Skip to main content

Haralick Feature Guided Network for the Improvement of Generalization in Landcover Classification

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (MedPRAI 2019)

Abstract

This study examined the application of semantic segmentation in landcover classification, a recently popular task in the field of remote sensing. Most semantic segmentation methods exhibit strong sample dependence. This tends to have high prediction accuracy in similar areas, but low accuracy in other areas or the same area at different time phases. Our approach utilizes three Haralick features to enhance the generalization ability. In addition, several variants were also implemented for comparison. We found that these features can effectively improve generalization of landcover classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma, A., Liu, X.-W., Yang, X.-J.: Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks. Neural Netw. 105, 346–355 (2018). https://doi.org/10.1016/j.neunet.2018.05.019

    Article  Google Scholar 

  2. Tian, Y.-Q., Guo, P., Lyu, M.R.: Comparative studies on feature extraction methods for multispectral remote sensing image classification. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Hawaii, pp. 1275–1279 (2005)

    Google Scholar 

  3. Mahmoud, A., Elbialy, S., Pradhan, B., Buchroithner, M.: Field-based landcover classification using TerraSAR-X texture analysis. Adv. Space Res. 48(5), 799–805 (2011). https://doi.org/10.1016/j.asr.2011.04.005

    Article  Google Scholar 

  4. Shi, D., Yang, X.-J.: An assessment of algorithmic parameters affecting image classification accuracy by random forests. Photogram. Eng. Rem. Sens. 82(6), 407–417 (2016). https://doi.org/10.14358/PERS.82.6.407

    Article  Google Scholar 

  5. Yang, X.-J.: Parameterizing support vector machines for land cover classification. Photogram. Eng. Rem. Sens. 77(1), 27–37 (2011)

    Article  Google Scholar 

  6. Rakhlin, A., Davydow, A., Nikolenko, S.: Land cover classification from satellite imagery with U-Net and Lovász-Softmax loss. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, pp. 262–266 (2018)

    Google Scholar 

  7. Davydow, A., Nikolenko, S.: Land cover classification with superpixels and Jaccard index post-optimization. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, pp. 280–284 (2018)

    Google Scholar 

  8. Zhang, C., et al.: Joint deep learning for land cover and land use classification. Rem. Sens. Environ. 221, 173–187 (2019). https://doi.org/10.1016/j.rse.2018.11.014

    Article  Google Scholar 

  9. Kuo, T.-S., Tseng, K.-S., Yan, J., Liu, Y.-C., Wang, F.Y.-C.: Deep aggregation net for land cover classification. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, pp. 252–256 (2018). https://doi.org/10.1109/cvprw.2018.00046

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston MA, USA, pp. 3431–3440 (2015). https://doi.org/10.1109/tpami.2016.2572683

    Article  Google Scholar 

  11. Badrinarayanan, V., Handa, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Rem. Sens. Lett. 15, 749–753 (2018). https://doi.org/10.1109/LGRS.2018.2802944

    Article  Google Scholar 

  14. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Hartwig, A.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 801–818 (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  15. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979). https://doi.org/10.1109/PROC.1979.11328

    Article  Google Scholar 

  16. Tong, X.-Y., et al.: Learning transferable deep models for land-use classification with high-resolution remote sensing images (2018). http://arxiv.org/abs/1807.05713

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoji Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Li, D., Zhao, C., Xu, J., Zhang, B. (2020). Haralick Feature Guided Network for the Improvement of Generalization in Landcover Classification. In: Djeddi, C., Jamil, A., Siddiqi, I. (eds) Pattern Recognition and Artificial Intelligence. MedPRAI 2019. Communications in Computer and Information Science, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-030-37548-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37548-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37547-8

  • Online ISBN: 978-3-030-37548-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics