we set

TabX[a] := min
b∈A(a)

TabY [b].

There are at most Lk2

of Y -augmented length vectors for each a and this
gives the claimed time. ⊓⊔

Also the introduce node (as the counter part for the forget node) only adds
coordinates to the table of its child. It does no computation as there are no edges
it can decide about – these nodes now only add isolated vertex in the graph.

Lemma 5 (Introduce Nodes). Let X be an introduce node, Y its child, let L
be the limit on length vectors components and let k = |X |. Then the table TabX
can be computed in time O(Lk) from the table TabY .

9



Proof Let x be the vertex with the property x ∈ X \ Y . The key property is
that the vertex x is an isolated vertex in GX and thus we can set TabX [a] :=
TabY [a|Y ], because x is arbitrarily far from any vertex in GY , especially from
the set Y . ⊓⊔

4.2 Proofs of Theorems

We use Lemmas 2, 3, 4 and 5 to prove the theorem about computing L-bounded
(s, t)-cut in graph of bounded tree-width. For this, note that we can use k =
O(tw(G)) and put it into all the Lemmas as it is an upper bound on the size of
any node in the decomposition.

We compute all the L-bounded length-constraint that satisfy the triangle
inequalities in advance. This takes additional time O(Lk2

· k3) which can be

upper-bounded by O((Lk2

)2 · 2k) for k ≥ 2 and L ≥ 2 and so this does not make
the overall time complexity worse.

Proof of Theorem 1 As there are O(n) nodes in nice tree decomposition (by
Proposition 1) and as we can upper-bound time needed to compute any type of

node by O((Lk2

)2 ·2k
2

), we have complexity proposed in state of the Theorem 1.
⊓⊔

Let us now point out that the value of the parameter L can be upper-bounded
by the number of vertices n of the input graph G (in fact by n1−ε as it is proved
in [2]).

We now want to sum-up the key ideas leading to Theorem 1. First, it is the
use of dynamic program for computing all options of cuts for bounded number
of possible choices and for second it is the idea of creating a node that includes
both the source and the sink while not harming the tree-width too much. On
the other hand, we can use this idea to solve also the generalized version of the
problem – length-bounded multi-cut – with the additional parameter the number
of terminals. It is easy to see that in this setting that again it is possible to achieve
node containing every terminal and thus this yields following Theorem 7.

Theorem 7. Let G = (V,E) be a graph of tree-width k, S ⊆ V with |S| = t
and let p := t + k. Then for any L ∈ N and any L-limited length-constraints b
satisfying the triangle inequalities on S an minimum b-bounded multi-cut can be
computed in time O((Lp)2 · 2p

2

· n).

Proof To see that Theorem 7 implies Theorem 4 note, that given any L-limited
length-constraints a the minimum a-bounded multi-cut must satisfy triangle
inequalities. Thus, we find the minimum b-bounded multi-cut among all b � a.
Note that we can do this in additional time O(Lp2

), but this does not make the
total running time worse.

⊓⊔
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5 Hardness of the L-bounded cut

In this section we prove MLBC parametrized by path-width is W[1]-hard [9] by
FPT-reduction from k-Multicolor Clique.

PROBLEM: k-Multicolor Clique
Instance: k-partite graph G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E), where Vi is

independent set for every i and they are pairwise disjoint
Parameter: k
Goal: find a clique of the size k

Denoting In this section, sets V1, . . . , Vk are always partites of the k-partite
graph G. We denote edges between Vi and Vj by Eij . The problem is W[1]-hard
even if every independent set Vi has the same size and the number of edges
between every Vi and Vj is the same. In whole Section 5 we denote the size of an
arbitrary Vi by N and the size of an arbitrary Eij by M . For an FPT-reduction
from k-Multicolor Clique to MLBC we need:

1. Create an MLBC instance G′ = (V ′, E′), s, t, L from the k-Multicolor
Clique instance G = (V1 ∪̇V2 ∪̇. . .∪̇Vk, E) where the size of G′ is polynomial
in the size of G.

2. Prove that G contains a k-clique if and only if G′ contains an L-bounded
cut of the size f(k,N,M) where f is a polynomial.

3. Prove the path-width of H is smaller than g(k) where g is a computable
function.

Our ideas were inspired by work of Michael Dom et al. [6]. They proved W[1]
hardness of Capacitated Vertex Cover and Capacitated Dominating
Set parametrized by the tree width of the input graph. We remarked that their
reduction also proves W[1] hardness of these problems parametrized by path-
width.

5.1 Basic gadget

In the k-Multicolor Clique problem we need to select exactly one vertex
from each independent set Vi and exactly one edge from each Eij . Moreover, we
have to make certain that if e ∈ Eij is the selected edge and u ∈ Vi, v ∈ Vj are
the selected vertices then e = {u, v}. The idea of the reduction is to have a basic
gadget for every vertex and edge. We connect gadgets gv for every v in Vi into
a path Pi. The path Pi is cut in the gadget gv if and only if the vertex v ∈ Vi is
selected into the clique. The same idea will be used for selecting the edges.

Definition 7. Let h,Q ∈ N. Butte B(s′, t′, h,Q) is a graph which contains h
paths of length 2 and Q paths of length h+ 2 between the vertices s′ and t′. The
short paths (of length 2) are called shortcuts, the long paths are called ridgeways
and the parameter h is called height.
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t′s′

t′s′

shortcuts

ridgeways

a) b)b)

3

Fig. 2. a) Example of a butte for h = 3 and Q = 4. b) Simply diagram for a butte of
height 3.

A butte for h = 3, Q = 4 is shown in Figure 2 part a. In our reduction all buttes
will have the same parameter Q (it will be computed later). For simplicity we
depict buttes as a dash dotted line triangles with its height h inside (see Figure 2
part b), or only as triangles without the height if it is not important.

Let B(s′, t′, h,Q) be a butte. We denote by s(B), t(B), h(B), Q(B) the pa-
rameters of butte B s′, t′, h and Q, respectively. We state easy but important
observation about the butte path-width:

Observation 8 Path-width of an arbitrary butte B is at most 3.

Proof If we remove vertices s(B) and t(B) from B we get Q(B) paths from
ridgeways and h(B) isolated vertices from shortcuts. This graph has certainly
path-width 1. If we add s(B) and t(B) to every node of the path decomposition
we get a proper path decomposition of B with width 3. ⊓⊔

Let butte B(s′, t′, h,Q) be a subgraph of a graph G. Let u, v be vertices of
G and all paths between u and v goes through B such that they enter into B in
s′ and leave it in t′ (see Figure 3). The important properties of the butte B are:

1. By removing one edge from all h shortcuts of B, we extend the the distance
between u and v by h. If we cut all shortcuts of butte B we say the butte B
is ridged.

2. Let size of the cut is bounded by K ∈ N and we can remove edges only
from B. If we increase Q to be bigger than K then any path between u and
v cannot be cut by removing edges from B (only extended by ridging the
butte B).

5.2 Butte path

In this section we define how we connect buttes into a path, which we call
highland. The main idea is to have highland for every pair (i, j), i 6= j ∈ [k]. In

12



u s
′

t
′

v

h

Fig. 3. Example of a path going through a butte.

the highland for (i, j), there are buttes for every vertex v ∈ Vi and every edge
e ∈ Ei,j . We connect vertex buttes and edge buttes into a path. Then we set the
butte heights and limit the size of the cut in such way that:

1. Exactly one vertex butte and exactly one edge butte have to be ridged.
2. If a butte for a vertex v is ridged, then only buttes for edges incident with v

can be ridged.

Formal description of the highland is in the following definition.

Definition 8. The highland H(X,Y, s, t) is a graph containing 2 vertices s and
t and Z = X + Y buttes B1, . . . , BZ where:

1. s = s(B1), t = t(BZ) and t(Bi) = s(Bi+1) for every 1 ≤ i < Z.
2. h(Bi) = X2 + i for 1 ≤ i ≤ X.
3. h(Bi) ∈ {X4, . . . , X4 +X − 1} for X + 1 ≤ i ≤ Z.
4. Q(Bi) = X4 +X2 for every i.

Let H(X,Y, s, t) be a highland. We call buttes B1, . . . , BX from H low and
buttes BX+1, . . . , BX+Y high (low buttes will be used for the vertices and high
buttes for the edges). The vertex t(BX) = s(BX+1), where low and high buttes
meet, is called the center of highland H . Note that there can be more buttes
with the same height among high buttes and they are not ordered by height as
the low buttes. An example of a highland is shown in Figure 4.

s = s1 t1 = s2 t2 sX sX+2 sX+3sX+1 sX+Y t

X
2 + 1 X

2 + 2 X
2 +X

X
4

+X − 3

X
4

+X − 1

X
4

X Y

Fig. 4. Example of a highland H(X,Y, s, t).
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Proposition 3. Let H(X,Y, s, t) be a highland. Let L = 2(X+Y )+X4+X2+
X − 1. Let C be the L-cut of size X4 +X2 +X, which cut all paths of length L
and shorter between s and t then:

1. The cut C contains only edges obtained by ridging the exactly two buttes
Bi, Bj, such that Bi is low and Bj is high.

2. Let Bi be the ridged low butte and Bj be the ridged high butte. Then, h(Bj) =
X4 +X − i.

Proof of Proposition 3 Every butte has at least X+1 shortcuts and X4+X2

ridgeways. Therefore, C can not cut all paths in H between s and t and it is
useless to add edges from ridgeways to the cut C. Note that the shortest st-path
in H has the length 2(X + Y ).

1. If we ridge every low butte we extend the shortest st-path by X3+ X2

2 + X
2 .

However, it is not enough and at least one high butte has to be ridged. Two
high buttes cannot be ridged otherwise the cut would be bigger then the
bound. No high butte can extend the shortest st-path enough, therefore at
least one low butte has to be ridged. However, two low buttes and one high
butte cannot be ridged because the cut C would be bigger then the bound.

2. Let F be the set of removed edges from ridged buttes Bi and Bj . The height
of Bi is X

2+ i. Therefore, the length of the shortest st-path after ridging Bi

and Bj and the size of F is 2(X+Y )+X2+ i+h(Bj). If h(Bj) < X4+X− i
then shortest st-path is strictly shorter then 2(X+Y )+X4+X2+X . Thus,
F is not L-cut. If h(Bj) > X4 +X − i then and |F | > X4 +X2 +X thus F
is bigger than C.

⊓⊔

5.3 Reduction

In this section we present our reduction. Let G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E) be the
input for k-Multicolor Clique. As we stated in the last section, the main
idea is to have a low butte Bv for every vertex v ∈ V (G) and a high butte Be

for every edge e ∈ E(G). Vertex v and edge e is selected into the k-clique if and
only if the butte Bv and the butte Be are ridged. From G we construct MLBC
input G′, s, t, L (the construction is quite technical, for better understanding see
Figure 5):

1. For every 1 ≤ i, j ≤ k, i 6= j we create highland Hi,j(N,M, s, t) of buttes
Bi,j

1 , . . . , Bi,j
N+M .

2. Let Vi = {v1, . . . , vN}. The vertex vℓ ∈ Vi is represented by the low butte
Bi,j

ℓ of the highland Hi,j for every j 6= i. Thus, we have k − 1 copies of
buttes (in different highlands) for every vertex. Hence, we need to be certain
that only buttes representing the same vertex are ridged. Note that buttes
representing the same vertex have the same height and the same distance
from the vertex s.

14



3. Let Eij = {e1, . . . , eM}, i < j. Edge eℓ = {u, v} ∈ Eij(u ∈ Vi, v ∈ Vj) is

represented by the high butte Bi,j
N+ℓ of the highland Hi,j and by the high

butte Bj,i
N+ℓ of the highland Hj,i. Note that two buttes represented the same

edge has same distance from the vertex s. Let hi, hj be the heights of buttes
representing the vertices u and v, respectively. We set the buttes heights:
(a) h(Bi,j

N+ℓ) = N4 +N − hi

(b) h(Bj,i
N+ℓ) = N4 +N − hj

4. We add edge
{

t(Bi,j
ℓ ), t(Bi,j+1

ℓ )
}

for every 1 ≤ i ≤ k, 1 ≤ j < k, i 6= j and
1 ≤ ℓ < N .

5. We add paths of length N − 1 connected t(Bi,j
ℓ ) and t(Bj,i

ℓ ) for every 1 ≤
i, j ≤ k, i 6= j and 1 ≤ ℓ < M .

6. We set L to 2(N +M) +N4 +N2 +N − 1.

We call paths between highlands in Items 4 and 5 the valley paths.

s

s

s

H
i,1

H
i,2

H
i,k

H
1,i

s

t

t

N − 1

N M

Fig. 5. Some part of the graph G′. All vertices labeled s and t are actually two vertices
s and t in the graph G′. We divided them for better illustration. Highlands Hi,2 and
Hi,k have also high buttes, but we omitted them.

Observation 9 Graph G′ has a polynomial size in the size of the graph G.

Theorem 10. If graph G has a clique of size k then (G′, s, t) has an L-cut of
size k(k − 1)(N4 +N2 +N).

Proof Let G has a k-clique {v1, . . . , vk} where vi ∈ Vi for every i and eij =
{vi, vj} ∈ Eij . For every i we ridge all k− 1 buttes representing the vertex vi in
G′. And for every i < j we ridge both buttes representing the edge eij .
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We claim that set of removed edges from ridged buttes forms the L-cut.
Let Hi,j be an arbitrary highland. There is no st-path shorter than L in Hi,j .
Let h(Bv) = N2 + ℓ where Bv is arbitrary butte representing the vertex vi.
By construction of G′, the high butte representing the edge eij in Hi,j has
height N4 + N − ℓ. Thus, ridged buttes in Hi,j extend the shortest st-path by
N4+N2+N and it has length 2(M+N)+N4+N2+N . Buttes representing the
vertex vi have same height. Thus, a path through the low buttes of highlands
using some valley path is always longer than path going through low buttes of
only one highland. Therefore, it is useless to use valley paths among low buttes
for the shortest st-path.

Other situation is among high buttes because buttes representing the same
edge have different heights. The butte Bv representing the vertex vi extend the
shortest path at least by N2+1. The butte Be representing the edge ei,j extend
the shortest at least by N4. However, if h(Bv) +h(Be) < N4 +N2 +N then Bv

and Be have to be in different highlands. Therefore, the st-path going through
Bv and Be has to use a valley path between high buttes, which has length N−1.
Hence, any st-path has the length at least 2(N +M) +N4 +N2 +N .

We remove N4 +N2 + N edges from each highland and there are k(k − 1)
highlands in G′. Therefore, G′ has L-cut of the size k(k− 1)(N4+N2+N). ⊓⊔

Theorem 11. If (G′, s, t) has an L-cut of size k(k − 1)(N4 +N2 +N) then G
has a clique of size k.

Proof Let C be an L-cut of G′. Every shortest st-path going through every
highland has to be extended by N4 + N2 + N . By Proposition 3 (Item 1),
exactly one low butte and exactly one high butte of each highland has to be
ridged. We remove (N4 +N2 +N) from every highland in G′. Therefore, there
can be only edges from ridged buttes in C.

For fixed i, highlands Hi,j are the highlands which low buttes represent
vertices from Vi. We claim that ridged low buttes of Hi,1, . . . , Hi,k represent the
same vertex. Suppose for contradiction, there exists two low ridged buttes Bℓ

of Hi,ℓ and Bm of Hi,m which represent different vertex from Vi. Without loss
of generality Hi,ℓ and Hi,m are next to each other (i.e. |ℓ − m| = 1) and the
distance from s to s(Bℓ) is smaller than the distance from s to s(Bm). Let B′

ℓ be
a butte of Hi,m such that it has the same distance from s as the butte Bℓ (see
Figure 6). The path s–t(B′

ℓ)–t(Bℓ)–t does not go through any ridged low butte.
Therefore, this path is shorter than L, which is contradiction. We can use the
same argument to show that there are not two high ridged buttes of highland
Hi,j and Hj,i which represent different edges from Eij .

We put into the k-clique K ⊂ V (G) the vertex vi ∈ Vi if and only if an
arbitrary butte representing the vertex vi is ridged. We proved in the previous
paragraph that exactly one vertex from Vi can be put into the clique K. Let
eij ∈ Eij be an edge represented by ridged high buttes. We claim that vi ∈ eij .
LetB ∈ Hi,j be a butte representing vi with heightN2+ℓ. Then by Proposition 3
(Item 2), butte B′ ∈ Hi,j of heightN4+N−ℓ has to be ridged. By construction of
G′, only buttes representing edges incident with vi have such height. Therefore,
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i,ℓ

H
i,m

s

s

Bℓ

BmB
′

ℓ

Fig. 6. How to miss every ridged low butte if there are ridged two low buttes repre-
senting two different vertices from one color class. Ridged butte is depicted as triangle
without hypotenuse.

chosen edges are incident with chosen vertices and they form the k-clique of the
graph G. ⊓⊔

Observation 12 Graph G′ has path-width in O(k2).

Proof Let H be a graph created from G by replacing every butte by a single
edge and contract the valley paths between high buttes into single edges, see
Figure 7 transformation a. Let U be a vertex set containing s, t and every
highland center. Let H ′ be a graph created from H by removing all vertex from
U , see Figure 7 transformation b.

Graph H ′ is unconnected and it contains k grids of size (k−1)× (N−2) and
(

k
2

)

grids of size 2 × (M − 2). Path-width of (k − 1)× (N − 2) grids is in O(k),
therefore pw(H ′) ∈ O(k). If we add set U to every node of a path decomposition
of H ′ we get proper path decomposition of H . Since |U | ∈ O(k2), path-width
of H is in O(k2). The edge subdivision does not increase path-width. Moreover,
replacing edges by buttes does not increase it either (up to multiplication con-
stant) because butte has the constant path-width (Observation 8). Therefore,
pw(G) = c pw(H) for some constant c and pw(G) ∈ O(k2).

⊓⊔

And thus Theorem 2 easily follows from Observations 9 and 12 and Theo-
rems 10 and 11.

6 Polynomial kernel is questionable

In this section, we prove that for theMinimum Length Bounded Cut problem
it is unlikely to admit a polynomial kernel when parametrized by the length L
and the path-width (tree-width) of the input graph. We will prove this fact by the
use of a AND-composition framework—that is by designing an AND-composition
algorithm from the unparameterized gapped version of the Minimum Length
Bounded Cut problem into itself.
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Hi,1
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:

Hi,1
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H:
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N − 2 M − 2
H ′

:

Hi,1

Hi,2

Hi,k

a

b

Fig. 7. The transformation a replace all buttes in G′ by single edges and contract long
valley paths into single edges. The transformation b removes vertices s and t and all
highland centers (highlighted by dotted ellipsis) from H .

PROBLEM: Decision version of Minimum Length Bounded Cut
Instance: Graph G = (V,E), vertices s1, s2, positive integers L,K
Question: Is there an L length bounded cut consisting of exactly K

edges
Baier et al. [2] proved that this problem is NP-complete even if we restrict

the input instances such that

– the desired length L ≥ 4 is constant,
– either there is an L bounded cut of size exactly K or every L bounded cut

has at least 1.13K edges.

Thus, it is possible to define the polynomial relation R as follows. We will con-
sider instances (G, s1, s2, L,K) of the decision problem with constant L. Two
instances (G, s1, s2, L,K), (G′, s′1, s

′
2, L,K

′) are equivalent if |V (G)| = |V (G′)|
and K = K ′. It is clear that R is a polynomial equivalence relation.

AND-composition We will take graphs G1, G2, . . . , Gt the input instances that
are equivalent under the relationR for theGapped Minimum Length Bounded
Cut problem with the constant L = 4. As a composition we will take the dis-
joint union of graphs G1, G2, . . . , Gt and unify sources and sinks of the resulting
graph and denote the graph as G.

Now it is easy to see that the path-width of the graph G of our construction
is at most maxi=1,2,...,t |Gi|+ 2 as we can form bags of the path decomposition
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by whole graphs Gi add the source and the sink into every bag and connect
them into a path. This is indeed a correct path decomposition as the only two
vertices in common are in every bag.

As we have taken the parameter L to be constant, this finishes arguments
about parameters. And thus also the proof of Theorem 3.

7 Conclusions

There is another standard generalization of the length bounded cut problem –
where we add to each edge also its length. If this length is integral it is possible
to extend and use our techniques (we only subdivide edges longer than 1 – this
doesn’t raise the tree-width of the graph on the input). On the other hand, if we
allow fractional numbers, it is uncertain how to deal with such a generalization.

Acknowledgments Authors thank to Jǐŕı Fiala, Petr Kolman and Lukáš Folwar-
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13. D. Huygens, M. Labbé, A. R. Mahjoub, and P. Pesneau, The two-edge con-
nected hop-constrained network design problem: Valid inequalities and branch-and-
cut, Networks, 49 (2007), pp. 116–133.

14. A. Itai, Y. Perl, and Y. Shiloach, The complexity of finding maximum disjoint
paths with length constraints, Networks, 12 (1982), pp. 277–286.

15. T. Kloks, Treewidth, Computations and Approximations (Lecture notes in com-
puter science, 842), Springer-Verlag New York, Inc., 1994.
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