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Abstract: To realize a real-time structural Topology Optimization (TO), it is essential 

to use the information during the TO process. A step-to-step training method is proposed 

to improve the deep learning model prediction accuracy based on the Solid Isotropic 

Material with Penalization (SIMP) TO method. By increasing the use of optimization 

history information (such as the structure density matrix), the step-to-step method 

improves the model utilization efficiency for each sample data. This training method 

can effectively improve the deep learning model prediction accuracy without increasing 

the sample set size. The step-to-step training method combines several independent 

deep learning models (sub-models). The sub-models could have the same model layers 

and hyperparameters. It can be trained in parallel to speed up the training process. 

During the deep learning model training process, these features reduce the difficulties 

in adjusting sub-model parameters and the model training time cost. Meanwhile, this 

method is achieved by the local end-to-end training process. During the deep learning 

model predicting process, the increase in total prediction time cost can be ignored. The 

trained deep learning models can predict the optimized structures in real-time. 

Maximization of first eigenfrequency topology optimization problem with three 

constraint conditions is used to verify the effectiveness of the proposed training method. 

The method proposed in this study provides an implementation technology for the real-

time TO of structures. The authors also provide the deep learning model code and the 

dataset in this manuscript (git-hub). 
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1. Introduction 

With the rapid development of numerical analysis, structural topology optimization[1] has been 

widely applied in aerospace structures[2] and automotive[3] fields. The topology optimization 

method can determine the optimal distribution of materials to achieve an optimized structural 

performance[4]. Currently, many topology optimization methods have been developed, such as the 

solid isotropic material with penalization (SIMP) method[5], the moving morphable component 

method[6], and the evolution structure optimization method[7]. These methods have been 

successfully applied to static[8, 9], dynamic[10, 11], thermodynamic[12, 13], and other 

multidisciplinary optimization problems. However, the entire iterative process of classical topology 

optimization methods is accompanied by finite element calculation and sensitivity analysis. The 

calculation time cost increases rapidly with an increase in elements and problem dimensions. 

Therefore, a new algorithm is developed to realize real-time topology optimization.  

Recently, deep learning has developed rapidly. It has been successfully applied to image 

classification[14], target detection[15], and language translation[16] problems. A neuron with 

simple operations is the basic unit of the deep learning model. The parameters in the model are 

updated using a gradient descent algorithm. Real-time topology optimization is the combination of 

topology optimization and deep learning. With the model training process, the model can gradually 

determine the approximate functional relationship between the input and output data. The rapid 

response of the trained deep learning model provides the possibility of calculating the topology 

optimization in real-time. 

To accelerate the topology optimization process using a deep learning model, some scholars 

have replaced the topology optimization process with a deep learning model, which is usually 

realized by the offline model training method. Yu[17] used a convolutional neural network (CNN) 

to predict low-resolution results (32×32) using the load and constraint information in the X and Y 

directions. Subsequently, a conditional generational adversarial network was used to convert the 

low-resolution results to high-resolution results (128×128). Based on a study by Yu[17], Keigo[18] 

improved the prediction accuracy of a deep learning model by adding SPADE[19] layers to the 

model. Wang[20] trained a U-Net model based on displacement and strain information. The trained 

model could achieve multiple load conditions for real-time structural topology optimization. The 

above scholars accelerated the topology optimization process based on a deep learning model with 

an offline model training method. The offline training method means that deep learning model 

training is entirely independent of topology optimization. This method generally constructed the 

relationship between the initial physical information (like the load condition or volume fraction) 

and the optimized result. So this model training method is also known as the “end-to-end” method. 



The method has the advantage of high prediction efficiency and is easily implemented. 

In contrast to the offline training method, some scholars have integrated the deep learning 

models into the topology optimization calculation called the online training method. Aaditya[21] 

used a neural network to obtain the element density using the SIMP topology optimization method. 

As a result, optimal structures with different resolutions can be produced. To accelerate the topology 

optimization process, Chi[22] used a deep learning model to predict sensitivity information and 

replaced the classical analysis in some iterative steps. Guo[23] used a deep learning model to obtain 

microstructural stiffness and then accelerated the entire calculation process of multi-scale topology 

optimization. Hao[24] used a fully connected feedforward neural network to replace the implicit 

expression of the classical level set function, which can effectively generate diversified structures. 

The deep learning model in the online training method replaces part of the classical optimization 

process (such as accelerating sensitivity analysis[22] or obtaining multiple resolution results in one 

optimization calculation[21]). The optimization is still primarily controlled by classical optimization 

algorithms. In other words, the job complexity handled by the model in the online learning method 

is relatively small. This characteristic demonstrates that the model does not require high complexity 

and has relatively lax criteria for the sample set size. Meanwhile, the optimization results obtained 

by this method generally have higher accuracy and better adaptability for various situations because 

the optimization is still primarily based on classical optimization algorithms. 

In addition to the influence of the model training methods discussed above, the ability of the 

deep learning model to solve nonlinear problems (learning ability) can also significantly influence 

the model’s prediction accuracy[25]. Generally, properly adjusting the structure of the deep learning 

model can enhance its nonlinear preprocessing ability. The structural disconnection problem often 

occurred in SIMP real-time prediction results. By combining multiple deep learning models with 

different loss functions, Gorkem[26] alleviated this problem and improved the prediction accuracy 

of the deep learning model. Contrary to enhancing the learning ability of the deep learning model, 

Lin[27] divided the heat-dissipation topology optimization process into two stages and realized real-

time topology optimization in the second stage using a CNN. The deep learning model can also be 

reduced by decreasing the complexity of the problem being solved. However, the model usually 

depends on the size of the sample set. The deep learning model may have an over-fitting problem 

owing to insufficient training with a limited sample-set size. To provide more valuable data for the 

deep learning model, Wang[20] increased the initial data type of the model input. The principal 

stress matrix contains more optimization information than the load and constraint information. 

Using the initial principal stress matrix as the initial input data for the model, Yan[28] solved the 

problem discussed above. 

In this paper, a step-to-step (STS) training method is proposed. This method is an attempt to 



improve the popular online and offline training methods. Compared with the online training method, 

the STS method has better efficiency improvement. By increasing the use of optimization history 

information, the STS method improves the model utilization efficiency for each example. Without 

increasing the sample set size, the prediction accuracy of the deep learning model is improved. The 

low prediction accuracy is usually presented as structure fracture or gray element phenomenon (for 

SIMP method). Therefore, in addition to taking the objective function and loss function as the model 

evaluation criterion, a new function is proposed to evaluate the non-discreteness of structures. The 

training method is introduced in Section 3. In Section 4, several examples are used to verify the 

effectiveness of the proposed method. The final section summarizes the study. 

2. The basic theory of fundamental frequency topology 

optimization based on the density method and convolutional 

neural network 

2.1 Topology optimization of maximizing the fundamental 

eignenfrequency based on the density method 

Structural vibration and noise control designs are significant in many industrial fields[29]. 

Maximizing the fundamental eigenfrequency of structural vibrations can effectively avoid structural 

resonance problems[10]. The SIMP topology optimization method uses explicit interpolation to 

describe the structural stiffness and mass matrices. The formulas for the topology optimization 

problem of maximizing the fundamental frequency based on SIMP with a structure volume 

constraint are as follows: 

find     𝐳 = {𝜌𝒊} (2.1) 

max    𝜆1 = 𝜔1
2 (2.2) 

subject to    𝐊∅𝒋 = 𝜆𝑗𝐌∅𝒋, 𝑗 = 1,2, … , J (2.3) 

                       ∅𝑗
𝑇𝐌∅𝑘 = 𝛿𝑗𝑘, 𝑘, 𝑗 = 1,2, … , J (2.4) 

    ∑ 𝜌𝑒𝑉𝑒 − 𝑉∗ ≤ 0, 𝑉∗ = 𝛼𝑉0
𝑁𝐸
𝒆=𝟏  (2.5) 

                                                     0 < 𝜌̂ ≤ 𝜌𝑒 ≤ 1, 𝑒 = 1, … , 𝑁𝐸 (2.6) 

In Eq. (2.1), 𝜌𝒊 is the element density, and 𝐳 is the set of design variables. In Eqs. (2.2) and 

(2.3), 𝜆𝑗 is the jth eigenvalue, and ∅𝒋 is the eigenvector corresponding to this eigenvalue. J is 



the total freedom degree of the structure. 𝐊  and 𝐌  are the stiffness and mass matrices of the 

structure, respectively. Eq. (2.4) is the normalization condition of the eigenvectors, where 𝛿𝑗𝑘 is 

the Kronecker notation. Eq. (2.5) is the volume constraint condition for the structural optimization, 

where 𝑉∗ is the upper limit of the allowable volume of the structure, 𝛼 is the volume fraction, and 

𝑉0 is the total volume of the structure. 𝑁𝐸 is the number of finite elements in the structure. To 

avoid numerical singularity difficulties during the topology optimization process, we set 𝜌̂ as the 

lower bound of the element density (𝜌̂ = 0.001 in this paper). 𝐊 and 𝐌 are assembled using the 

element stiffness matrix (𝐊𝑒
∗ )  and mass matrix (𝐌𝑒

∗) , respectively, as shown in Eqs. (2.7) and 

(2.8). 

𝐊 = ∑ 𝜌𝑒
𝑝𝐊𝑒

∗

𝑁𝐸

𝑒=1

 (2.7) 

𝐌 = ∑ 𝜌𝑒
𝑞𝐌𝑒

∗

𝑁𝐸

𝑒=1

 (2.8) 

𝑝 and 𝑞 are the penalty coefficients of the stiffness and mass matrices, respectively (𝑝 = 3,

𝑞 = 2 ). The method of moving asymptotes (MMA)[30] optimization algorithm is used for 

parameter update. 

2.2 Theory of the convolutional neural network 

CNN is widely used in feature extraction and image recognition[31]. Compared with the 

traditional back-propagation neural network (BP)[32], CNN has convolution and pooling layers. 

The convolution layer can extract features from samples, even if some feature-invariant operations, 

such as translation, rotation, and edge shearing, exist. Therefore, a CNN is also known as a 

‘translation-invariant neural network’[33]. 

The artificial-material-density topology optimization method uses finite element density values 

to describe structural geometry. The fundamental concept of this method is to discretize the density 

values of the finite element with 0 or 1 to represent the material distribution in the structure. When 

the density value is 1, the element is filled with the material. When the density value is 0, the element 

contains no material. However, in the actual optimization process, using an efficient gradient 

descent algorithm to update the discrete optimization variables is difficult. The discrete variables 

are frequently relaxed, and the element density 𝜌 is defined as a continuous variable within [0, 

1][34]. Owing to the characteristics discussed above, the configuration of the optimization results 

of the artificial-material-density topology optimization methods is frequently presented as a grey 

image. 

The CNN has the local connection and weight-sharing characteristics[35], which can reduce 



the number of parameters of the CNN and enhance the feature extraction capability for large-scale 

matrix data represented by images. Therefore, CNN is adopted to solve the real-time topology 

optimization problem based on the SIMP method. Combining topology optimization with a deep 

learning model improves the efficiency of the structural vibration topology optimization calculation.  

3. Proposed Step-to-Step Training Method 

3.1 Structure of the submodels in the step-to-step training method 

The structure of the CNN used in this study is shown in Figure 1. The model is composed of 

the encoder, decoder, and reducing parts. Activation functions can enhance the model nonlinear 

learning ability. The final layer adopts the sigmoid activation function[36], and the other uses the 

ReLU function[37]. The specific expressions of these two functions are shown in Eq. (3.1) and Eq. 

(3.2). 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (3.1) 

𝑓(𝑥) = {
𝑥       𝑖𝑓 𝑥 > 0
0       𝑖𝑓 𝑥 ≤ 0

 (3.2) 

The encoder part (including block-1, block-2, block-3, block-4 and block-5) encodes the input 

data and reduces the data dimension through a convolution operation; the decoder part (including 

block-6, block-7, block-8, block-9 and block-10) realizes data up-sampling through the transpose 

convolution operation[38]. Traditional CNN uses a fully connected layer to adjust output data size. 

And the total model parameters number will be enormous if the output matrix is large. However, 

structure topology optimization calculation is an element size-dependent problem. When the sample 

set size is limited, the over-fitting problem influences model prediction accuracy[39]. On the one 

hand, the model alleviated this phenomenon by adding the dropout layer[40], which is also a 

standard treatment. There is a hyperparameter called dropout rate in the dropout layer. In the current 

iteration, the dropout layer could arbitrarily cause some neurons to lose their learning capacity. It 

reduces the number of all parameters of the model to some extent. On the other hand, the reducing 

part imitates the characteristics of Google Net[41] and uses the convolution layer to replace the full 

connect layer in the model. This method can also reduce the number of parameters of the entire 

model. The table in the appendix shows the trainable parameters in two models. The layers without 

trainable parameters are omitted (such as the dropout layer and add layer). With a 221 × 31 matrix 

as the model input and sample set label, the number of model parameters with the reducing part is 

approximate 1/53 of the model without it. The reducing part effectively reduces the parameter 

size of the deep learning model and enables the model to be trained with a limited sample set. 



The mean square error (MSE) loss function is used in this model, as shown in Eq. (3.3), where 

𝑦̂ is the MES function result, 𝑦𝑖 and 𝑦𝑖
𝑝
 represent the original data and prediction result of the 

deep learning model, respectively, and 𝑛 is the whole sample set. On the one hand, the MSE value 

can reflect the similarity degree of the two structures using the Euler distance. On the other hand, 

the convergence of the deep learning model can be evaluated by observing the change in the loss 

function value during the model training process. 

𝑦̂ =
∑ (𝑦𝑖 − 𝑦𝑖

𝑝)2𝑛
𝑖=1,...,𝑛

𝑛
 (3.3) 

The CNN in this study used the adaptive moment estimation (Adam) optimizer[42]. This 

manuscript uses NVIDIA Corporation TU102 [Titan RTX] for deep learning model training. And 

the model is constructed by Python 3.6.12 and Keras 2.3.1. The sample set is obtained by MATLAB 

2016b. 

 

 

Figure.1 Structure of CNN with encoder, decoder, and reducing Parts. The encoder part contains four blocks to 

downscale data size; the decoder part contains three blocks for data upsampling; the reducing part is used to resize 

the output data without dramatically increasing the total parameters of the CNN.  

3.2 Stages of Topology Optimization Process 

The topology optimization has two stages: Stage-1: a dramatic change occurs in the material 

distribution. A preliminary force transmission path is formed. Stage-2: local areas of the structure 

are optimized[27]. In the SIMP topology optimization method, the optimization process is 

frequently accompanied by the disappearance of intermediate density elements and the appearance 

of ‘black’ elements (whose element density is close to 1) and ‘white’ elements (whose element 



density is close to 0). The number of intermediate density elements can reflect both the structure 

clarity and the topology optimization iterative process. Therefore, based on the change in 

intermediate density elements, the topology optimization process can be divided into the preliminary 

optimization stage and the advanced optimization stage. 

𝜓 =
𝜂

𝑁
 （3.4） 

In Eq. (3.4), 𝜓 is the grey element proportion coefficient. and 𝜂 is the number of elements 

with element density values in the range [𝛼 − 0.1, 𝛼 + 0.1]  (𝛼  is the volume fraction). For 

example, in Figure 2, both ends of the structure are fixed and the maximization structure 

fundamental eigenfrequency optimization problem is considered. The figure shows the change in 

𝜓  during the optimization process. The material distribution changes significantly during the 

preliminary optimization stage (the first 18 iterations for this load condition). An approximate 

structure is generated (the main load path is generated), and 𝜓 decreases gradually. In the advanced 

optimization stage, the structure gradually generates local features and obtains the final results. 𝜓 

is usually a parameter determined by calculation experience. For the maximization fundamental 

eigenfrequency optimization problem, the structure is defined as the middle result when the value 

of 𝜓 decreases below 0.1 for the first time.  

 

Figure.2 Value changes of 𝜓 with the topology optimization process. The value of 𝜓 for the initial result is 1.00. 

There are only middle-density elements in the design domain. The initial optimized result is the structure after five 

iterations. The structure whose 𝜓 value decreases below 0.1 for the first time is called the middle result. 

3.3 Step-to-Step Training Method 

As discussed in Section 1, the traditional end-to-end (ETE) model training method[17, 18] 

(offline training method) frequently determines the functional relationship between the initial 



optimization information and final optimization results through the model training process. 

However, a dramatic change occurs in the material distribution during topology optimization. The 

traditional ETE training method cannot easily obtain accurate prediction results with a limited 

dataset[43]. However, the traditional online model training method[22, 23] frequently embeds a 

deep learning model in the calculation process of topology optimization. The model training process 

is coupled with topology optimization calculation, and it limits the optimization efficiency 

improvement. 

The STS training method proposed in this paper is realized by combining two sub-models, and 

each sub-model is trained based on a local ETE training method. Figure 3 shows the steps of the 

proposed STS training method. The first step is to accumulate a dataset for model training. 

Information about the initial structure, load conditions, and optimized structure is saved. 

Additionally, the structure of the middle result between the preliminary optimization stage and 

advanced optimization stage is saved. In the second step, the deep learning model is trained based 

on the dataset obtained in the first step. The input of Model-1 is the initial structural information, 

and the label of the dataset is the optimized structure. The input of Model-2 is information about the 

middle result, and the optimized structure is also taken as the label. 

Model-1 is trained using the traditional offline training method. However, an inevitable model 

prediction error occurs when the dataset is limited. Meanwhile, the model prediction error frequently 

occurs as a grey element problem and is primarily distributed in the local area of the structure[20, 

26, 28]. In the early stages of the advanced optimization stage, many grey element distributions 

occur in the local area of the structure. Along with the optimization process, the local features of the 

structure gradually became clear. Considering the above characteristics during the topology 

optimization process, Model-2 is trained to solve the grey element problem and improve the 

accuracy of the prediction result of Model-1. Compared with Model-2, Model-1 requires a higher 

model learning ability. Thus, the structure of Model-1 is also suitable for Model-2. This 

characteristic can reduce the time cost during the model training process of the STS training method. 

Additionally, Model-1 and Model-2 do not have a coupling relationship during the training process. 

Both models can be trained in parallel. Compared with the traditional offline training method, the 

proposed STS training method has more deep learning models; however, it does not produce a 

significant time-cost increase in sample set accumulation, sub-model parameters adjustment, and 

sub-model training time-cost. The proposed STS training method is based on ensemble learning[44]. 

By providing different training data, each submodel has its functional characteristics, and the 

submodels are combined to achieve real-time topology optimization with high prediction accuracy. 

In this paper, the structures of both submodels are the same. 

As shown in Step-3 in Figure 3, the Model-1 prediction results are processed using Model-2 



to improve the prediction accuracy. However, both sub-models are trained using the local ETE 

training method. Compared with classical topology optimization, the total model prediction time 

cost can be ignored. The optimized structure can also be predicted in approximately real-time. In 

this paper, proposed STS training method’s prediction efficiency and effect are verified using 

structural fundamental frequency optimization examples under three constrained conditions. This 

paper also compares the model training effect of the ETE and STS model training methods, proving 

the proposed method’s effectiveness. 

 

 

 

Figure.3 Description of the STS training method: Step-1 is the process of sample set accumulation; Step-2 is the 

sub-models (CNN) training process; Step-3 is the prediction process of CNN models. 

3.4 Evaluation Function for Structure Clarity in SIMP  

As mentioned in Section 3.3, compared with the traditional end-to-end training method, the 

step-to-step training method proposed has an additional “post-processing process”. Model-2 is 



trained to learn the ability of classical optimization methods to deal with the unclear structural 

features of local regions. Therefore, an effective structure clarity evaluation mechanism should be 

determined. The MSE loss function compares the similarity of the two matrices using Euler distance. 

The model training situation can be obtained by the MSE value changes. However, the MSE 

function is more concerned with the difference between two matrices. It cannot reflect the changes 

in intermediate density element numbers. There are filtering techniques in classical topology 

optimization methods. 𝑀𝑛𝑑  proposed by Sigmund[45] is a popular method[46], 𝑀𝑛𝑑 =
∑ 4𝜌(1−𝜌)𝑛

𝑒=1

𝑛
× 100%. However, the weight of the 𝑀𝑛𝑑 function for each element density is fixed. 

This manuscript proposes a new evaluation function using the normal distribution function, as 

shown in Eq. (3.5). 

         TC =
1

𝑁𝑒
× ∑ 𝑒

−(𝜌𝑖−𝜇)2

2𝜎2

Ne

𝑖=1

,    𝜌𝑖 ∈ [0, 1] (3.5) 

In Eq. (3.5), 𝑁𝑒 is the same as that in Eqs. (2.7) and (2.8), 𝜌𝑖 represents the ith element 

density value, and 𝜇 and 𝜎2 represent the mean and variance of the normal distribution function,  

respectively. 

Figure 4 shows that 95.45% of the area of the normal distribution function is within [𝜇 − 2𝜎,

𝜇 + 2𝜎]. This region is the central evaluation region of the target clarity (TC) function. The number 

of elements in the central evaluation area directly influences the TC value of the structure. The 

change in the TC value can be used to evaluate the clarity of the entire structure. For example, when 

all element density is 0.5, the TC value is 1. Only intermediate-density elements exist in the structure. 

If the TC value approaches 0, the element’s density tends to be 0 or 1 (the structure tends to have a 

clear boundary distribution). 

Figure 4 shows the weight distribution of the TC (𝜇 = 0.5, 𝜎2 = 0.12) function, and the 

main evaluation region is [0.3, 0.7]. First, all the density elements in the structure are flattened. 

Second, the score of each element is calculated. Finally, the TC value is obtained using the average 

of all element scores. 



 
Figure.4 Weight distrubution and calculation process of TC (μ = 0.5, 𝜎2 = 0.12) function. 

The grey element problem in the SIMP method primarily raises from the existence of 

intermediate-density elements in the structure. However, defining the specific density range of the 

grey elements is difficult. Therefore, this paper evaluates the clarity of the structures based on three 

different 𝜎2  values ( 𝜎1
2 = 0.052, 𝜎2

2 = 0.12, 𝜎3
2 = 0.152 ). As shown in Figure 5, the main 

evaluation region of the TC function increases with an increase in 𝜎2. The main evaluation regions 

of 𝜎1
2 , 𝜎2

2 , and 𝜎3
2  are [0.4, 0.6] , [0.3, 0.7]  and [0.2, 0.8] , respectively. Therefore, by 

changing the value of 𝜎2, the TC function can evaluate the clarity of the structure in the different 

evaluation regions. 

 

Figure.5 Main evaluation area of TC function with different 𝜎2 values. The blue, red, and yellow lines represent 

TC functions with 𝜎2 = 0.052, 𝜎2 = 0.12 and 𝜎2 = 0.152, respectively. 

Table 1 shows the TC function scores with different 𝜎2 values when the density is 0 or 1. 

When the element density is 0 or 1, the scores of the TC function are always close to 0. Therefore, 



when the TC function value is close to 0, the structure tends to appear in the form of ‘black’ or 

‘white’ elements and has a clear geometric configuration. 

Table 1 Value of TC (𝜇 =  0.5, 𝜌𝑖 = 0 or 1) with different 𝜎2. The value of TC at point 𝜌𝑖 = 0 or 1 is close to 

0 with different 𝜎2. 

Different 𝜎2 values 𝜎2 = 0.052 𝜎2 = 0.12 𝜎2 = 0.152 

TC (𝜌𝑖 = 0 or 1) 1.93 × 10−22 3.73 × 10−6 3.87 × 10−3 

4. Verification of Step-to-Step Training Method 

In this section, three examples under different constraint conditions are used to verify the 

effectiveness of the proposed STS model training method. The structure is discretized by 221 × 31 

elements, and the volume fraction constraint 𝛼 is set to 0.5. The conditions for the three examples 

are shown in Figure 6. In Condition-1, the middle nodes of the left and right boundaries of the 

structure are fixed. In Condition-2, both boundaries on the left and right sides of the structure are 

fixed. In Condition-3, the left boundary of the structure and the middle node of the right boundary 

are fixed. The concentrated mass is randomly distributed in the load domain for three conditions 

(blue region in Figure 4, Condition-1: 81 × 31 , Condition-2: 41 × 31 , Condition-3: 75 × 31 ). 

The initial structure, middle structure and optimized structure density matrix will be saved. And 

they will be disrupted to form the sample set. The total number of samples is 6107 (Condition-1: 

2511, Condition-2: 1271, Condition-3: 2325), and 150 samples are extracted from each condition 

as the verification set.  

Condition-1 

 

Condition-2 

 

Condition-3 

 

Figure.6 Different constraints for Condition-1, Condition-2, and Condition-3. The position of concentration mass is 

randomly placed in the load domain for each constraint condition. 



The MSE function is used as the model loss function. Using Condition-1 as an example, Figure 

7 shows the curve of MSE loss function values changing with iterations under Condition-1 

constraints. The red and blue lines represent the loss function values of the training and verification 

sets, respectively, of Model-1. The black and green dotted lines represent the loss function values 

of the training and verification sets, respectively, of Model-2. For Condition-1 (Figure 7), the Model-

1 loss function value of the verification set is approximately 0.0145, and that of the Model-2 

verification set is approximately 0.0055. The Model-2 loss function value is lower than Model-1, 

and the training effect is also better. No noticeable over-fitting or under-fitting occurs in the training 

process of Model-1 and Model-2.  

 

Figure.7 Loss function value (MSE) changes throughout the training process in Condition-1 for Model-1 and 

Model-2. 

Table 2 shows the prediction results of models based on different training methods under 

Condition-1. In addition to the training method, the other factors, such as sample set size and model 

structure, are the same in the ETE and STS methods. In Table 2, the first two columns of “Predicted 

Structure” results are obtained based on ETE and STS training methods, respectively. Moreover, the 

last column’s results are optimized by the SIMP method. These are reference solutions to verify the 

model prediction accuracy. 

The model prediction results in the first column of Table 2 show that the model trained based 

on the ETE model training method does not achieve a good prediction effect. A severe grey element 

problem occurs in the model prediction results. By comparing the STS method prediction results 

and SIMP optimization results in Table 2, the prediction error is primarily generated in the local 

region of the structure. The STS model prediction error distribution is similar to the results of other 

studies[17, 26, 47].  

In classical topology optimization methods, the advanced optimization process is primarily 

used to generate local features of the structure. Therefore, the STS model training method is 



proposed to consider the topology optimization process information. Using Model-2 to learn the 

advanced optimization stage characteristics, the STS training method can effectively solve the grey 

element problem in the ETE method prediction results. 

By comparing the model prediction results based on the ETE and STS training methods, the 

deep learning model trained based on the STS method can obtain more accurate predictions. 

Meanwhile, the fundamental eigenfrequency predicted by the STS method is closer to the reference 

solution optimized using the SIMP method. For example, in row 1 of Table 1, the STS method 

reduces the relative error of the objective function value compared with the reference result from 

6.05% (ETE method) to 1.76% (STS method). 

 



Table 2 Real-time topology optimization results for Condition-1 based on SIMP method: the ‘end-to-end (ETE) predicts results’ and ‘step-to-step (STS) predicts results’ are the deep learning 

model prediction results based on the ETE and STS training methods, respectively. ‘optimized results based on SIMP’ is the structure optimized by SIMP as the reference result. In addition to the 

training method, the other factors, such as sample set size and model structure, are the same in the ETE and STS methods. 

ETE Method Prediction Results  STS Method Prediction Results  Optimized Results based on SIMP 

Predicted Structures 
Fundamental 

Eigenfrequency 
 Predicted Structures 

Fundamental 

Eigenfrequency 
 Optimized Structures 

Fundamental 

Eigenfrequency 

 

34.66  
 

36.24  
 

36.89 

 

35.42  
 

36.69  
 

36.50 

 

31.23  
 

36.72  
 

36.75 

 

36.63  
 

37.10  
 

36.33 

 

34.71  
 

34.98  
 

34.25 

 

35.17  
 

36.09  
 

35.07 

 

33.15  
 

33.71  
 

35.80 



Figure 8 shows the number of artificial density elements in different density areas in the 

structure based on the ETE and STS methods under example 1, Condition-1 (row 1in Table 1). The 

blue and orange colors correspond to the distribution of elements in the structure obtained using the 

ETE and STS methods, respectively. Figure 8 shows that, compared with the results obtained using 

the ETE method, the number of low-density value elements (ρ∈[0,0.1)) and high-density value 

elements (ρ∈[0.9,1.0]) in the structure obtained using the STS method is relatively lower. The 

structure obtained using the ETE method has a severe grey element problem, whereas the structure 

predicted using the STS method significantly improves this phenomenon.  

 

Figure.8 Element number distribution for different element density ranges such as example 1 in Condition-1 (Table 

2 row 1). The green and blue colors correspond to the structures obtained using the ETE and STS methods. 

The load conditions in Table 3 are the same as those in Figure 8 (Condition-1 row 1 in Table 

2). Table 3 shows the TC values with different 𝜎2 values for different training methods (different 

𝜎2 values can change the central area of the TC function for different element density values). If 

all element densities are equal to 0.5, TC is 1. And if a converged design is discrete, TC is near 0. 

The main evaluation area of the TC function can be adjusted by adjusting 𝜎2 values. It can be seen 

from Table 3 that the predicted results of the STS method are better than those of the ETE method 

with different 𝜎2 values. For example, when 𝜎2 = 0.12, the TC function concerned more about 

the element number whose density belongs to the [0.3, 0.7]. The relative errors obtained using the 

ETE and STS methods compared with the SIMP method are 74.14% and 8.62%, respectively. The 

STS method proposed in this paper significantly reduces the TC value errors compared with the 

ETE method. In other words, the STS method effectively improves the prediction accuracy of the 

model without increasing the sample set.  

 

 

 



Table 3 TC function values of the structure with different 𝜎2 for Condition-1 row 1. 

Training Method 𝜎2 = 0.052 𝜎2 = 0.12 𝜎2 = 0.152 

ETE Method 0.045 0.101 0.159 

STS Method 0.031 0.063 0.104 

Based on the TC (𝜇 = 0.5, 𝜎2 = 0.12)  evaluation function, the model prediction results 

under Condition-2 and Condition-3 are shown in Table 4. The results of rows 1 to 3 belong to 

Condition-2, and the other results belong to Condition-3. The columns in Table 3 are the same as 

those in Table 2 except for the TC function column. The TC column shows the evaluation values of 

the TC function when 𝜇 = 0.5, 𝜎2 = 0.12.  

By comparing the results of the ETE and STS methods,. the TC function values of the STS 

predicted results are closer to the structures obtained using the SIMP optimization method. The 

proposed STS method effectively solves the grey element problem by fully utilizing the ‘depth’ for 

each sample. Thus, the accuracy of the model prediction improved. The iteration history information 

is effectively utilized by the proposed STS method without increasing the size of the sample set. 

The analysis above is based on the TC (μ = 0.5, 𝜎2 = 0.12)  function, and the main 

evaluation region is 𝜌 ∈ [0.3, 0.7] . Figure 9 shows the TC  function values of all samples in 

verification sample sets from Condition-1, Condition-2, and Condition-3 with different 𝜎2. The 

orange and blue lines in Figure 9 correspond to the relative error distribution of the TC evaluation 

function values of the ETE and STS methods compared with the SIMP method, respectively. First, 

by analyzing subfigures (a)-(f), it can observe that the relative errors of the TC function values of 

the STS method are always lower than those of the ETE method with different load conditions and 

TC function attention areas. It demonstrates the effectiveness of the STS model training method. 

Second, by analyzing the box area for different training methods, the TC value variances of the STS 

method are always more minor than those of the ETE method, which indicates good stability of the 

STS method. Finally, using subfigures (a) and (d) as an example, if the main evaluation region of 

the TC function is adjusted from [0.4, 0.6] to [0.2, 0.8], the upper quartile (Q3) value of the ETE 

method decreases from 53.7% to 30.9%. The Q3 value of the STS method changes from 8.6% to 

8.47%. The above results show that the number of element densities 𝜌 ∈ [0.4, 0.6] in the ETE 

method prediction results is larger than that in the SIMP results. A large number of intermediate 

density elements are present in the structure. When the TC function’s main evaluation region is 

expanded to [0.2, 0.8], the weight coefficient of the TC function at [0.4,0.6] is correspondingly 

reduced. It enables the TC function value errors of the ETE method decrease from 53.7% to 30.9%. 

However, the Q3 value for the STS method results does not change significantly. It indicates that 

the model training method proposed in this paper affects the elements in the large density range, 

and the grey element problem can be solved effectively.  



The STS training method considers the information during the topology optimization process. 

Model-2 has the role of the Heaviside function[45, 46] in the classical SIMP method in the STS 

method. The STS training method effectively solves the grey element problem in the ETE model 

training method and significantly improves the accuracy and clarity of the model prediction results. 

Inspired by the boosting ensemble learning method[48], the STS training method effectively 

combines Model-1 and Model-2, and an accurate real-time topology optimization calculation is 

realized without increasing the sample set size. 

 



Table 4 Real-time optimization results for Condition-2 and Condition-3 based on the SIMP optimization method. The ‘ETE predicts results’, ‘STS predicts results’ and ‘optimized results based 

on SIMP’ are the same as those in Table 2. Here, the TC (𝜇 = 0.5, 𝜎2 = 0.12) function is used to evaluate the clarity of the structures.  

ETE Method Prediction Results STS method Prediction Results Optimized Results based on SIMP 

 Predicted Structures 
TC 

Predicted Structures 
TC 

Optimized Structures 
TC 

𝜇 = 0.5, 𝜎2 = 0.12 𝜇 = 0.5, 𝜎2 = 0.12 𝜇 = 0.5, 𝜎2 = 0.12 

C
o
n

d
it

io
n

-2
  

6.87 × 10−2 
 

6.13 × 10−2 
 

5.65 × 10−2 

 
7.63 × 10−2 

 
6.64 × 10−2 

 
6.27 × 10−2 

 
7.22 × 10−2 

 
6.72 × 10−2 

 
6.26 × 10−2 

C
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d
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-3
 

 
8.08 × 10−2 

 
6.66 × 10−2 

 
6.57 × 10−2 

 
7.68 × 10−2 

 
6.97 × 10−2 

 
6.32 × 10−2 

 
8.89 × 10−2 

 
7.18 × 10−2 

 
6.64 × 10−2 

 
8.27 × 10−2 

 
6.59 × 10−2 

 
6.03 × 10−2 

 



A. The TC (μ = 0.5, 𝜎2 = 0.052) relative error between the ETE results (STS results) and SIMP method results for the three conditions 

  

 

B. The TC (μ = 0.5, 𝜎2 = 0.152) relative error between the ETE results (STS results) and SIMP method results for the three conditions 

Figure.9 Relative error of TC values between ETE (STS) and SIMP method for three conditions. In A 𝜎2 = 0.052. (a), (b), and (c) in A correspond to Condition-1, Condition-2, and Condition-

3, respectively. In B, 𝜎2 = 0.152. The corresponding relationship of sub-figures is the same as those in A.

  

 



Although two deep learning models are used in the STS training method, no coupling 

relationship occurs between the training of the two sub-models. Both sub-models can be trained in 

parallel. Therefore, the time cost of the model training process does not increase significantly. For 

the prediction process of the model, because the sub-models are trained based on the local ETE 

training method, the serial method of model prediction does not significantly increase the model 

prediction time. Table 5 shows the average model prediction calculation time for each example 

based on the different training methods under the three loading conditions. Although the deep 

learning model prediction time trained based on the STS method is increasing, it can still achieve 

real-time topology optimization calculation. Compared with the traditional ETE model training 

method, the accuracy of the model prediction results significantly improves. 

Table 5 Prediction time cost for ETE method and STS method in three conditions. The computing environment is 

the same as described in Section 3.1 

Prediction Time -Cost Condition-1 (s) Condition-2 (s) Condition-3 (s) 

ETE Method 0.00888 0.01971 0.01021 

STS Method 0.01362 0.02797 0.01776 

5. Conclusion 

In this work, a STS deep learning model training method is proposed. By using the iterative 

history information of topology optimization, the STS method improves the model utilization 

efficiency for each example, which can improve the model prediction accuracy without increasing 

the sample set size. The deep learning model’ unsatisfactory prediction accuracy is usually 

presented as the gray element phenomena or structure fracture phenomena. Therefore, in addition 

to taking objective function and model loss function as the evaluation, a new function is proposed 

to evaluate the model prediction accuracy from the structure non-discreteness perspective. The 

effectiveness of STS training method is verified using fundamental frequency optimization problem 

under three different constraint conditions. This work provides an implementation model training 

method for the combination of deep learning and topology optimization. 

However, this training method still cannot avoide the model’s smaple set dependence 

phenomenon. In future research, the authors believe that the deep learning model can alleviate this 

phenomenon by introducing the prior knowledge of topology optimization, such as the physical 

field information or building “structure gene pool”. 

 

 

 



Appendix: The total trainable parameters in the model 

This table shows the feature map size and trainable parameters in each layer. The change of 

feature map size reflects the operation time of up-sampling and down-sampling in the two models. 

The trainable parameters refer to the weight and bias parameters of neurons in each layer (such as 

the convolution layer or down/up sampling layer). These parameters will change during the model 

training process. Therefore, the trainable parameter size will affect the model training efficiency. 

The layers without trainable parameters are omitted (such as the dropout layer or add layer). 

The model with reducing part  The model without reducing part 

Feature map size Parameters  Feature map size Parameters 

(221, 31, 1) 0  (221, 31, 1) 0 

(221, 31, 8) 80  (221, 31, 8) 80 

(220, 30, 32) 1,056  (220, 30, 32) 1,056 

(220, 30, 32) 9,248  (220, 30, 32) 9,248 

(110, 15, 64) 8,256  (110, 15, 64) 8,256 

(110, 15, 64) 36,928  (110, 15, 64) 36,928 

(55, 14, 128) 32,896  (55, 14, 128) 32,896 

(55, 14, 128) 147,584  (55, 14, 128) 147,584 

(27, 7, 256) 196,864  (27, 7, 256) 196,864 

(27, 7, 256) 590,080  (27, 7, 256) 590,080 

(13, 6, 512) 786,944  (13, 6, 512) 786,944 

(27, 7, 256) 786,688  (27, 7, 256) 786,688 

(27, 7, 256) 590,080  (27, 7, 256) 590,080 

(55, 14, 128) 196,736  (55, 14, 128) 196,736 

(55, 14, 128) 147,584  (55, 14, 128) 147,584 

(110, 15, 64) 32,832  (110, 15, 64) 32,832 

(110, 15, 64) 36,928  (110, 15, 64) 36,928 

(220, 30, 32) 8,224  (220, 30, 32) 8,224 

(220, 30, 32) 9,248  (220, 30, 32) 9,248 

(221, 31, 16) 2,064  (221, 31, 16) 2,064 

(221, 31, 16) 2,320  (221, 31, 16) 2,320 

(221, 31, 8) 1,160  (221, 31, 8) 1,160 

(221, 31, 4) 292  (221, 31, 4) 292 

(221, 31, 1) 337  (6851, 1) 187,751,655 

Total Parameters 3,624,129  Total Parameters 191,375,747 
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Replication of results: The data set and deep learning model code are available from the 

“https://github.com/893801366/Real-time-topology-optimization-based-on-convolutional-

neural-network-by-using-retrain-skill.git” (git-hub). 
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