
ar
X

iv
:2

20
6.

06
68

4v
1 

 [
qu

an
t-

ph
] 

 1
4 

Ju
n 

20
22

A Pattern Matching-Based Framework for

Quantum Circuit Rewriting

Hui Jiang, Diankang Li, Yuxin Deng, Ming Xu

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University

Abstract. The realization of quantum algorithms relies on specific
quantum compilations according to the underlying quantum processors.
However, there are various ways to physically implement qubits in dif-
ferent physical devices and manipulate those qubits. These differences
lead to different communication methods and connection topologies, with
each vendor implementing its own set of primitive gates. Therefore, quan-
tum circuits have to be rewritten or transformed in order to be trans-
planted from one platform to another. We propose a pattern matching-
based framework for rewriting quantum circuits, called QRewriting. It
takes advantage of a new representation of quantum circuits using sym-
bol sequences. Unlike the traditional way of using directed acyclic graphs,
the new representation allows us to easily identify the patterns that ap-
pear non-consecutively but reducible. Then, we convert the problem of
pattern matching into that of finding distinct subsequences, and propose
a polynomial-time dynamic programming-based pattern matching and
replacement algorithm. We develop a rule library for basic optimizations
and use it to rewrite the Arithmetic and Toffoli benchmarks from the
GIBM gate set to the GSur gate set. Compared with the existing tool
PaF, QRewriting obtains an improvement of reducing depths (resp. gate
counts) by 29% (resp. 14%).

1 Introduction

Quantum computing has attracted more and more interest in the last decades,
since it provides the possibility to efficiently solve important problems such as in-
teger factorization [28], unstructured search [8], and solving linear equations [9].

In recent years, with the popularity of quantum computing, many compa-
nies, universities and institutes are actively working to develop prototypes of
quantum computer systems. For example, in 2019, Google announced the real-
ization of quantum supremacy, the development of 53-qubit quantum processor
“Sycamore” [3]. In November 2021, IBM uneviled its new 127-qubit “Eagle” pro-
cessor whose scale makes it impossible for a classical computer to reliably sim-
ulate, and the increased qubit count allows users to explore problems at a new
level of complexity [4]. In June 2022, Xanadu demonstrated a quantum computa-
tional advantage with a programmable photonic processor that realized Gaussian
boson sampling on 216 sequeezed modes [19]. These systems are referred to as
Noisy Intermediate-Scale Quantum (NISQ) systems [26] and have small qubit

http://arxiv.org/abs/2206.06684v1


2 H. Jiang et al.

counts, restricted connectivity and high gate error rates. The coherence time of
each physical qubit must be at least 1–10ns, if the minimum physical gate fidelity
of 99% is to be achieved. At present, the duration of physical quantum gate is
10–100us and only a limited set of quantum gates can be realized with relatively
high fidelity on a quantum device [15]. Each quantum processor may support
a specific universal set of 1-qubit and 2-qubit gates, which are called primitive
gates [16]. Table 1 lists three gate sets: GCom, GIBM and GSur, where GCom

is a universal gate set [23], GIBM is implemented by the IBM QX5 quantum
processor [7], and GSur is used by the Surface-17 quantum processor [17].

The realization of quantum algorithms relies on specific quantum compila-
tions according to the underlying quantum processors. However, there are various
ways to physically implement qubits in different physical devices and manipu-
late those qubits. These differences lead to different communication methods
and connection topologies, with each vendor implementing its own set of primi-
tive gates. Therefore, quantum circuits have to be transplanted or transplanted
from one platform to another. In addition, since the gate types supported by
a quantum processor is limited, quantum circuits may also be rewritten when
some high-level gates are decomposed into low-level gates before the quantum
circuits can be executed on the quantum processor.

Converting a quantum circuit supported by one gate set to a quantum cir-
cuit supported by another gate set with respect to some rules is called quantum
circuit rewriting. Usually a rule is in the form Cp = Cs, where Cp is a fragment
of a circuit whose behaviour is the same as that of the fragment Cs. We call
Cp a pattern circuit and Cs a substitution circuit. In this paper, we refer to the
circuit to be rewritten as the target circuit. Motivated by the aforementioned re-
quirements, our approach consists of two key steps: one is to identify the desired
patterns in the target circuit, the other is to replace them with semantically
equivalent substitution circuits. For that purpose, we first introduce a new rep-
resentation of quantum circuits using symbol sequences. Unlike the traditional
way of using directed acyclic graphs (DAGs), the new representation allows us to
easily identify the patterns that appear non-consecutively but reducible. In the
case that a pattern can be matched by several different rules, we encounter a re-
placement conflict and need to resolve it with an appropriate policy. We propose
three policies for generating schedulers to cope with the replacement conflicts.
One policy is precise in the sense that it will consider all the replacement can-
didates of a conflict set. In the worst case, its time complexity is exponential.
For a large-scale circuit, we need to make a trade-off between the quality of the
generated circuit and the time it takes. Therefore, for large-scale circuits, we
propose a greedy and a stochastic policy to handle the replacement conflicts.

The main contributions of this paper are listed below.

– We introduce a new representation of quantum circuits, which can easily
identify the patterns that appear non-consecutively but remain reducible in
the target circuits.

– We present a polynomial-time dynamic programming-based pattern match-
ing and replacement algorithm.



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 3

Table 1: Gate sets used in our evaluation.

GCom [23] H, X, Y, Z, S, S† T, T†, Rz(θ), CX

GIBM [7] U1(θ), U2(φ, λ), U3(θ, φ, λ), CX

GSur [17] X, Y, Rx(θ), Ry(θ), CZ

– We propose three policies for generating schedulers to deal with replacement
conflicts.

– We develop a rule library for basic optimizations.

The rest of the paper is structured as follows. Section 2 introduces the related
work. Section 3 recalls the preliminary notations about quantum computing.
Section 4 proposes a new representation of quantum circuits. Section 5 discusses
the design of the pattern matching-based quantum circuit rewriting framework.
Section 6 shows two case studies. Section 7 evaluates QRewriting by using the
BIGD [32], the Arithmetic and Toffoli [22] benchmarks. Finally, Section 8 pro-
vides the conclusion.

2 Related Work

Several quantum circuit optimization compilers have recently been proposed to
compile a quantum circuit to various processors. For example, Qiskit [10] and
t|ket〉 [29] support generic gate set; Quilc [30] is tailored for the Rigetti Agave
quantum processor. There are several optimizers that automatically discover
patterns [13, 14, 24, 33]. QRewriting aims to rewrite quantum circuits between
different processors according to a given rule set, mainly focusing on pattern
matching and replacement.

Pattern matching is widely used in circuit optimization. For example, many
algorithms have employed peephole optimization and pattern matching to op-
timize circuits. Peephole optimization identifies small sets of instructions and
replaces them with equivalent sets that have better performance [18, 20]. Exact
matching is only feasible for small and medium-scale circuits [1]. Heuristics are
often used in large-scale circuits, but they cannot ensure optimal results [11,27].
In [25, 31], Prasad et al. and Soekens et al. showed how to find optimal quan-
tum circuits for all 3-qubit functions. Nam et al. proposed five optimization
subroutines [22]. Murali et al. developed the first multi-vendor quantum com-
puter compiler which compiles from high-level languages to multiple real-system
quantum computer prototypes, with device-specific optimizations [21]. The work
of Chen et al. [6] is the closest to ours, where a quantum circuit optimization
framework based on pattern matching (PaF) is proposed. It uses subgraph iso-
morphism to find a pattern circuit in the target quantum circuit according to a
given external rule description, then replaces it with an equivalent one.

Previous work often treats a target circuit as a DAG, which is not able to
identify the patterns that consist of several gates that appear non-consecutively.



4 H. Jiang et al.

In this paper, we introduce a new representation of quantum circuits, which
can deal with non-consecutive patterns more conveniently. For quantum circuit
rewriting, we propose a polynomial-time algorithm, which is based on dynamic
programming to match and replace pattern circuits in the target circuit.

3 Preliminary

In this section, we introduce some notions and notations of quantum computing.
Let Z and C denote the sets of all integers and complex numbers, respectively.

Classical information is stored in bits, while quantum information is stored
in qubits. Besides two basic states |0〉 and |1〉, a qubit can be in any linear
superposition state like |φ〉 = a |0〉 + b |1〉, where a, b ∈ C satisfy the condition
|a|2 + |b|2 = 1. The intuition is that |φ〉 is in the state |0〉 with probability |a|2

and in the state |1〉 with probability |b|2.
A quantum gate acts on a collection of qubits, which are called the operation

qubits of the gate. For example, the Hadamard gate (H gate) is applied on one
qubit, and the CX gate is applied on two qubits. Its behaviour is described as:

CX(α |0〉 |ψ〉+ β |1〉 |φ〉) = α |0〉 |ψ〉+ β |1〉 (X |φ〉),

that is, we apply the X gate to the second qubit — called the target — if the first
— the control — is in the state |1〉, and the identity transformation otherwise,
where |ψ〉 and |φ〉 are the state of the second qubit. Two other gates which are
relevant include the 3-qubit Toffoli gate CCX and the doubly-controlled phase
gate CCZ. Likewise, the CCX and CCZ gates apply X and Z gate, respectively,
when the first two qubits are in state |1〉. Fig. 1 lists the symbols of some com-
monly used quantum gates.

In a quantum circuit each line represents a wire. The wire does not necessarily
correspond to a physical wire, but may correspond to the passage of time or a
physical particle that moves from one location to another through space. The
interested reader can find more details of these gates from many textbooks such
as [23]. The execution order of a quantum logical circuit is from left to right.
The width of a quantum circuit refers to the number of qubits in the quantum
circuit. The depth of a quantum circuit refers to the number of layers executable
in parallel. We refer to a quantum circuit with depth less than 100 as a small-scale
circuit, a quantum circuit with depth more than 1000 as a large-scale circuit,
and the rest are medium-scale circuits.



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 5

I gate I X gate X

H gate H Y gate Y

Z gate Z S gate S

T gate T Rz(θ) gate Rz(θ)

CX gate
•

CZ gate
•

•

CCX gate

•

• CCZ gate

•

•

Z

Fig. 1: Symbols of some commonly used quantum gates.

4 Circuit Representation

In this section, we define a new representation of quantum circuits and the
pattern matching condition, which easily identifies the patterns that appear non-
consecutively but are reducible. Based on that, we will state the quantum circuit
rewriting problem considered in the paper.

Definition 1. An instruction is represented by a triple (γ, ρ, α), where

– γ is the symbol of a gate type;
– ρ is a finite sequence of operation qubits for a gate;
– α is a finite sequence of rotation angles for a gate;

A quantum circuit C is a sequence of triples (γ0, ρ0, α0)(γ1, ρ1, α1) · · ·
(γn, ρn, αn), and the length of the sequence is denoted by |C|. The gate se-
quence ΓC of the quantum circuit C is a symbol sequence of gate types obtained
by projecting each element of C to its first component, e.g., ΓC = “γ0γ1 · · · γn”.
The new representation of a rule is a pair R = (Cp, Cs), consisting of a pattern
circuit Cp and a substitution circuit Cs. For simplicity, if the sequence is empty,
we ignore it. Table 2 lists the gate symbols and the distinct aliases.

Example 1. Suppose we want to rewrite the quantum circuit Ct in Fig. 2 (a).
The new representation of the target quantum circuit Ct is

– Ct = (‘x’, [q[2]])(‘x’, [q[2]])(‘c’, [q[0], q[1]])(‘c’, [q[0], q[2]])(‘c’, [q[0], q[1]])(‘x’,
[q[2]])(‘x’, [q[0]]),

and its gate sequence is represented by Γt = “xxcccxx”. We can make use of the
rule set {R1, R2, R3, R4} in Fig. 3 to help with the circuit rewriting, where



6 H. Jiang et al.

Table 2: The symbols of gates and the distinct aliases.

Gates Aliases Gates Aliases Gates Aliases Gates Aliases

I ‘I’ H ‘h’ X ‘x’ Y ‘y’

Z ‘z’ T ‘t’ T† ‘T’ S ‘s’

S† ‘S’ Rx ‘X’ Ry ‘Y’ Rz ‘Z’

CX ‘c’ CZ ‘C’ CCZ ‘E’ CCX ‘F’

q[0] • • • X

q[1]

q[2] X X X

(a)

q[0] • X

q[1]

q[2] X

(b)

q[0] • X

q[1]

q[2] X

(c)

Fig. 2: (a) The quantum circuit. (b) and (c) are the results of rewriting quantum
circuit (a) using schedulers s1 and s2, respectively.

– R1 = ((‘x’, [q[0]])(‘x’, [q[0]]), (‘I’, [q[0]]));
– R2 = ((‘c’, [q[0], q[1]])((‘c’, [q[0], q[1]]), (‘I’, [q[0]])(‘I’, [q[1]]));
– R3 = ((‘c’, [q[0], q[1]])(‘c’, [q[1], q[2]])(‘c’, [q[0], q[1]]), (‘c’, [q[0], q[2]])

(‘c’, [q[1], q[2]]));
– R4 = ((‘x’, [q[1]])(‘c’, [q[0], q[1]])(‘x’, [q[1]]), (‘c’, [q[0], q[1]]));

• • I

X X = I =

I

• • • • •
• = • =

X X

Fig. 3: The rules used to optimize the X and CX gates.

To facilitate the description of pattern matching, we introduce the following
definition.

Definition 2. Let Γ and Γ ′ be two sequences. We say Γ ′ is a subsequence of
Γ , if there exist indices 0 ≤ i0 < · · · < i|Γ ′|−1 ≤ |Γ | such that Γ [ik] = Γ ′[k] for
all k ∈ [0, |Γ ′| − 1].

The subsequence set is a set of distinct subsequences of the pattern circuit
in the target circuit. Note that we do not distinguish the indices from the gates



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 7

to which the indices correspond in the quantum circuit. Suppose Γ is a gate
sequence. Then Γ [a : b] means to take the segment of Γ from index a to b in, if
b is not specified, we mean to take the suffix of Γ from index a. Suppose that s
is a subsequence of Γ , we write Γ \ s to mean the subsequence of Γ obtained by
removing all occurrences of s.

Example 2. In Example 1, the gate sequences and its subsequence sets of the
pattern circuits in the rule set are given as follows.

– “xx”: {{0, 1}};
– “cc”: {{2, 4}};
– “ccc”: {};
– “xcx”: {{1, 3, 5}}.

Definition 3. (Qubit mapping) Given two qubit sets Q and Q′, a qubit mapping
function f is a bijective function between the qubit sets Q and Q′.

Definition 4. (Qubit state independence) Let Ct, Cp be two circuits with gate
sequences Γt, Γp, respectively. Suppose a subsequence s ={i0, . . ., il} of Γt that
can match Γp. We say the qubit state in s is independent w.r.t. Γt[i0 : il] \ s, if
the control qubit set in s does not intersect with the target qubit set of the gates
in Γt[i0 : il] \ s, and vice-versa.

Definition 5. (Pattern matching) Let Ct and Cp be a target circuit and a pattern
circuit with gate sequences Γt, Γp, respectively. We say Cp matches Ct if the
following two conditions hold:

– Γt has a subsequence that can match Γp up to a qubit mapping;
– the qubit sets of the subsequence and the pattern circuit satisfy the qubit

mapping and the qubit state independence conditions.

Example 3. We continue the last example to show the difference between the new
representation of quantum circuits and the DAG representation. Suppose the
instructions of circuit Ct (resp. pattern circuit ofR2) from left to right are named
g0–g6 (resp. g′

0
–g′

1
). In Fig. 4, (a) is the DAG representation of the circuit segment

g2–g4 and (b) is the DAG representation of the pattern circuit of R2. We can
intuitively see that (a) has no subgraph isomorphic to (b). But the pattern circuit
of R2 matches the instructions g2 and g4. It satisfies the qubit mapping function
{f(q[0]) = q[0], f(q[1]) = q[1]} and the qubit state independence condition.
Therefore, the circuit Ct can be rewritten into (‘x’, [q[2]])(‘x’, [q[2]])(‘c’, [q[0],
q[2]])(‘x’, [q[2]])(‘x’, [q[0]]).

Definition 6. For a given target circuit Ct and a rule R = (Cp, Cs), a replace-
ment candidate is a triple (s, p, c), where

– s is a subsequence set of the target circuit Ct that can match the pattern
circuit Cp;

– p is a rule R;



8 H. Jiang et al.

(a) (b)

g2

g3

g4

q[0]

q[1]

q[0] g′0 g′1

q[0]

q[1]

Fig. 4: (a) and (b) are the DAG representations of the circuit segment g2–g4 of
C and the pattern circuit of R2, respectively.

– c ∈ Z is a conflict index, with the default value being −1.

Definition 7. A target circuit has a replacement conflict if an index of the target
circuit appears more than once in the subsequence set.

The replacement candidates for a replacement conflict form a conflict set. A
replacement scheduler is a set of replacement candidates for different indices.

Example 4. Continuing the last example, we see that the subsequence set of the
sequence “cc” is {{2, 4}}, which appears non-consecutively in the sequence Γt.
The first instruction (‘x’, [q[2]]) appears in both the subsequence sets of “xx”
and “xcx”, which means that in the target circuit different rules may be matched
at the same index. Two schedulers are given as follows.

– s1: {({0, 1}, R1, 1), ({2, 4}, R2)},
– s2: {({1, 3, 5}, R4, 1), ({2, 4}, R2)}.

The scheduler s1 (resp. s2) replaces the instructions in the index set {0, 1}
(resp. {1, 3, 5}) using the substitution circuit of R1 (resp. R4). After one of
the schedulers is applied, we obtain the circuit in Figs. 2 (b) or (c). Different
schedulers result in different gate counts or depths of the rewritten circuits. The
circuits Ct rewritten using schedulers s1 or s2 have the same gate count but their
depths are 2 and 3 respectively. In both schedulers, the first element has the
component 1, which is an index to indicate where the conflict takes place.

We are now ready to state the following problem.

Problem 1. Given two gate sets G1, G2 and a rule set that expresses the equiv-
alence of G1 by the elements of G2, how to rewrite a quantum circuit supported
by gate set G1 to a quantum circuit supported by G2?

By using our new representation of quantum circuits, we reduce the above
problem to finding distinct subsequences of the pattern sequence in the target
sequence up to a qubit mapping function and we use a qubit state independence
condition to filter the obtained subsequences.



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 9

5 Quantum Circuit Rewriting

We propose a pattern matching-based quantum circuit rewriting framework. It
consists of two steps. One matches the pattern circuit in the target circuit, the
other replaces it.

5.1 Pattern Matching Algorithm

We propose an algorithm based on dynamic programming to match the patterns
in a rule set against a target circuit. Let Ct and Cp be the target and pattern
circuits with gate sequences Γt and Γp, respectively. We consider the problem
of finding the distinct subsequences of the pattern sequence Γp in the target
sequence Γt. The obtained subsequences only match the gate types, so we also
need to check whether the operation qubits in the subsequences satisfy the qubit
mapping function and qubit state independence condition.

The input of Algorithm 1 is a target circuit Ct and a rule set R,
and the output is a set of replacement candidates M. The function
distinct_subsequence(Γt, Γp, δ) uses a dynamic programming algorithm to com-
pute the distinct subsequences of Γt that can match Γp and returns the subse-
quence set to D. The function check_qubit_condition(D, Ct, p) checks whether
the results in D satisfy the qubit mapping function and qubit state independence
condition.

The input of the function distinct_subsequence(Γt, Γp, δ) is a target se-
quence Γt, a pattern sequence Γp, and a parameter δ to limit the range of indices
of Γp in Γt. The symbol s[0] denotes the first component of the replacement can-
didate s. The output is a set D[m+1] recording the distinct subsequences of Γt

that can match Γp. We use the set D[j+1] to record the subsequences of Γt that
can match Γp[0 : j]. If the condition Γt[i] = Γp[j] is satisfied, there are subse-
quences of Γt[0 : i] that can match Γp[0 : j]. Line 8 updates the set D[j + 1]. To
find the subsequence of Γp[0 : j], we need to first calculate the subsequences of
Γp[0 : j−1]. The update D[j+1]← D[j+1]∪{s∪{i} : s ∈ D[j] and j−s[0] < δ}
is the Bellman equation [5], which is a necessary enabler of the dynamic pro-
gramming algorithm.

The time complexity of Algorithm 1 is O(kmn), where k is the number of
rules in the rule set R, m is the maximum length of the gate sequence Γp in the
rule set R, and n is the length of the gate sequence Γt. The space complexity is
O(m).

Example 5. Let us consider the quantum circuit in Fig. 10 (a) and the rule set
R = {R1,R2,R3,R4} in Fig. 3. The gate sequences of the target circuit and the
pattern circuits are “xxxxcccxxxxxcccxxxxcccxxxcccxxxxxxccc”, “xx”, “cc”, “ccc”,
and “xcx”, respectively. The set of subsequences of “cc” is as follows.

– {{4, 5}, {4, 6}, {5, 6}, · · · }.

The corresponding instructions of the indices {4, 5, 6} in the target circuit Ct
are (‘c’, [q[13], q[2]])(‘c’, [q[9], q[14]])(‘c’, [q[4], q[12]]). The subsequences {4, 5},



10 H. Jiang et al.

Algorithm 1: pattern_matching(Ct, R)

Input: a quantum circuit Ct and a rule set R;
Output: a set of substitution candidate M;

1 M← ∅;
2 Γt ← the gate sequence of circuit Ct;
3 foreach p ∈ R do

4 Γp ← the gate sequence of pattern circuit of p;
5 D ← distinct_subsequence(Γt, Γp, δ);
6 if check_qubit_condition(D, Ct, p) then

7 M←M∪ {(D, p, −1)};

8 returnM;

Algorithm 2: distinct_subsequence(Γt, Γp, δ) (Bellman [5])

Input: two sequences Γt and Γp, and a parameter δ;
Output: a set of subsequences of Γp;

1 n← the length of Γt;
2 m← the length of Γp;
3 let D be an array of length m+ 1;
4 D[0]← ∅;
5 for i← 0 to n do

6 for j ← min(i,m) to 0 do

7 if Γt[i] = Γp[j] then

8 D[j + 1]← D[j + 1] ∪ {s ∪ {i} : s ∈ D[j] and j − s[0] < δ};

9 return D[m + 1];

{4, 6}, {5, 6} do not satisfy the qubit mapping function condition. We use the
function check_qubit_condition() to filter the subsequences and finally get the
subsequence set of “cc” in the gate sequence of the target circuit, which is {{5,
12}, {19, 25}} highlighted with dotted lines in Fig. 10 (a).

5.2 Replacement Algorithm

By Algorithm 1, we obtain all the subsequences of the pattern circuits in the
target circuit. To resolve replacement conflicts, we propose three conflict resolu-
tion policies. They give rise to three variants of QRewriting called QPRewriting,
QGRewriting, and QSRewriting, respectively. Due to the decoherence of qubits,
the lifetime of qubits is very short [34]. The execution time of the quantum
circuit is determined by several factors such as the depth and the gate count
of the quantum circuit. Here, we mainly use the depth to select the optimal
replacement scheduler.

– Precise policy calculates all the candidates when a replacement conflict oc-
curs.



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 11

– Greedy policy follows the principle “first come, first served”. That is, it
chooses the one that appears first in the target circuit among the conflict
set.

– Stochastic policy selects a candidate stochastically in the conflict set for the
scheduler.

Algorithm 3: solve_conflicts(Γt,M)

Input: a gate sequence Γt and a set of replacement candidatesM;
Output: a replacement scheduler;

1 S ← ∅;
2 let Q be a scheduler queue;
3 Q.push({({}, ǫ,−1)});
4 while Q is not empty do

5 s← Q.pop();
6 i← next_conflict(Γt,M, s);
7 if i is None then

8 S ← S ∪ {s};
9 continue;

10 N ← Compute the conflict set on index i;
11 foreach c ∈ N do

12 s← s ∪ {c};
13 Q.push(s);

14 return compute_depth(S);

We propose an algorithm based on the breadth-first search to compute
the replacement scheduler as shown in Algorithm 3. The input is a gate se-
quence Γt and a set of replacement candidates M. S is a scheduler set, and
the queue Q stores the sub-scheduler. Firstly, we push one element {({}, ǫ,−1)}
into Q. Then, we loop the queue Q until it is empty in lines 4–13. The func-
tion next_conflict(Γt,M, s) computes the next conflict index i in Γt from the
current conflict index to the end of Γt. If there is no conflict at this index, we
directly add it to s, otherwise return the index. When arriving at the end of Γt,
we add the scheduler s into S. Line 10, according to the conflict policy, calculates
the candidate set that has a conflict at index i in M. Lines 11–13 append the
replacement candidates to s and push it into queue Q. Finally, we calculate the
depth of the replaced circuit and return the scheduler with the smallest depth.

The time complexity depends on the conflict policy. In the worst case, the
precise policy is used and the time complexity is O(nm), where m is the number
of conflicts and n is the size of the conflict set. When dealing with large-scale
circuits, the precise policy is not scalable. Therefore we do not show the precise
policy in our experiments. The time complexity of both greedy and stochastic
policies is O(mn).



12 H. Jiang et al.

Example 6. Let us continue the last example, where we show an example of
generating schedulers. Starting from the index i = 0, we search for the next
conflicting index i inM. When i = 18, the conflict set is {({10, 18},R1, 18), ({18,
26, 31}, R4, 18)}. If the precise policy is used, we append the scheduler s with
the two candidates and put into the queue Q, respectively, and the generated
schedulers are given as follows.

s1: s2:
({0, 22}, R1) ({0, 22}, R1)
({2, 13, 17}, R4) ({2, 13, 17}, R4)
({3, 9}, R1) ({3, 9}, R1)
({5, 12}, R2) ({5, 12}, R2)
({10, 18}, R1, 18) ({18, 26, 31}, R4, 18)
({15, 23}, R1) ({15, 23}, R1)
({16, 24}, R1) ({16, 24}, R1)
({19, 25}, R2) ({19, 25], R2)

If we use the greedy policy, the replacement candidate ({10, 18], R1, 18) will be
selected, and the generated scheduler is s1. If we use the stochastic policy, one
of them is selected and the finally generated scheduler is either s1 or s2.

Algorithm 4 inputs a target circuit Ct and a scheduler S, and outputs a
replaced circuit. We reversely traverse each element of the scheduler S. Line 2
obtains the mapping relationship qmaps of qubits between the subsequence of the
target circuit and the pattern circuit, according to the qubit mapping function
qubits_mapping(S[i]). Lines 6–11 update the instructions on the target circuit
with the substitution circuit one by one. If the substitution gate sequence is
longer than the pattern gate sequence, the redundant gates are inserted after the
index where the pattern circuit appears in the target circuit. Lines 10–11 remove
redundant locations for the target circuit. The time complexity is O(mn), where
n is the length of the scheduler, and m is the maximum length of the pattern
circuit.

Example 7. Continuing the last example, we consider the replacement candidate
S[i]= ({2, 13, 17}, R4) as an example. We can have that

– R4 = ((‘x’, [q[0]])(‘c’, [q[0], q[1]])(‘x’, [q[1]]), (‘c’, [q[0], q[1]]));
– qmaps = {f(q[0]) = q[3], f(q[1]) = q[8]}.

The length of the pattern circuit is greater than that of the substitution circuit.
First, we get n = 1 and update the second instruction of the target circuit Ct with
the instruction (‘c’, [q[3], q[8]]). Then we remove the 13th and 17th instructions
of the target circuit.

5.3 Quantum Circuit Optimization

We develop a rule library for basic optimizations. To facilitate the distinction
between internally optimized rules and circuit rewriting rules, we divide the
library into an internal library and an external one. The external library is a



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 13

Algorithm 4: substitute(Ct,S)

Input: a quantum circuit Ct, and a substitution scheduler S ;
Output: the substituted circuit Ct;

1 for i ← length(S)-1 to 0 do

2 qmaps← qubits_mapping(S [i]);
3 l1 ← the length of the pattern circuit of S [i];
4 l2 ← the length of the substitution circuit of S [i];
5 n← min(l1, l2);
6 for j ← 0 to n-1 do

7 Ct.update(S [i], j, qmaps);

8 if l2 > n then

9 Ct.insert_gate(S [i], qmaps,n);

10 if l1 > n then

11 Ct.delete_gate(S [i], n);

12 return Ct;

rule set provided by a user, which can be a rule library for optimization or
rewriting. The internal library is mainly used for basic reduction and quantum
gate exchange [12, 22]. Note that almost all the gates implemented by quantum
hardware devices are usually 1-qubit and 2-qubit gates, so our rule library mainly
concerns 1-qubit gates and 2-qubit gates. The maximum input scale involved in
the rule set is 3-qubit. The gate specification involves some cancellation rules
for 1-qubit gates and 2-qubit gates, as shown in Fig. 5. The commutation rules
shown in Fig. 6 include the transformation rules given in [12].

It is possible that after a step of circuit rewriting the target circuit still
matches some rules. We repeat several rounds of internal optimization and circuit
rewriting until no pattern circuit can be matched or the specified repetition
bound is reached (5 by default in practice).



14 H. Jiang et al.

Rx(−θ1) Rx(θ1) = I Rx(θ1) Rx(θ2) = Rx(θ1 + θ2)

Ry(−θ1) Ry(θ1) = I Ry(θ1) Rx(θ2) = Rx(θ1 + θ2)

Rz(−θ1) Rz(θ1) = I Rz(θ1) Rz(θ2) = Rz(θ1 + θ2)

S S = Z H X H = Z H Y H = Y

T T = S H Z H = X H T H = Rx(
π

4
)

H S H = S† H S† H S† H = S H S

• • • •
= =

H S S† H S† S H S† S H S S†

× • • • H • H • H • H
= = =

× • H H H H •

× • • • • •
= = =

• × •

• • • • • • • • •
• • = • = • • = •

Fig. 5: The 1-qubit gate and 2-qubit gate cancellation rules.

S T = T S S† T = T S†

T† S = S T† T† S† = S† T†

• • • • • •
= =

Rz H H H H Rz Rz R′
z R′

z Rz

• • • • Rz • • Rz

= • = • =

Rx Rx

• • • • • •
= H • H = H • H

Fig. 6: The commutation gate rules.



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 15

6 Case Study

In this section we consider two examples: one rewrites a circuit with three CCZ
gates to a circuit using the GSur gate set; the other optimizes a circuit with a
stochastic policy.

6.1 Rewriting Circuits for Surface-17

q[0] • •

q[1] • •

q[2] •

q[3] H Z H

q[4] H Z H • H Z H

Fig. 7: The quantum circuit Toff-NC3.

We demonstrate the use of QRewriting to rewrite the quantum circuit
TOF_3 [32] that has three occurrences of the CCZ gates to the GSur gate
set [17]. The target circuit Ct =(‘h’, [q[4]])(‘E’, [q[0], q[1], q[4]])· · · is displayed
in Fig. 7, and the rules are listed in Fig. 8. The CCZ gate decomposition rule [2]
R = (Cp, Cs) is a pair, where

– Cp = (‘E’, [q[0], q[1], q[2]]);
– Cs = (‘t’, [q[0]])(‘t’, [q[1]]) · · · .

The gate sequence of the target circuit and the decomposition pattern circuit are
“hEhhEhhEh” and “E”, respectively. The subsequence set of Ct that can match
“E” is {{1}, {4}, {7}}. Finally, the resulting circuit is shown in Fig. 9.

6.2 Optimization with a Stochastic Policy

Next we show an example of circuit optimization using QSRewriting with a
stochastic policy. The target circuit and a set of rules R = {R1,R2,R3,R4} are
shown in Fig. 10 (a) and Fig. 3, respectively. The gate sequences of the target
circuit and the pattern circuits are “xxxxcccxxxxxcccxxxxcccxxxcccxxxxxxccc”,
“xx”, “cc”, “ccc” and “xcx”, respectively. The subsequence sets of the gate sequence
of pattern circuits are given as follows,

– “xx”: {{3, 9}, {10, 18}, {0, 22}, {15, 23}, {16, 24}};
– “cc”: {{5, 12}, {19, 25}};
– “ccc”: {};
– “xcx”: {{2, 13, 17}, {18, 26, 31}}.



16 H. Jiang et al.

Z = X Y

H = Ry(−
π

2
) Z = Z Ry(

π

2
) = X Ry(−

π

2
)

T = H Rx(
π

4
) H = Ry(

π

2
) Rx(

π

4
) Ry(−

π

2
)

T† = H Rx(−
π

4
) H = Ry(

π

2
) Rx(−

π

4
) Ry(−

π

2
)

S = H Rx(
π

2
) H = Ry(

π

2
) Rx(

π

2
) Ry(−π

2
)

S† = H Rx(
π

2
) H = Ry(

π

2
) Rx(−π

2
) Ry(−π

2
)

• = •

Ry(−
π

2
) • Ry(

π

2
)

× = • Ry(−
π

2
) • Ry(

π

2
) •

× Ry(−
π

2
) • Ry(

π

2
) • Ry(−

π

2
) • Ry(

π

2
)

• T T† T T†

• = T • • • •

Z • T† • T

Fig. 8: Gate decomposition into primitives supported in the superconducting
Surface-17 processor.

The replacement candidates ({10, 18}, R1, 18) and ({18, 26, 31}, R4, 18)
have a conflict at the index 18 of the target circuit. With the stochas-
tic policy, either of the candidates can be chosen. Suppose the former
is taken, then the generated replacement scheduler is given as follows.
s1:

({0, 22}, R1)
({2, 13, 17}, R4)
({3, 9}, R1)
({5, 12}, R2)
({10, 18}, R1, 18)
({15, 23}, R1)
({16, 24}, R1)
({19, 25}, R2)

Finally, we obtain the resulting circuit in Fig. 10 (b), which reduces the gate
count and the depth by 48.65% and 20%, respectively.



A
P
a
ttern

M
a
tch

in
g
-B

a
sed

F
ra

m
ew

o
rk

fo
r

Q
u
a
n
tu

m
C

ircu
it

R
ew

ritin
g

1
7

q[0] Ry(
π

2
) Rx(

π

4
) Ry(−π) • Ry(π) Rx(−

π

4
) Ry(−π) • Ry(π) Rx(

π

4
) Ry(−π) • Ry(π) Rx(−

π

4
) Ry(−π) • Ry(

π

2
)

q[1] Ry(
π

2
) Rx(

π

4
) Ry(−π

2
) • • Ry(

π

2
) Rx(

π

4
) Ry(−π

2
) • •

q[2] Ry(
π

2
) Rx(

π

4
) Ry(−π) • Ry(π) Rx(−π

4
) Ry(−π) • Ry(

π

2
)

q[3] Ry(−
π

2
) X Y • Ry(−

π

2
) • Ry(π) Rx(−

π

4
) Ry(−π) • Ry(

π

2
) • Ry(

π

2
) Rx(

π

4
) Ry(−π) X Y

q[4] Ry(−
π

2
) X Y • Ry(−

π

2
) • Ry(π) Rx(−

π

4
) Ry(−π) • Ry(

π

2
) • Ry(

π

2
) Rx(

π

4
) Ry(−π) X Y Ry(

π

2
) Rx(

π

4
) Ry(−

π

2
) • • Ry(−

π

2
) X Y • Ry(−

π

2
) • Ry(π) Rx(−

π

4
) Ry(−π) • Ry(

π

2
) • Ry(

π

2
) Rx(

π

4
) Ry(−

π

2
) X Y

Fig. 9: The quantum circuit Toff-NC3 rewritten to Surface-17 quantum processor.



18 H. Jiang et al.

(a) (b)

q[0] X X q[0]

q[1] X • X q[1] X • X

q[2] X • q[2] X •

q[3] X • • X q[3] X • • X

q[4] • • q[4] •

q[5] • X X • q[5] •

q[6] X X q[6]

q[7] • q[7] •

q[8] X X • X q[8] • X

q[9] • • X q[9] X

q[10] q[10]

q[11] X X X q[11] X

q[12] q[12]

q[13] • X • • q[13] • X

q[14] X q[14] X

q[15] X X q[15]

❴ ❴ ❴
✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴

❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴

Fig. 10: (a) The quantum circuit 16QBT_05YCTFL_3. (b) The quantum circuit
16QBT_05YCTFL_3 optimized by QSRewriting.

7 Experiments

We compare QRewriting with the state-of-the-art algorithm for quantum cir-
cuit optimization framework based on pattern matching, namely PaF [6].
Notice that PaF is not freely available, so we implemented that algorithm
in Python. The implementation of QRewriting in Python is available at
https://github.com/ShepherdLee519/qcpm.git. All the experiments are con-
ducted on a Ubuntu machine with a 2.2GHz CPU and 64G memory. For the
stochastic policy, we execute QSRewriting five times and take the best result;
for other policies the executions are deterministic, so we execute them only once.

To compare with PaF, we adopt the BIGD benchmarks [32], and use the
rule set shown in Fig. 3. We use the gate count and the depth as our evaluation
metrics. The selected benchmarks are characterized by the parameters (d1, d2),
which is called gate density vector [32]. The two components stand for the den-
sities of 1-qubit and 2-qubit gates in a benchmark. Suppose a quantum circuit
has n qubits, M1 (resp. M2) is the number of 1-qubit (resp. 2-qubit) gates, and
the longest dependency chain is l, then d1 =M1/(n× l) and d2 = 2×M2/(n× l).

The BIGD benchmarks include 360 circuits with a total number of 129600
gates. After a PaF optimization, the gate count and the depth decrease by 66512
and 4009 within 6760 seconds. QSRewriting (resp. QGRewriting) takes 2816
(resp. 1982) seconds to rewrite these circuits, and the resulting circuits further
reduce the 1-qubit gate, 2-qubit gates, total gate count and depth by 18.7%
(resp. 16.5%), 13.9% (resp. 12.8%), 14.6% (resp. 13.2%), and 29.0% (resp. 26.2%)
compared with PaF. Therefore, QRewriting is about three times faster than
PaF, and the resulting circuits are better optimized. The main evaluation results
are shown in Fig. 10 (a)–(d) which compare the performance of QSRewriting,

https://github.com/ShepherdLee519/qcpm.git


A Pattern Matching-Based Framework for Quantum Circuit Rewriting 19

QGRewriting and PaF in terms of 1-qubit gates, 2-qubit gates, the total gate
counts and depths of the optimized circuits. The cyan bar represents the gate
count (depth) of the benchmarks. The blue, red, and yellow colors are for PaF,
QGRewriting, and QSRewriting, respectively. We can see that the red and yellow
lines are mostly lower than the blue, the yellow is mostly obscured by the red,
but we can still see that it is lower than the red in some places. In Fig. 10 (d),
we can see that in a few cases the depth of the quantum circuit might increase
after some circuits are optimized. The reason is that the gates of a rear layer
may be moved to a front layer, causing the original gate of the front layer to
conflict with it.

Now we rewrite the Arithmetic and Toffoli benchmarks [22], which contain
33 circuits and 201554 gates, from the GIBM gate set to the GSur gate set (cf.
Table 1). The Surface-17 processor limits 1-qubit gates to X and Y rotations, and
more specifically ±π

4
, ±π

2
, and ±π degrees will be used in our decomposition.

The primitive 2-qubit gate on this processor is CZ [17]. In this experiment, we
simply choose the greedy policy since no replacement conflict arises.

In Tables 3 and 4, we list the experimental data. Comparing the circuit
rewriting with and without internal optimization, the gate count is reduced by
up to 52%, and the depth is reduced by up to 49%. However, there is a price
to pay. For a quantum circuit with millions of instructions, a rewriting without
optimization takes about 15 minutes, while a rewriting with optimization may
take about two hours, depending on the size of the internal rule library.



20 H. Jiang et al.

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1)
0

100

200

300

400

500

600

700

(d1, d2)

1
-q

u
b
it

g
a
te

co
u
n
t

1-qubit_gate_count QSRewriting

QGRewriting PaF

(a)

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1)

0

100

200

300

400

(d1, d2)

2
-q

u
b
it

g
a
te

co
u
n
t

2-qubit_gate_count QSRewriting

QGRewriting PaF

(b)



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 21

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1)

0

100

200

300

400

500

600

700

(d1, d2)

to
ta

l
g
a
te

co
u
n
t

total_gate_count QSRewriting

QGRewriting PaF

(c)

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1)

0

10

20

30

40

50

60

(d1, d2)

d
ep

th

depth QSRewriting

QGRewriting PaF

(d)

Fig. 10: Comparison of the 1-qubit gate, 2-qubit gate, total gate counts, and
depths of the quantum circuits generated by QSRewriting, QGRewriting and
PaF.



22 H. Jiang et al.

Table 3: Comparison of the gate counts of circuits.

benchmark n g g0 t0 g1 t1 g2 t2 ∆

Toff-NC3 5 9 45 0.00 135 0.03 80 0.50 40.74%
Toff-Barenco3 5 10 58 0.00 174 0.07 101 0.52 41.95%

Mod 54 5 15 63 0.00 187 0.09 89 0.57 52.41%
Toff-NC4 7 15 75 0.00 225 0.10 134 0.89 40.44%

Toff-Barenco4 7 18 114 0.00 342 0.19 198 1.12 42.11%
Toff-NC5 9 21 105 0.00 315 0.18 188 1.34 40.32%

Toff-Barenco5 9 26 170 0.01 510 0.32 296 1.70 41.96%
VBE-Adder3 10 30 150 0.00 450 0.34 266 1.51 40.89%
GF(24)-Mult 12 33 225 0.01 675 0.58 388 2.68 42.52%
Mod-Mult55 9 35 119 0.00 341 0.20 211 1.04 38.12%
GF(25)-Mult 15 47 347 0.01 1041 0.80 601 3.74 42.27%
CSLA-MUX3 15 50 170 0.01 510 0.44 315 2.23 38.24%

Toff-NC10 19 51 255 0.01 765 0.49 458 3.31 40.13%
GF(26)-Mult 18 63 495 0.02 1485 1.19 854 5.36 42.49%

Toff-Barenco10 19 66 450 0.01 1350 0.95 786 4.76 41.78%
RC-Adder6 14 68 200 0.01 584 0.93 361 2.66 38.18%
Mod-Red21 11 74 278 0.01 786 0.93 463 3.39 41.09%

GF(27)-Mult 21 81 669 0.02 2007 1.61 1153 7.37 42.55%
CSUM-MUX9 30 84 420 0.01 1204 1.57 721 3.98 40.12%
QCLA-Com7 24 95 443 0.01 1299 1.02 778 5.98 40.11%

QCLA-Adder10 36 113 521 0.01 1563 1.31 957 7.29 38.77%
GF(28)-Mult 24 115 883 0.02 2649 2.35 1516 12.95 42.77%
GF(29)-Mult 27 123 1095 0.03 3285 2.72 1885 12.09 42.62%
GF(210)-Mult 30 147 1347 0.03 4041 3.36 2316 14.90 42.69%
QCLA-Mod7 26 176 884 0.02 2638 2.06 1570 12.24 40.49%

Adder8 24 216 900 0.02 2676 6.79 1623 13.00 39.35%
GF(216)-Mult 48 363 3435 0.13 10305 9.44 5865 38.96 43.09%
Mod-Adder1024 28 865 4285 0.09 12855 18.19 7403 57.77 42.41%
GF(232)-Mult 96 1305 13593 0.30 40779 38.71 23069 157.25 43.43%
GF(264)-Mult 192 4539 53691 1.17 161073 146.63 91065 635.20 43.46%
GF(2128)-Mult 384 17275 213883 5.59 641649 584.97 362429 3656.48 43.52%
GF(2131)-Mult 393 18333 224265 5.90 672795 616.90 379766 3927.99 43.55%
GF(2163)-Mult 489 27705 346533 9.67 1039599 945.51 587034 7452.82 43.53%

Note: n: the number of qubits. g: the gate count of the target circuit. g0: the gate count
of the target circuit after decomposition without internal optimization on GIBM gate
set. g1: the gate count of the target circuit without internal optimization on GSur

gate set. g2: the gate count of the target circuit with internal optimization on GSur

gate set. t0 − t2: running time in seconds. ∆: (g1 − g2)/g1 × 100%.



A Pattern Matching-Based Framework for Quantum Circuit Rewriting 23

Table 4: Comparison of the depths of circuits.

benchmark n d d0 t0 d1 t1 d2 t2 ∆

Toff-NC3 5 7 23 0.00 64 0.03 42 0.50 34.38%
Toff-Barenco3 5 9 31 0.00 86 0.07 52 0.52 39.53%

Mod 54 5 15 36 0.00 97 0.09 49 0.57 49.48%
Toff-NC4 7 11 38 0.00 104 0.10 67 0.89 35.58%

Toff-Barenco4 7 17 61 0.00 166 0.19 102 1.12 38.55%
Toff-NC5 9 15 53 0.00 144 0.18 92 1.34 36.11%

Toff-Barenco5 9 25 91 0.01 246 0.32 152 1.70 38.21%
VBE-Adder3 10 20 70 0.00 194 0.34 113 1.51 41.75%
GF(24)-Mult 12 17 85 0.01 236 0.58 145 2.68 38.56%
Mod-Mult55 9 14 43 0.00 118 0.20 80 1.04 32.20%
GF(25)-Mult 15 20 111 0.01 310 0.80 187 3.74 39.68%
CSLA-MUX3 15 17 59 0.01 166 0.44 107 2.23 35.54%

Toff-NC10 19 35 128 0.01 344 0.49 217 3.31 36.92%
GF(26)-Mult 18 25 139 0.02 384 1.19 235 5.36 38.80%

Toff-Barenco10 19 65 241 0.01 646 0.95 402 4.76 37.77%
RC-Adder6 14 28 93 0.01 261 0.93 166 2.66 36.40%
Mod-Red21 11 43 141 0.01 383 0.93 238 3.39 37.86%

GF(27)-Mult 21 29 166 0.02 458 1.61 280 7.37 38.86%
CSUM-MUX9 30 15 53 0.01 147 1.57 96 3.98 34.69%
QCLA-Com7 24 15 70 0.01 192 1.02 115 5.98 40.10%

QCLA-Adder10 36 15 64 0.01 182 1.31 111 7.29 39.01%
GF(28)-Mult 24 39 199 0.02 544 2.35 335 12.95 38.42%
GF(29)-Mult 27 36 219 0.03 606 2.72 367 12.09 39.44%
GF(210)-Mult 30 40 246 0.03 680 3.36 412 14.90 39.41%
QCLA-Mod7 26 39 172 0.02 487 2.06 284 12.24 41.68%

Adder8 24 55 191 0.02 527 6.79 315 13.00 40.23%
GF(216)-Mult 48 71 415 0.13 1136 9.44 699 38.96 38.47%
Mod-Adder1024 28 521 2218 0.09 6397 18.19 3775 57.77 40.99%
GF(232)-Mult 96 137 849 0.30 2324 38.71 1447 157.25 37.74%
GF(264)-Mult 192 263 1711 1.17 4688 146.63 2856 635.20 39.08%
GF(2128)-Mult 384 517 3437 5.59 9420 584.97 5750 3656.48 38.96%
GF(2131)-Mult 393 537 3526 5.90 9658 616.90 5902 3927.99 38.89%
GF(2163)-Mult 489 665 4390 9.67 12026 945.51 7310 7452.82 39.22%

Note: n: the number of qubits. d: the depth of the target circuit. d0: the depth of the
target circuit after decomposition without internal optimization on GIBM gate set.
d1: the depth of the rewritten circuit without internal optimization on GSur gate set.
d2: the depth of the rewritten circuit with internal optimization on GSur gate set.
t0 − t2: running time in seconds. ∆: (d1 − d2)/d1 × 100%.



24 H. Jiang et al.

8 Conclusion

We introduced a new representation of quantum circuits, which reduced the
pattern matching of circuits to the problem of finding distinct subsequences. We
presented an algorithm based on dynamic programming to match the pattern
circuits in the target circuit. To resolve replacement conflicts, we proposed three
policies for generating replacement schedulers and a polynomial-time replace-
ment algorithm. We developed a rule library for basic optimizations and applied
it to rewrite the Arithmetic and Toffoli benchmarks from the GIBM gate set to
the GSur gate set. Compared with the existing tool PaF, QRewriting improved
the depth (resp. gate count) reduction by 29% (resp. 14%), which demonstrated
the effectiveness of our approach.

