Abstract
Gingivitis is a high-risk disease among middle-aged and elderly people, which greatly increases the difficulty of eating. People are increasingly concerned about the subhealth of gingivitis in order to solve the daily eating problems associated with gingivitis. In the field of medical image analysis, the process of studying gingivitis detection is more challenging because of the lack and difficulty of dental image analysis. The two key points of gingivitis image detection are the extraction of major features from gingival images and the accurate classification of different features. In this paper, a gingivitis detection method based on wavelet energy entropy is proposed. The energy of the wavelet spectrum of gingival image is calculated by using the information entropy, and a new wavelet energy entropy of image feature representation is obtained. The entropy is used to segment gingival image by linear regression classifier. The segmented gingival image sieves out redundant information, preserves key feature areas, and reduces the time required for classification. This improves diagnostic time consumption and helps dentists improve the efficiency of gingivitis diagnosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ebersole, J.L., Hamzeh, R., Nguyen, L., Al-Sabbagh, M., Dawson, D.: Variations in IgG antibody subclass responses to oral bacteria: effects of periodontal disease and modifying factors. J. Periodontal Res. 14 (2021)
Yarkac, F.U., Gokturk, O., Demir, O.: Interaction between stress, cytokines, and salivary cortisol in pregnant and non-pregnant women with gingivitis. Clin. Oral Investig. 25, 1677–1684 (2021). https://doi.org/10.1007/s00784-018-2569-9
You, W., Hao, A., Li, S., Wang, Y., Xia, B.: Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Hesalth 20, 141 (2020)
Rad, A.E., Rahim, M.S.M., Kolivand, H., Norouzi, A.: Automatic computer-aided caries detection from dental x-ray images using intelligent level set. Multimedia Tools Appl. 77, 28843–28862 (2018). https://doi.org/10.1007/s11042-018-6035-0
Haghanifar, A., Amirkhani, A., Mosavi, M.R.: Dental caries degree detection based on fuzzy cognitive maps and genetic algorithm. In: Iranian Conference on Electrical Engineering (ICEE), pp. 976–981 (2018)
Yang, J., Xie, Y., Liu, L., Xia, B., Cao, Z., Guo, C.: Automated dental image analysis by deep learning on small dataset. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 492–497 (2018)
Lee, J.H., Kim, D.H., Jeong, S.N., Choi, S.H.: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 77, 106–111 (2018)
Sangaiah, A.K.: Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Comput. Appl. 32, 665–680 (2020). https://doi.org/10.1007/s00521-018-3924-0
Li, W., et al.: A gingivitis identification method based on contrast-limited adaptive histogram equalization, gray-level co-occurrence matrix, and extreme learning machine. Int. J. Imaging Syst. Technol. 29, 77–82 (2019)
Wu, X.: Diagnosis of COVID-19 by Wavelet Renyi entropy and three-segment biogeography-based optimization. Int. J. Comput. Intell. Syst. 13, 1332–1344 (2020)
Akbari, H., Sadiq, M.T., Rehman, A.U.: Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain. Health Inf. Sci. Syst. 9, 15 (2021). https://doi.org/10.1007/s13755-021-00139-7
Ramirez, J.: Unilateral sensorineural hearing loss identification based on double-density dual-tree complex wavelet transform and multinomial logistic regression. Integr. Comput.-Aided Eng. 26, 411–426 (2019)
Upadhyay, P., Upadhyay, S.K., Shukla, K.K.: Magnetic resonance images denoising using a wavelet solution to laplace equation associated with a new variational model. Appl. Math. Comput. 400, 17 (2021)
Han, L.: Identification of alcoholism based on wavelet Renyi entropy and three-segment encoded Jaya algorithm. Complexity 2018 (2018)
Masoumi, M., Marcoux, M., Maignel, L., Pomar, C.: Weight prediction of pork cuts and tissue composition using spectral graph wavelet. J. Food Eng. 299, 10 (2021)
Phillips, P.: Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm. Neurocomputing 272, 668–676 (2018)
Gungor, M.A.: A comparative study on wavelet denoising for high noisy CT images of COVID-19 disease. Optik 235, 7 (2021)
Guttery, D.S.: Improved breast cancer classification through combining graph convolutional network and convolutional neural network. Inf. Process. Manag. 58, 102439 (2021)
Koc, M.: A novel partition selection method for modular face recognition approaches on occlusion problem. Mach. Vis. Appl. 32, 11 (2021). https://doi.org/10.1007/s00138-020-01156-4
Zhang, Y.-D., Dong, Z.-C.: Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf. Fusion 64, 149–187 (2020)
Haghighi, M.R.R., Sayari, M., Ghahramani, S., Lankarani, K.B.: Social, economic, and legislative factors and global road traffic fatalities. BMC Public Health 20, 12 (2020). https://doi.org/10.1186/s12889-020-09491-x
Chen, Y.: A feature-free 30-disease pathological brain detection system by linear regression classifier. CNS Neurol. Disord.: Drug Targets 16, 5–10 (2017)
Roshanzamir, A., Aghajan, H., Baghshah, M.S.: Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech. BMC Med. Inform. Decis. Making 21, 14 (2021). https://doi.org/10.1186/s12911-021-01456-3
Jorgensen, A.L., Kjelstrup-Hansen, J., Jensen, B., Petrunin, V., Fink, S.F., Jorgensen, B.: Acquisition and analysis of hyperspectral thermal images for sample segregation. Appl. Spectrosc. 75, 317–324 (2021)
Wang, S.-H.: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Inf. Fusion 68, 131–148 (2021)
Dyar, M.D., Ytsma, C.R.: Effect of data set size on geochemical quantification accuracy with laser-induced breakdown spectroscopy. Spectrochim. Acta Part B: At. Spectrosc. 177, 15 (2021)
Wang, S.-H.: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Inf. Fusion 67, 208–229 (2021)
Diale, R.G., Modiba, R., Ngoepe, P.E., Chauke, H.R.: Phase stability of TiPd1-xRux and Ti1-xPdRux shape memory alloys. Mater. Today: Proc. 38, 1071–1076 (2021)
Wang, S.-H.: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Trans. Multimedia Comput. Commun. Appl. 16, 1–19 (2020)
Fenu, G., Malloci, F.M.: Lands DSS: a decision support system for forecasting crop disease in Southern Sardinia. Int. J. Decis. Support Syst. Technol. 13, 21–33 (2021)
Muhammad, K.: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools Appl. 78, 3613–3632 (2019)
Tang, C.: Cerebral micro-bleeding detection based on densely connected neural network. Front. Neurosci. 13, 422 (2019)
Yang, G., et al.: Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimedia Tools Appl. 75, 15601–15617 (2016). https://doi.org/10.1007/s11042-015-2649-7
Wen, L., Yiyang, C., Leiying, M., Mackenzie, B., Weibin, S., Xuan, Z.: Gingivitis identification via grey-level cooccurrence matrix and extreme learning machine. In: 8th International Conference on Education, Management, Information and Management Society (EMIM 2018), pp. 486–492. Atlantis Press (2018)
Yan, Y., Nguyen, E.: Gingivitis detection by fractional fourier entropy and standard genetic algorithm. In: Huang, D.S., Bevilacqua, V., Hussain, A. (eds.) Intelligent Computing Theories and Application, vol. 12463, pp. 585–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60799-9_53
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, Y. (2021). Gingivitis Detection by Wavelet Energy Entropy and Linear Regression Classifier. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-84532-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84531-5
Online ISBN: 978-3-030-84532-2
eBook Packages: Computer ScienceComputer Science (R0)