Abstract
Visual object tracking plays an essential role in vision based applications. Most of the previous Multi-pedestrian Tracking has limitations due to considering each pedestrian with the same motion and appearance model in a uniform observation space, leading to tracking failures in complex occlusions. To address this problem without losing real-time performance, we propose a graph based approach for multi-pedestrian tracking using fused vision and depth data in this paper, where one main contribution is devoted in terms of the consideration of pedestrians with different priori probability in distinguishing observation space divided based on vision and depth information. Then we formulate the tracking model using an Improved Bipartite Graph (IBG), which is then optimized with a heuristic algorithm. Experiments on three datasets of fused vision and depth data demonstrate robust tracking results of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)
Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: Proc. IEEE Int. Conf. CVPR (2004)
Andriyenko, A., Roth, S., et al.: An Analytical Formulation of Global Occlusion Reasoning for Multi-Target Tracking. In: Proc. IEEE Int. Conf. ICCV (2011)
Li, Y., Ai, H., Yamashita, T., et al.: Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespan. In: Proc. IEEE Int. Conf. CVPR (2007)
Wang, S., Lu, H., Yang, F., Yang, M.-H.: Superpixel tracking. In: Proc. IEEE Int. Conf. ICCV (2011)
Song, B., Jeng, T.-Y., Staudt, E., Roy-Chowdhury, A.K.: A stochastic graph evolution framework for robust multi-target tracking. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 605–619. Springer, Heidelberg (2010)
Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: Proc. IEEE Int. Conf. CVPR (2011)
Pirsiavash, H., Ramanan, D., et al.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: Proc. IEEE Int. Conf. CVPR (2011)
Shitrit, H.B., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under global appearance constraints. In: Proc. IEEE Int. Conf. ICCV (2011)
Breitenstein, M.D., Reichlin, F., Leibe, B., et al.: Online multi-person tracking-by-detection from a single, uncalibrated camera. IEEE Transactions on PAMI 33(9), 1820–1833 (2011)
Oliveira, L., Nunes, U.: Semantic fusion of laser and vision in pedestrian detection. In: Pattern Recognition, pp. 3648–3659 (2010)
SDL Dataset: http://www.ucassdl.cn/resource.asp
Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile Vision System for Robust Multi-Person Tracking. In: Proc. IEEE Int. Conf. CVPR (2008)
Wojec, C., Walk, S., Roth, S., et al.: Monocular Visual Scene Understanding: Understanding Multi-Object Traffic Scenes. IEEE Transactions on PAMI 35(4), 882–896 (2013)
Andriyenko, A., Schindler, K., Roth, S.: Discrete-Continuous Optimization for Multi-Target Tracking. In: Proc. IEEE Int. Conf. CVPR (2012)
Yang, B., Nevatia, R.: An online learned CRF model for multi-target tracking. Proc. IEEE Int. Conf. CVPR (2012)
Ess, A., Leibe, B., Van Gool, L.: Depth and Appearance for Mobile Scene Analysis. In: Proc. IEEE Int. Conf. CVPR (2008)
Bajracharya, M., Moghaddam, B., et al.: A Fast Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle. Journal of Robotics Research 2009 (2009)
Han, Z.J., Jiao, J.B., Zhang, B.C., Ye, Q.X., Liu, J.Z.: Visual Object Tracking via Sample-Based Adaptive Sparse Representation (AdaSR). Pattern Recognition (44), 2170–2183 (2011)
Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: Proc. IEEE Int. Conf. CVPR (2008)
Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple Object Tracking Using K-Shortest Paths Optimization. IEEE Transactions on PAMI 33(9), 1806–1819 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Gao, S., Han, Z., Li, C., Jiao, J. (2013). Real-Time Multi-pedestrian Tracking Based on Vision and Depth Information Fusion. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-03731-8_66
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03730-1
Online ISBN: 978-3-319-03731-8
eBook Packages: Computer ScienceComputer Science (R0)