Skip to main content

hSDB-instrument: Instrument Localization Database for Laparoscopic and Robotic Surgeries

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Automated surgical instrument localization is an important technology to understand the surgical process and in order to analyze them to provide meaningful guidance during surgery or surgical index after surgery to the surgeon. We introduce a new dataset that reflects the kinematic characteristics of surgical instruments for automated surgical instrument localization of surgical videos. The hSDB(hutom Surgery DataBase)-instrument dataset consists of instrument localization information from 24 cases of laparoscopic cholecystecomy and 24 cases of robotic gastrectomy. Localization information for all instruments is provided in the form of a bounding box for object detection. To handle class imbalance problem between instruments, synthesized instruments modeled in Unity for 3D models are included as training data. Besides, for 3D instrument data, a polygon annotation is provided to enable instance segmentation of the tool. To reflect the kinematic characteristics of all instruments, they are annotated with head and body parts for laparoscopic instruments, and with head, wrist, and body parts for robotic instruments separately. Annotation data of assistive tools (specimen bag, needle, etc.) that are frequently used for surgery are also included. Moreover, we provide statistical information on the hSDB-instrument dataset and the baseline localization performances of the object detection networks trained by the MMDetection library and resulting analyses (The dataset, additional dataset statistics and several trained models are publicly available at https://hsdb-instrument.github.io/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Additional statistics is described at https://hsdb-instrument.github.io.

  2. 2.

    Additional experiment details and results are described at https://hsdb-instrument.github.io/.

References

  1. Hughes-Hallett, A., Mayer, E.K., Pratt, P.J., Vale, J.A., Darzi, A.W.: Quantitative analysis of technological innovation in minimally invasive surgery. Br. J. Surg. 102(2), 151–157 (2015)

    Article  Google Scholar 

  2. Perez, R.E., Schwaitzberg, S.D.: Robotic surgery: finding value in 2019 and beyond. Ann. Laparosc. Endosc. Surg. 4(51) (2019)

    Google Scholar 

  3. Jin, A., et al.: Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In: Proceedings of WACV (2018)

    Google Scholar 

  4. Maier-Hein, L., Wagner, M., Ross, T., et al.: Heidelberg colorectal data set for surgical data science in the sensor operating room. Sci. Data 8, 101 (2021)

    Article  Google Scholar 

  5. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., de Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2017)

    Article  Google Scholar 

  6. Allan, M., et al.: 2017 Robotic Instrument Segmentation Challenge. arXiv: 1902.06426 (2019)

  7. Sarikaya, D., Corso, J.J., Guru, K.A.: Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans. Med. Imaging 36(7), 1542–1549 (2017)

    Article  Google Scholar 

  8. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of CVPR (2012)

    Google Scholar 

  10. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of NIPS (2015)

    Google Scholar 

  11. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  12. Lin, T.-Y., Dolláir, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of CVPR (2017)

    Google Scholar 

  13. Huang, X., Liu, M.-Y., Belongie, S., Kautz J.: Multimodal unsupervised image-to-image translation. In: Proceedings of ECCV (2018)

    Google Scholar 

  14. Lee, K., Choi, M. -K., Jung, H.: DavinciGAN: unpaired surgical instrument translation for data augmentation. In: Proceedings of MIDL (2019)

    Google Scholar 

  15. Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of CVPR (2019)

    Google Scholar 

  16. Pfeiffer, M., et al.: Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_14

    Chapter  Google Scholar 

  17. Chen, K., et al.: MMDetection: Open MMLab Detection Toolbox and Benchmark. arXiv:1906.07155 (2019)

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of NeurIPS (2019)

    Google Scholar 

  19. Computer Vision Annotation Tool (CVAT). https://github.com/opencv/cvat

  20. Tremblay, J., et al.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. In: Proceedings of CVPRW (2018)

    Google Scholar 

  21. Cai Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of CVPR (2018)

    Google Scholar 

  22. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of ICCV (2017)

    Google Scholar 

  23. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of ICCV (2019)

    Google Scholar 

  24. Kong, T., Sun, F., Liu, H., Jiang, Y., Shi J.: FoveaBox: Beyond Anchor-based Object Detector. arXiv:1904.03797 (2019)

  25. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of CVPR (2019)

    Google Scholar 

  26. Li, A., Yang, X., Zhang, C.: Rethinking classification and localization for object detection. In: Proceedings of BMVC (2019)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR (2016)

    Google Scholar 

  28. Xie, S., Girshick, R., Dolláir, P., Tu, Z., He K.: Aggregated residual transformations for deep neural networks. In: Proceedings of CVPR (2017)

    Google Scholar 

  29. Wang, J., et al.: Deep High-Resolution Representation Learning for Visual Recognition. arXiv:1908.07919 (2019)

Download references

Acknowledgement

This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 202012A02-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kook Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoon, J. et al. (2021). hSDB-instrument: Instrument Localization Database for Laparoscopic and Robotic Surgeries. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics