Skip to main content

Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative Ultrasound

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2024)

Abstract

We propose in this paper a texture-invariant 2D keypoints descriptor specifically designed for matching preoperative Magnetic Resonance (MR) images with intraoperative Ultrasound (US) images. We introduce a matching-by-synthesis strategy, where intraoperative US images are synthesized from MR images accounting for multiple MR modalities and intraoperative US variability. We build our training set by enforcing keypoints localization over all images then train a patient-specific descriptor network that learns texture-invariant discriminant features in a supervised contrastive manner, leading to robust keypoints descriptors. Our experiments on real cases with ground truth show the effectiveness of the proposed approach, outperforming the state-of-the-art methods and achieving \(80.35\%\) matching precision on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baruch, E.B., Keller, Y.: Joint detection and matching of feature points in multimodal images. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(10), 6585–6593 (2021)

    Google Scholar 

  2. Christy, D., Moses, C.J.: Retinal image registration feature descriptors-a survey. In: 2014 International Conference on Electronics and Communication Systems (ICECS). pp. 1–5. IEEE (2014)

    Google Scholar 

  3. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: Self-supervised interest point detection and description. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 224–236 (2018)

    Google Scholar 

  4. Dixon, L., Lim, A., Grech-Sollars, M., Nandi, D., Camp, S.: Intraoperative ultrasound in brain tumor surgery: a review and implementation guide. Neurosurgical Review 45(4), 2503–2515 (2022)

    Google Scholar 

  5. Dorent, R., Haouchine, N., Kogl, F., Joutard, S., Juvekar, P., Torio, E., Golby, A.J., Ourselin, S., Frisken, S., Vercauteren, T., et al.: Unified brain mr-ultrasound synthesis using multi-modal hierarchical representations. In: International conference on medical image computing and computer-assisted intervention. pp. 448–458. Springer (2023)

    Google Scholar 

  6. Evan, M.Y., Wang, A.Q., Dalca, A.V., Sabuncu, M.R.: Keymorph: Robust multi-modal affine registration via unsupervised keypoint detection. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  7. Ferrante, E., Paragios, N.: Slice-to-volume medical image registration: A survey. Medical image analysis 39, 101–123 (2017)

    Google Scholar 

  8. Gonzalez-Darder, J.M.: State of the Art of the Craniotomy in the Early Twenty-First Century and Future Development, pp. 421–427. Springer International Publishing, Cham (2019)

    Google Scholar 

  9. Haouchine, N., Juvekar, P., Nercessian, M., Wells III, W.M., Golby, A., Frisken, S.: Pose estimation and non-rigid registration for augmented reality during neurosurgery. IEEE Transactions on Biomedical Engineering 69(4), 1310–1317 (2022)

    Google Scholar 

  10. Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, M., Schnabel, J.A.: Mind: Modality independent neighbourhood descriptor for multi-modal deformable registration. Medical image analysis 16(7), 1423–1435 (2012)

    Google Scholar 

  11. Jiang, X., Ma, J., Xiao, G., Shao, Z., Guo, X.: A review of multimodal image matching: Methods and applications. Information Fusion 73, 22–71 (2021)

    Google Scholar 

  12. Joutard, S., Dorent, R., Ourselin, S., Vercauteren, T., Modat, M.: Driving points prediction for abdominal probabilistic registration. In: International Workshop on Machine Learning in Medical Imaging. pp. 288–297. Springer (2022)

    Google Scholar 

  13. Juvekar, P., Dorent, R., Kögl, F., Torio, E., Barr, C., Rigolo, L., Galvin, C., Jowkar, N., Kazi, A., Haouchine, N., et al.: Remind: The brain resection multimodal imaging database. medRxiv (2023)

    Google Scholar 

  14. Kumar, A., Kim, J., Cai, W., Fulham, M., Feng, D.: Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. Journal of digital imaging 26, 1025–1039 (2013)

    Google Scholar 

  15. Lindenberger, P., Sarlin, P.E. and Pollefeys, M.: Lightglue: Local feature matching at light speed. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 17627–17638 (2023)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal of computer vision 60, 91–110 (2004)

    Google Scholar 

  17. Luo, J., Toews, M., Machado, I., Frisken, S., Zhang, M., Preiswerk, F., Sedghi, A., Ding, H., Pieper, S., Golland, P., Golby, A., Sugiyama, M., Wells III, W.M.: A feature-driven active framework for ultrasound-based brain shift compensation. In: MICCAI 2018. pp. 30–38 (2018)

    Google Scholar 

  18. Machado, I., Toews, M., Luo, J., Unadkat, P., Essayed, W., George, E., Teodoro, P., Carvalho, H., Martins, J., Golland, P., Pieper, S., Frisken, S., Golby, A., III, W.: Non-rigid registration of 3d ultrasound for neurosurgery using automatic feature detection and matching. International Journal of Computer Assisted Radiology and Surgery 13 (06 2018)

    Google Scholar 

  19. Paulus, C.J., Haouchine, N., Kong, S.H., Soares, R.V., Cazier, D., Cotin, S.: Handling topological changes during elastic registration: Application to augmented reality in laparoscopic surgery. International journal of computer assisted radiology and surgery 12, 461–470 (2017)

    Google Scholar 

  20. Sanai, N., Polley, M.Y., McDermott, M.W., Parsa, A.T., Berger, M.S.: An extent of resection threshold for newly diagnosed glioblastomas: Clinical article. Journal of Neurosurgery JNS 115(1),  3–8 (2011)

    Google Scholar 

  21. Talbot, H., Haouchine, N., Peterlik, I., Dequidt, J., Duriez, C., Delingette, H., Cotin, S.: Surgery Training, Planning and Guidance Using the SOFA Framework. In: Hege, H.C., Ropinski, T. (eds.) Eurographics 2015 - Dirk Bartz Prize. The Eurographics Association (2015). 10.2312/egm.20151028

    Google Scholar 

  22. Verdie, Y., Yi, K., Fua, P., Lepetit, V.: Tilde: A temporally invariant learned detector. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5279–5288 (2015)

    Google Scholar 

  23. Wu, M., Goodman, N.: Multimodal Generative Models for Scalable Weakly-Supervised Learning. NeurIPS 31 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Institutes of Health grants R01EB032387, R01EB034223, R03EB033910, and K25EB035166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Haouchine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rasheed, H. et al. (2025). Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative Ultrasound. In: Gomez, A., Khanal, B., King, A., Namburete, A. (eds) Simplifying Medical Ultrasound. ASMUS 2024. Lecture Notes in Computer Science, vol 15186. Springer, Cham. https://doi.org/10.1007/978-3-031-73647-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73647-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73646-9

  • Online ISBN: 978-3-031-73647-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics