Skip to main content

Proving the Existence of Fair Paths in Infinite-State Systems

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12597))

  • 850 Accesses

Abstract

In finite-state systems, true existential properties admit witnesses in form of lasso-shaped fair paths. When dealing with the infinite-state case (e.g. software non-termination, model checking of hybrid automata) this is no longer the case. In this paper, we propose a compositional approach for proving the existence of fair paths of infinite-state systems. First, we describe a formal approach to prove the existence of a non-empty under-approximation of the original system that only contains fair paths. Second, we define an automated procedure that, given a set of hints (in form of basic components), searches for a suitable composition proving the existence of a fair path. We experimentally evaluate the approach on examples taken from both software and hybrid systems, showing its wide applicability and expressiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The extended version is available at https://enricomagnago.com/proving_the_existence_of_fair_paths_in_infinite-state_systems_extended.pdf.

  2. 2.

    Hence, \(S^M \subseteq \bigcup _{j} S^j\) and \(\forall j \not = k : S^j \cap S^k = \emptyset \)

  3. 3.

    Note that this is the liveness-to-safety construction of [7].

  4. 4.

    Artifact DOI: https://doi.org/10.5281/zenodo.4271411.

  5. 5.

    This allows the procedure to make progress even if the solver is unable to provide a definite answer for some query. Many of the benchmarks require reasoning in mixed integer/real non-linear arithmetic (in general undecidable).

References

  1. Althoff, M.: An introduction to CORA 2015. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd International Workshop on Applied Verification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek 2015, Seattle, WA, USA, 13 April 2015. EPiC Series in Computing, vol. 34, pp. 120–151. EasyChair (2015). http://www.easychair.org/publications/paper/248657

  2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_21

    Chapter  Google Scholar 

  3. Becchi, A., Zaffanella, E.: Revisiting polyhedral analysis for hybrid systems. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 183–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_10

    Chapter  Google Scholar 

  4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

    Chapter  Google Scholar 

  5. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-guarantee verification of nonlinear hybrid systems with ariadne. Int. J. Robust Nonlinear Control 24(4), 699–724 (2014)

    Article  MathSciNet  Google Scholar 

  6. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–882. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_61

    Chapter  Google Scholar 

  7. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electron. Notes Theor. Comput. Sci. 66(2), 160–177 (2002). https://doi.org/10.1016/S1571-0661(04)80410-9

  8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_22

    Chapter  Google Scholar 

  9. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_11

    Chapter  Google Scholar 

  10. Chen, X., Sankaranarayanan, S., Ábrahám, E.: Flow* 1.2: more effective to play with hybrid systems. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd International Workshop on Applied Verification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek 2015, Seattle, WA, USA, 13 April 2015. EPiC Series in Computing, vol. 34, pp. 152–159. EasyChair (2015). http://www.easychair.org/publications/paper/248659

  11. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv with timed transition systems and timed temporal properties. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 376–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_21

    Chapter  Google Scholar 

  12. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying LTL properties of hybrid systems with K-Liveness. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 424–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_28

    Chapter  Google Scholar 

  13. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_4

    Chapter  Google Scholar 

  14. Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.W.: Disproving termination with overapproximation. In: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October 2014, pp. 67–74. IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987597

  15. Cook, B., Khlaaf, H., Piterman, N.: Verifying increasingly expressive temporal logics for infinite-state systems. J. ACM 64(2), 15:1–15:39 (2017). https://doi.org/10.1145/3060257

  16. Dutertre, B.: Solving exists/forall problems with yices. In: Workshop on satisfiability modulo theories (2015)

    Google Scholar 

  17. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). https://doi.org/10.1145/4904.4999

  18. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_17

    Chapter  Google Scholar 

  19. Frehse, G., Althoff, M. (eds.): ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systemsi, part of CPS-IoT Week 2019, Montreal, QC, Canada, 15 April 2019, EPiC Series in Computing, vol. 61. EasyChair (2019)

    Google Scholar 

  20. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  21. Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_24

    Chapter  Google Scholar 

  22. Gario, M., Micheli, A.: Pysmt: a solver-agnostic library for fast prototyping of SMT-based algorithms. In: SMT Workshop 2015 (2015)

    Google Scholar 

  23. Giannakopoulou, D., Namjoshi, K.S., Păsăreanu, C.S.: Compositional reasoning. Handbook of Model Checking, pp. 345–383. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_12

    Chapter  Google Scholar 

  24. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_13

    Chapter  Google Scholar 

  25. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.: Proving non-termination. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, 7–12 January 2008, pp. 147–158. ACM (2008). https://doi.org/10.1145/1328438.1328459

  26. Hosseini, M., Ouaknine, J., Worrell, J.: Termination of linear loops over the integers. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, 9–12 July 2019, Patras, Greece. LIPIcs, vol. 132, pp. 118:1–118:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.118

  27. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_61

    Chapter  Google Scholar 

  28. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2–3), 397–428 (2005). https://doi.org/10.1016/j.tcs.2004.09.023

  29. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal logic specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055036

    Chapter  Google Scholar 

  30. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: Model checking with strong fairness. Formal Methods Syst. Des. 28(1), 57–84 (2006). https://doi.org/10.1007/s10703-006-4342-y

  31. Kindermann, R., Junttila, T., Niemelä, I.: Beyond lassos: complete SMT-based bounded model checking for timed automata. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 84–100. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30793-5_6

    Chapter  Google Scholar 

  32. Larraz, D., Nimkar, K., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Proving non-termination using max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_52

    Chapter  Google Scholar 

  33. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 266–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_16

    Chapter  Google Scholar 

  34. Li, G.: Checking timed Büchi automata emptiness using LU-abstractions. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 228–242. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0_18

    Chapter  Google Scholar 

  35. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: Johansson, K.H., Yi, W. (eds.) Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, 12–15 April 2010, pp. 211–220. ACM (2010). https://doi.org/10.1145/1755952.1755983

  36. Pasareanu, C.S., Pelánek, R., Visser, W.: Predicate abstraction with under-approximation refinement. Log. Methods Comput. Sci. 3(1) (2007). https://doi.org/10.2168/LMCS-3(1:5)2007

  37. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid systems. Int. J. Softw. Tools Technol. Transf. 15(4), 305–320 (2013). https://doi.org/10.1007/s10009-012-0233-2

  38. Sankaranarayanan, S., Fainekos, G.E.: Falsification of temporal properties of hybrid systems using the cross-entropy method. In: Dang, T., Mitchell, I.M. (eds.) Hybrid Systems: Computation and Control (part of CPS Week 2012), HSCC 2012, Beijing, China, 17–19 April 2012, pp. 125–134. ACM (2012). https://doi.org/10.1145/2185632.2185653

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Magnago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cimatti, A., Griggio, A., Magnago, E. (2021). Proving the Existence of Fair Paths in Infinite-State Systems. In: Henglein, F., Shoham, S., Vizel, Y. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2021. Lecture Notes in Computer Science(), vol 12597. Springer, Cham. https://doi.org/10.1007/978-3-030-67067-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67067-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67066-5

  • Online ISBN: 978-3-030-67067-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics