Abstract
Electronic institutions (EIs) define the rules of the game in agent societies by fixing what agents are permitted and forbidden to do and under what circumstances. Autonomic Electronic Institutions (AEIs) adapt their rules to comply with their goals when regulating agent societies composed of varying populations of self-interested agents. We present a self-adaptation model based on Case-Based Reasoning (CBR) that allows an AEI to yield a dynamical answer to changing circumstances. In order to demonstrate adaptation empirically, we consider a traffic control scenario populated by heterogeneous agents. Within this setting, we demonstrate statistically that an AEI is able to adapt to different heterogeneous agent populations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Esteva, M.: Electronic Institutions: from specification to development, vol. 19. IIIA PhD Monography (2003)
North, D.C.: Institutions, Institutional Change and Economics Perfomance. Cambridge U. P (1990)
Bou, E., López-Sánchez, M., Rodríguez-Aguilar, J.A.: Adaptation of autonomic electronic institutions through norms and institutional agents. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 300–319. Springer, Heidelberg (2007)
Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)
Norman, T.J., Preece, A., Chalmers, S., Jennings, N.R., Luck, M., Dang, V., Nguyen, T., Deora, V., Shao, J., Gray, A., Fiddian, N.: Conoise: Agent-based formation of virtual organisations. In: Research and Development in Intelligent SystemsXX: Proceedings of AI 2003, the Twenty-third SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 353–366. Springer, Heidelberg (2003); 353–366 Best Paper Award at AI-2003, ©Springer Verlag
Excelente-Toledo, C.B., Jennings, N.R.: The dynamic selection of coordination mechanisms. Autonomous Agents and Multi-Agent Systems 9(1-2), 55–85 (2004)
Verhagen, H.: Norm Autonomous Agents. PhD thesis, Stockholm University (2000)
Sen, S., Airiau, S.: Emergence of norms through social learning. In: IJCAI, pp. 1507–1512 (2007)
Sierra, C., Sabater, J., Agustí, J., Garcia, P.: Integrating evolutionary computing and the sadde methodology. In: AAMAS 2003: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, pp. 1116–1117. ACM Press, New York (2003)
Artikis, A., Kaponis, D., Pitt, J.: Dynamic Specifications of Norm-Governed Systems. In: Multi-Agent Systems: Semantics and Dynamics of Organisational Models. IGI Global (2009)
Kota, R., Gibbins, N., Jennings, N.: Decentralised structural adaptation in agent organisations. In: Vouros, G., Artikis, A., Stathis, K., Pitt, J. (eds.) OAMAS 2008. LNCS (LNAI), vol. 5368. Springer, Heidelberg (2008)
Hübner, J.F., Sichman, J.S., Boissier, O.: Using the \(\mathcal{M}\)oise+ for a cooperative framework of mas reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp. 506–515. Springer, Heidelberg (2004)
Gâteau, B., Boissier, O., Khadraoui, D., Dubois, E.: Moiseinst: An organizational model for specifying rights and duties of autonomous agents. In: Gleizes, M.P., Kaminka, G.A., Nowé, A., Ossowski, S., Tuyls, K., Verbeeck, K. (eds.) EUMAS, Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten, pp. 484–485 (2005)
van der Vecht, B., Dignum, F., Meyer, J.J.C., Neef, M.: A dynamic coordination mechanism using adjustable autonomy. In: Coordination, Organization, Institutions and Norms in agent systems (COIN@Durham 2007). Co-held in Multi-Agent Logics, Languages, and Organisations Federated Workshop, Durham, UK (2007)
Hoogendoorn, M.: Adaptation of organizational models for multi-agent systems based on max flow networks. In: Veloso, M.M. (ed.) IJCAI, pp. 1321–1326 (2007)
Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop, p. 8 (2004)
Camurri, M., Mamei, M., Zambonelli, F.: Urban traffic control with co-fields. In: Proc. of E4MAS Workshop at AAMAS 2006, pp. 11–25 (2006)
Bazzan, A.L.C., de Oliveira, D., Klügl, F., Nagel, K.: Effects of co-evolution in a complex traffic network. In: Proceedings of the AAMAS 2007 Workshop on Adaptive and Learning Agents (ALAg 2007) (2007)
Ros, R., Veloso, M.: Executing Multi-Robot Cases through a Single Coordinator. In: Proc. of Autonomous Agents and Multiagent Systems, pp. 1264–1266 (2007)
Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bou, E., López-Sánchez, M., Rodríguez-Aguilar, J.A., Sichman, J.S. (2009). Adapting Autonomic Electronic Institutions to Heterogeneous Agent Societies. In: Vouros, G., Artikis, A., Stathis, K., Pitt, J. (eds) Organized Adaption in Multi-Agent Systems. OAMAS 2008. Lecture Notes in Computer Science(), vol 5368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02377-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-02377-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02376-7
Online ISBN: 978-3-642-02377-4
eBook Packages: Computer ScienceComputer Science (R0)