Skip to main content

Multiple-Round Aggregation of Abstract Semantics for Secure Heterogeneous Federated Learning

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2024)

Abstract

Federated Learning (FL) provides a valuable framework that allows for the collaborative training of models across distributed networks while maintaining the privacy of the data involved. The concept of secure aggregation is crucial in preserving both the privacy and integrity of data within FL systems. However, the deployment of secure aggregation encounters significant barriers. Conventional secure aggregation methods are primarily designed for single-round operations, which can become prohibitively expensive in scenarios that require multiple rounds. Additionally, these methods often struggle in large-scale environments characterized by heterogeneous data and models. This paper introduces the Multiple-Round Aggregation of Abstract Semantics (MRAAS), a novel scheme designed to address the aforementioned limitations in secure aggregation within heterogeneous FL environments. The MRAAS scheme enhances security and reduces the need for extensive data exchanges by aggregating abstracted model semantics instead of raw model gradients, facilitating secure, multiple rounds of aggregation. Key innovations of MRAAS include an advanced abstraction technique, robustness against participant drop-out, and the use of recyclable secrets. These innovations collectively enhance system resilience and reduce the necessity for frequent cryptographic renewals. Our theoretical evaluations focus on the security features of MRAAS. Empirical validations conducted through comparative analyses utilizing two public datasets confirm the superiority of MRAAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, Y., Zhu, H., Xu, J., Chen, Y.: Federated Learning: Fundamentals and Advances. Springer Nature, Singapore (2023). https://doi.org/10.1007/978-981-19-7083-2

  2. Nguyen, D.C., et al.: Federated learning for smart healthcare: a survey. ACM Comput. Surv. 55(3), 1–37 (2023)

    Article  MATH  Google Scholar 

  3. Chatterjee, P., Das, D., Rawat, D.B.: Federated learning empowered recommendation model for financial consumer services. IEEE Trans. Consum. Electron. 70(1), 2508–2516 (2023)

    Article  MATH  Google Scholar 

  4. Pfeiffer, K., Rapp, M., Khalili, R., Henkel, J.: Federated learning for computationally constrained heterogeneous devices: a survey. ACM Comput. Surv. 55(14s), 1–27 (2023)

    Article  MATH  Google Scholar 

  5. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information Processing Systems, vol. 32, pp. 14774–14784. Curran Associates, Inc. (2019)

    Google Scholar 

  6. Nguyen, T., Thai, M.T.: Preserving privacy and security in federated learning. IEEE/ACM Trans. Networking 32(1), 833–843 (2024)

    Article  MATH  Google Scholar 

  7. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191. Dallas Texas USA (2017)

    Google Scholar 

  8. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server aggregation with (poly)logarithmic overhead. In: Proceedings ACM SIGSAC Conference on Computer and Communications Security, pp. 1253–1269. Virtual Event USA (2020)

    Google Scholar 

  9. Jahani-Nezhad, T., Maddah-Ali, M.A., Li, S., Caire, G.: Swiftagg+: achieving asymptotically optimal communication loads in secure aggregation for federated learning. IEEE J. Sel. Areas Commun. 41(4), 977–989 (2023)

    Article  MATH  Google Scholar 

  10. So, J., Ali, R.E., GĂĽler, B., Jiao, J., Avestimehr, A.S.: Securing secure aggregation: mitigating multi-round privacy leakage in federated learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 9864–9873 (2023)

    Google Scholar 

  11. Ma, Y., Woods, J., Angel, S., Polychroniadou, A., Rabin, T.: Flamingo: multi-round single-server secure aggregation with applications to private federated learning. In: 2023 IEEE Symposium on Security and Privacy (SP), pp. 477–496 (2023)

    Google Scholar 

  12. Cui, K., Feng, X., Wang, L., Wu, H., Zhang, X., DĂĽdder, B.: Chu-ko-nu: a reliable, efficient, and anonymously authentication-enabled realization for multi-round secure aggregation in federated learning. arXiv preprint arXiv:2402.15111 (2024)

  13. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (CSUR) 54(10s), 1–41 (2022)

    Article  MATH  Google Scholar 

  14. Hijazi, N.M., Aloqaily, M., Guizani, M., Ouni, B., Karray, F.: Secure federated learning with fully homomorphic encryption for IoT communications. IEEE Internet Things J. 11(3), 4289–4300 (2024)

    Article  Google Scholar 

  15. Chen, L., Xiao, D., Yu, Z., Zhang, M.: Secure and efficient federated learning via novel multi-party computation and compressed sensing. Inf. Sci. 667, 120481 (2024)

    Article  MATH  Google Scholar 

  16. Wei, K., et al.: Personalized federated learning with differential privacy and convergence guarantee. IEEE Trans. Inf. Forensics Secur. 18, 4488–4503 (2023)

    Article  MATH  Google Scholar 

  17. Li, H., Sun, Y., Yu, Y., Li, D., Guan, Z., Liu, J.: Privacy-preserving cross-silo federated learning atop blockchain for IoT. IEEE Internet Things J. 10(24), 21176–21186 (2023)

    Article  MATH  Google Scholar 

  18. Choi, B., Sohn, J.y., Han, D.J., Moon, J.: Communication-computation efficient secure aggregation for federated learning. arXiv preprint arXiv:1201.20543 (2021)

  19. Zhang, Z., et al.: LSFL: a lightweight and secure federated learning scheme for edge computing. IEEE Trans. Inf. Forensics Secur. 18, 365–379 (2023)

    Article  MATH  Google Scholar 

  20. Eltaras, T., Sabry, F., Labda, W., Alzoubi, K., Ahmedeltaras, Q.: Efficient verifiable protocol for privacy-preserving aggregation in federated learning. IEEE Trans. Inf. Forensics Secur. 18, 2977–2990 (2023)

    Article  Google Scholar 

  21. Zheng, Y., Lai, S., Liu, Y., Yuan, X., Yi, X., Wang, C.: Aggregation service for federated learning: an efficient, secure, and more resilient realization. IEEE Trans. Dependable Secure Comput. 20(2), 988–1001 (2023)

    Article  MATH  Google Scholar 

  22. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20, 51–83 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, p. 98–107. ACM (2002)

    Google Scholar 

  27. Buchmann, J.: Introduction to cryptography, vol. 335. Springer, New York (2004). https://doi.org/10.1007/978-1-4419-9003-7

  28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  MATH  Google Scholar 

  29. Caldas, S., et al.: LEAF: a benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)

  30. Kim, D., Guyot, C.: Optimized privacy-preserving CNN inference with fully homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 18, 2175–2187 (2023)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by Sichuan Science and Technology Program (2024NSFTD0031, 2024NSFSC0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Li, X., Liang, W. (2025). Multiple-Round Aggregation of Abstract Semantics for Secure Heterogeneous Federated Learning. In: Zhu, T., Li, J., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2024. Lecture Notes in Computer Science, vol 15254. Springer, Singapore. https://doi.org/10.1007/978-981-96-1545-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-1545-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-1544-5

  • Online ISBN: 978-981-96-1545-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics