Skip to main content

Optimizing Causal Interventions in Hybrid Bayesian Networks

A Discretization, Knowledge Compilation, and Heuristic Optimization Approach

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2024)

Abstract

Causality is increasingly integrated into decision-making processes. Often, the goal is to optimize over causal interventions to achieve specific policy objectives. However, research into causal optimization has bifurcated into either the online optimization of interventions in causal models or the offline optimization of decision rules in causal influence diagrams. This paper introduces an approximate method for offline optimizing interventions in arbitrary hybrid Bayesian networks using observational data. The optimization problem is approached by compiling discretized Bayesian networks as binary decision diagrams, whereafter running interventional queries is very efficient. This efficiency is exploited by running heuristic optimization algorithms to optimize over the interventional queries. By running experiments on a variety of large hybrid Bayesian networks, we demonstrate the practical utility of our method and discuss policy relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this case, we consider a one-dimensional outcome variable, although the proposed methodology is generalizable to multiple outcome variables.

  2. 2.

    The methodology is available on https://github.com/sebastiaanbrand/bn-dd.

  3. 3.

    Because of the nature of the do-operator and the adjustment formula of Eq. 2, nodes that are not marginalized or conditioned upon in the optimization step can be eliminated from the compilation.

References

  1. Aglietti, V., Dhir, N., González, J., Damoulas, T.: Dynamic causal bayesian optimization. In: NeurIPS, vol. 34, pp. 10549–10560 (2021)

    Google Scholar 

  2. Aglietti, V., Lu, X., Paleyes, A., González, J.: Causal Bayesian optimization. In: AISTATS, pp. 3155–3164. PMLR (2020)

    Google Scholar 

  3. Aglietti, V., Malek, A., Ktena, I., Chiappa, S.: Constrained causal Bayesian optimization. arXiv preprint arXiv:2305.20011 (2023)

  4. Arsenyan, V., Grosnit, A., Bou-Ammar, H.: Contextual causal Bayesian optimisation. arXiv preprint arXiv:2301.12412 (2023)

  5. Athey, S., Wager, S.: Policy learning with observational data. Econometrica 89(1), 133–161 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bäck, T., et al.: Evolutionary algorithms for parameter optimization–thirty years later. Evol. Comput. 31(2), 81–122 (2023)

    Article  Google Scholar 

  7. Bareinboim, E., Correa, J.D., Ibeling, D., Icard, T.F.: On Pearl’s hierarchy and the foundations of causal inference. In: Probabilistic and Causal Inference (2022)

    Google Scholar 

  8. Bareinboim, E., Forney, A., Pearl, J.: Bandits with unobserved confounders: a causal approach. In: NeurIPS, vol. 28 (2015)

    Google Scholar 

  9. Beuzen, T., Marshall, L., Splinter, K.D.: A comparison of methods for discretizing continuous variables in Bayesian networks. Environ. Model. Software 108, 61–66 (2018)

    Article  Google Scholar 

  10. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction. Nat. Comput. 1, 3–52 (2002)

    Article  MathSciNet  Google Scholar 

  11. Broyden, C.: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. IMA J. Appl. Math. 6(3) (1970)

    Google Scholar 

  12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Trans. Comput. 100(8), 677–691 (1986)

    Article  Google Scholar 

  13. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting. Artif. Intell. 172(6–7), 772–799 (2008)

    Article  MathSciNet  Google Scholar 

  14. Dal, G., Lucas, P.: Weighted positive binary decision diagrams for exact probabilistic inference. Int. J. Approximate Reasoning 90, 411–432 (2017)

    Article  MathSciNet  Google Scholar 

  15. Everitt, T., Carey, R., Langlois, E.D., Ortega, P.A., Legg, S.: Agent incentives: a causal perspective. In: AAAI, vol. 35, no. 13, pp. 11487–11495 (2021)

    Google Scholar 

  16. Fletcher, R.: A new approach to variable metric algorithms. The Computer Journal 13(3), 317–322 (1970). https://doi.org/10.1093/comjnl/13.3.317

  17. Geffner, T., et al.: Deep end-to-end causal inference. arXiv preprint arXiv:2202.02195 (2022)

  18. Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970)

    Article  MathSciNet  Google Scholar 

  19. Gultchin, L., Aglietti, V., Bellot, A., Chiappa, S.: Functional causal Bayesian optimization. arXiv preprint arXiv:2306.06409 (2023)

  20. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  21. Kreif, N., DiazOrdaz, K.: Machine learning in policy evaluation: new tools for causal inference. arXiv (2019). https://doi.org/10.48550/arXiv.1903.00402

  22. Lattimore, F., Lattimore, T., Reid, M.D.: Causal bandits: learning good interventions via causal inference. In: NeurIPS, vol. 29 (2016)

    Google Scholar 

  23. Lee, S., Bareinboim, E.: Structural causal bandits: where to intervene? In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  24. Lee, S., Bareinboim, E.: Structural causal bandits with non-manipulable variables. In: AAAI, vol. 33, pp. 4164–4172 (2019)

    Google Scholar 

  25. Li, H., Hubbard, A., van der Laan, M.: Targeted learning on variable importance measure for heterogeneous treatment effect. preprint arXiv:2309.13324 (2023)

  26. Malekovic, N., Vonk, M., Birkman, L., Sweijs, T., Kononova, A., Bäck, T.: Angling for causality behind security: natural causes of armed conflict in Iraq. Preprints (2024). https://doi.org/10.20944/preprints202402.0556.v1

  27. Malenica, I., Coyle, J., van der Laan, M.J.: tmle3mopttx: Targeted learning and variable importance with optimal individualized categorical treatment (2022). https://github.com/tlverse/tmle3mopttx, r package version 1.0.0

  28. Meunier, L., et al.: Black-box optimization revisited: Improving algorithm selection wizards through massive benchmarking. IEEE Trans. Evol. Comput. 26(3) (2022)

    Google Scholar 

  29. Neil, M., Tailor, M., Marquez, D.: Inference in hybrid Bayesian networks using dynamic discretization. Stat. Comput. 17(3), 219–233 (2007)

    Article  MathSciNet  Google Scholar 

  30. de Nobel, J., Ye, F., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: IOHexperimenter: Benchmarking platform for iterative optimization heuristics. CoRR abs/2111.04077 (2021), arXiv:2111.04077

  31. Nojavan, F., Qian, S.S., Stow, C.A.: Comparative analysis of discretization methods in Bayesian networks. Environ. Model. Software 87, 64–71 (2017)

    Article  Google Scholar 

  32. Opgen-Rhein, R., Strimmer, K.: From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 1(1), 1–10 (2007)

    Article  Google Scholar 

  33. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  34. Powell, M.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2) (1964)

    Google Scholar 

  35. Rapin, J., Teytaud, O.: Nevergrad - a gradient-free optimization platform (2018). https://GitHub.com/FacebookResearch/Nevergrad

  36. Salmerón, A., Rumí, R., Langseth, H., Nielsen, T.D., Madsen, A.L.: A review of inference algorithms for hybrid Bayesian networks. J. Artif. Intell. Res. 62, 799–828 (2018). https://doi.org/10.1613/jair.1.11228

    Article  MathSciNet  Google Scholar 

  37. Scutari, M.: Learning Bayesian networks with the BNLearn R package. J. Stat. Softw. 35(3), 1–22 (2010)

    Article  Google Scholar 

  38. Shanno, D.F.: Conditioning of quasi-newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970)

    Article  MathSciNet  Google Scholar 

  39. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  40. Sussex, S., Sessa, P.G., Makarova, A., Krause, A.: Adversarial causal Bayesian optimization (2023)

    Google Scholar 

  41. van der Zander, B., Liśkiewicz, M., Textor, J.: Separators and adjustment sets in causal graphs: complete criteria and an algorithmic framework. Artif. Intell. 270, 1–40 (2019)

    Article  MathSciNet  Google Scholar 

  42. Vermetten, D., de Nobel, J., Ye, F., Wang, H., Doerr, C., Bäck, T.: IOHprofiler: iterative Optimization Heuristics Profiler (2018). https://github.com/IOHprofiler, wiki available at https://iohprofiler.github.io/

  43. Vitolo, C., Scutari, M., Ghalaieny, M., Tucker, A., Russell, A.: Modeling air pollution, climate, and health data using Bayesian networks: a case study of the English regions. Earth Space Sci. 5(4), 76–88 (2018)

    Article  Google Scholar 

  44. Vonk, M.C., Brand, S., Malekovic, N., Bäck, T., Laarman, A., Kononova, A.V.: Efficient inference in Bayesian networks with continuous variables a discretization and knowledge compilation approach. Available at SSRN 4620451 (2023)

    Google Scholar 

  45. Vonk, M.C., Malekovic, N., Bäck, T., Kononova, A.V.: Disentangling causality: assumptions in causal discovery and inference. Artif. Intell. Rev. 1–37 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten C. Vonk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vonk, M.C. et al. (2024). Optimizing Causal Interventions in Hybrid Bayesian Networks. In: Lesot, MJ., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024. Lecture Notes in Networks and Systems, vol 1174. Springer, Cham. https://doi.org/10.1007/978-3-031-74003-9_20

Download citation

Publish with us

Policies and ethics