Abstract
Recent advances in information theory have provided several tools to characterize high-order interactions (HOIs) in complex systems. Among them, the so-called O-information is emerging as particularly useful in practical analysis thanks to its ability to capture the overall balance between redundant and synergistic HOIs. While the O-information is computed for random variables, its extension to random processes studied in the frequency domain is very important to widen the applicability of this tool to networks whose node exhibit rich oscillatory content, such as brain and physiological networks. This work presents the O-information rate (OIR), a measure based on the vector autoregressive and state space modelling of multivariate time series devised to assess the synergistic and redundant HOIs among groups of series in specific bands of biological interest. The new measure is illustrated in two paradigmatic examples of physiological networks characterized by coupled oscillations across a wide range of temporal scales, i.e. the network of cardiovascular and cerebrovascular interactions where redundant synchronized activity emerges around the frequencies of vasomotor and respiratory rhythms, and the network of scalp electroencephalographic signals where synergetic HOIs are detected among the alpha and beta waves recorded over the primary sensorimotor cortex.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antonacci, Y., Minati, L., Nuzzi, D., Mijatovic, G., Pernice, R., Marinazzo, D., Stramaglia, S., Faes, L.: Measuring high-order interactions in rhythmic processes through multivariate spectral information decomposition. IEEE Access 9, 149486–149505 (2021)
Bari, V., Marchi, A., De Maria, B., Rossato, G., Nollo, G., Faes, L., Porta, A.: Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 374(2067), 20150179 (2016)
Barnett, L., Seth, A.K.: Granger causality for state-space models. Phys. Rev. E 91(4), 040101 (2015)
Bashan, A., Bartsch, R.P., Kantelhardt, J., Havlin, S., Ivanov, P.C., et al.: Network physiology reveals relations between network topology and physiological function. Nature Commun. 3(1), 1–9 (2012)
Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G., Petri, G.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)
Cohen, M.A., Taylor, J.A.: Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J. Physiol. 542(3), 669–683 (2002)
Faes, L., Mijatovic, G., Antonacci, Y., Pernice, R., BarÁ, C., Sparacino, L., Sammartino, M., Porta, A., Marinazzo, D., Stramaglia, S.: A Framework for the Time-and Frequency-Domain Assessment of High-Order Interactions in Brain and Physiological Networks. arXiv preprint: arXiv:2202.04179 (2022)
Faes, L., Pernice, R., Mijatovic, G., Antonacci, Y., Krohova, J.C., Javorka, M., Porta, A.: Information decomposition in the frequency domain: a new framework to study cardiovascular and cardiorespiratory oscillations. Philos. Trans. Roy. Soc. A 379(2212), 20200250 (2021)
Faes, L., Porta, A., Nollo, G., Javorka, M.: Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks. Entropy 19(1), 5 (2016)
Gerloff, C., Richard, J., Hadley, J., Schulman, A.E., Honda, M., Hallett, M.: Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain J. Neurol. 121(8), 1513–1531 (1998)
Geweke, J.: Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77(378), 304–313 (1982)
Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Ivanov, P.C., Bartsch, R.P.: Network physiology: mapping interactions between networks of physiologic networks. In: Networks of Networks: The Last Frontier of Complexity. Springer, pp. 203–222 (2014)
Kotiuchyi, I., Pernice, R., Popov, A., Faes, L., Kharytonov, V.: A framework to assess the information dynamics of source eeg activity and its application to epileptic brain networks. Brain Sci. 10(9), 657 (2020)
Luppi, A.I., Mediano, P.A., Rosas, F.E., Holland, N., Fryer, T.D., O’Brien, J.T., Rowe, J.B., Menon, D.K., Bor, D., Stamatakis, E.A.: A synergistic core for human brain evolution and cognition. Nature Neurosci. 25(6), 771–782 (2022)
Passingham, R.: Supplementary motor cortex and self-initiated movement. Neur. Program., 13–24 (1989)
Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)
Porta, A., Bari, V., De Maria, B., Takahashi, A.C., Guzzetti, S., Colombo, R., Catai, A.M., Raimondi, F., Faes, L.: Quantifying net synergy/redundancy of spontaneous variability regulation via predictability and transfer entropy decomposition frameworks. IEEE Trans. Biomed. Eng. 64(11), 2628–2638 (2017)
Porta, A., Faes, L.: Wiener-granger causality in network physiology with applications to cardiovascular control and neuroscience. Proc. IEEE 104(2), 282–309 (2015)
Rosas, F.E., Mediano, P.A., Gastpar, M., Jensen, H.J.: Quantifying high-order interdependencies via multivariate extensions of the mutual information. Phys. Rev. E 100(3), 032305 (2019)
Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Tran. Biomed. Eng. 51(6), 1034–1043 (2004)
Stramaglia, S., Scagliarini, T., Daniels, B.C., Marinazzo, D.: Quantifying dynamical high-order interdependencies from the o-information: an application to neural spiking dynamics. Front. Physiol. 11, 595736 (2021)
Van de Steen, F., Faes, L., Karahan, E., Songsiri, J., Valdes-Sosa, P.A., Marinazzo, D.: Critical comments on EEG sensor space dynamical connectivity analysis. Brain Topogr. 32(4), 643–654 (2019)
Varley, T.F., Pope, M., Faskowitz, J., Sporns, O.: Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex. arXiv preprint: arXiv:2206.06477 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sparacino, L., Antonacci, Y., Marinazzo, D., Stramaglia, S., Faes, L. (2023). Quantifying High-Order Interactions in Complex Physiological Networks: A Frequency-Specific Approach. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-21127-0_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21126-3
Online ISBN: 978-3-031-21127-0
eBook Packages: EngineeringEngineering (R0)