References

1. Abdessaied, N., Soeken, M., Wille, R., Drechsler, R.: Exact template match-
ing using boolean satisfiability. In: 2013 IEEE 43rd International Symposium on
Multiple-Valued Logic. pp. 328–333 (2013)

2. Amy, M., Azimzadeh, P., Mosca, M.: On the controlled-NOT complexity of
controlled-NOT–phase circuits. Quantum Science and Technology 4(1), 015002
(2018)

3. Arute, F., Arya, K., et al.: Quantum supremacy using a programmable supercon-
ducting processor. Nature 574, 505–510 (2019)

4. Ball, P.: First quantum computer to pack 100 qubits enters crowded race. Nature
599, 542 (2021)

5. Bellman, R.E.: Dynamic Programming. Dover Publications, Inc., USA (2003)
6. Chen, M., Zhang, Y., Li, Y.: A quantum circuit optimization framework based on

pattern matching. SPIN 11(03), 2140008 (2021)
7. Dumitrescu, E., McCaskey, A., Hagen, G., Jansen, G., Morris, T., Papenbrock,

T., Pooser, R., Dean, D., Lougovski, P.: Cloud quantum computing of an atomic
nucleus. Physical Review Letters 120(21) (may 2018)

8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
28th Annual ACM Symposium on the Theory of Computing. pp. 212–219. ACM
(1996)

9. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear sys-
tems of equations. Physical Review Letters 103(15), 150502 (2009)

10. IBM: Qiskit: An open-source SDK for working with quantum computers at the
level of pulses, circuits, and algorithms. https://github.com/QISKit (2020)

11. Iten, R., Moyard, R., Metger, T., Sutter, D., Woerner, S.: Exact and practical
pattern matching for quantum circuit optimization (2020)

12. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing
cnot-based quantum circuits. In: Proceedings of the 39th Annual Design Automa-
tion Conference. p. 419–424. Association for Computing Machinery (2002)

13. Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M., Aiken, A.: Taso:
Optimizing deep learning computation with automatic generation of graph sub-
stitutions. In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles. p. 47–62. Association for Computing Machinery, New York, NY, USA
(2019)

https://github.com/QISKit


A Pattern Matching-Based Framework for Quantum Circuit Rewriting 25

14. Kissinger, A., van de Wetering, J.: PyZX: Large scale automated diagrammatic
reasoning. Electronic Proceedings in Theoretical Computer Science 318, 229–241
(may 2020)

15. Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.J., Gus-
tavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual
Review of Condensed Matter Physics 11(1), 369–395 (2020)

16. Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.J., Gus-
tavsson, S., Oliver, W.D.: Superconducting qubits: Current state of play. Annual
Review of Condensed Matter Physics 11(1), 369–395 (2020)

17. Lao, L., van Someren, H., Ashraf, I., Almudéver, C.G.: Timing and resource-aware
mapping of quantum circuits to superconducting processors. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 41(2), 359–371 (2022)

18. Liu, J., Bello, L., Zhou, H.: Relaxed peephole optimization: A novel compiler opti-
mization for quantum circuits. In: 2021 IEEE/ACM International Symposium on
Code Generation and Optimization. pp. 301–314 (2021)

19. Madsen, L.S., Laudenbach, F., Askarani, M.F., Rortais, F., Vincent, T., Bulmer,
J.F.F., Miatto, F.M., Neuhaus, L., Helt, L.G., Collins, M.J., Lita, A.E., Gerrits, T.,
Nam, S.W., Vaidya, V.D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N., Lavoie,
J.: Quantum computational advantage with a programmable photonic processor.
Nature 606, 75–81 (2022)

20. McKeeman, W.M.: Peephole optimization. Commun. ACM 8(7), 443–444 (1965)

21. Murali, P., Linke, N.M., Martonosi, M., Abhari, A.J., Nguyen, N.H., Alderete,
C.H.: Full-stack, real-system quantum computer studies: Architectural compar-
isons and design insights. In: 2019 ACM/IEEE 46th Annual International Sympo-
sium on Computer Architecture (ISCA). pp. 527–540 (2019)

22. Nam, Y.S., Ross, N.J., Su, Y., Childs, A.M., Maslov, D.: Automated optimization
of large quantum circuits with continuous parameters. npj Quantum Information
4, 23 (2018)

23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press (2016)

24. Pointing, J., Padon, O., Jia, Z., Ma, H., Hirth, A., Palsberg, J., Aiken, A.: Quanto:
Optimizing quantum circuits with automatic generation of circuit identities (2021)

25. Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data struc-
tures and algorithms for simplifying reversible circuits. ACM J. Emerg. Technol.
Comput. Syst. 2(4), 277–293 (2006)

26. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79
(Aug 2018)

27. Rahman, M.M., Dueck, G.W.: Optimal quantum circuits of three qubits. In: 2012
IEEE 42nd International Symposium on Multiple-Valued Logic. pp. 161–166 (2012)

28. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Proc. 35th Annual Symposium on Foundations of Computer Science. pp.
124–134. IEEE Computer Society (1994)

29. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.:
t|ket>: a retargetable compiler for NISQ devices. Quantum Science and Technology
6(1), 014003 (nov 2020)

30. Skilbeck, M., Peterson, E., appleby, Davis, E., Karalekas, P., Bello-Rivas, J.M.,
Kochmanski, D., Beane, Z., Smith, R., Shi, A., Scott, C., Paszke, A., Hulburd, E.,
Young, M., Jackson, A.S., BHAVISHYA, Alam, M.S., Velázquez-Rodríguez, W.,
c. b. osborn, fengdlm, jmackeyrigetti: rigetti/quilc: v1.21.0 (Jul 2020)



26 H. Jiang et al.

31. Soeken, M., Dueck, G.W., Rahman, M.M., Miller, D.M.: An extension of
transformation-based reversible and quantum circuit synthesis. In: 2016 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS). pp. 2290–2293 (2016)

32. Tan, B., Cong, J.: Optimality study of existing quantum computing layout synthe-
sis tools. IEEE Transactions on Computers (Jul 2020)

33. Xu, M., Li, Z., Padon, O., Lin, S., Pointing, J., Hirth, A., Ma, H., Palsberg, J.,
Aiken, A., Acar, U.A., Jia, Z.: Quartz: Superoptimization of quantum circuits. In:
Proceedings of the 43rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (2022)

34. Zhang, Y., Deng, H., Li, Q., Song, H., Nie, L.: Optimizing quantum programs
against decoherence: Delaying qubits into quantum superposition. In: 2019 Inter-
national Symposium on Theoretical Aspects of Software Engineering. pp. 184–191.
IEEE (2019)


	A Pattern Matching-Based Framework for Quantum Circuit Rewriting

