Abstract
Hyperspectral images have far more spectral bands than ordinary multispectral images. Rich band information provides more favorable conditions for the tremendous applications as well as many problems such as the curse of dimensionality. Band selection is an effective method to reduce the spectral dimension which is one of popular topics in hyperspectral remote sensing. Motivated by previous sparse representation method, we present a novel framework for band selection based on multi-dictionary sparse representation (MDSR). By obtaining the sparse solutions for each band vector and the corresponding dictionary, the contribution of each band to the raw image is derived. In terms of contribution, the appropriate band subset is selected. Five state-of-art band selection methods are compared with the MDSR on three widely used hyperspectral datasets. Experimental results show that MDSR achieves marginally better performance in hyperspectral image classification, and better performance in average correlation coefficient and computational time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Plenum Publishing Co. (2003)
Hughes, G.P.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)
RichardErnest: Adaptive Control Processes: A Guided Tour. The University Press (1961)
Bo, C., Lu, H., Wang, D.: Spectral-spatial k-nearest neighbor approach for hyperspectral image classification. Multimed. Tools Appl. 77(9), 1–18 (2018)
Li, P., Wang, D., Wang, L., Lu, H.: Deep visual tracking: review and experimental comparison. Pattern Recogn. (2017)
Jia, X., Kuo, B.-C., Crawford, M.M.: Feature mining for hyperspectral image classification. Proc. IEEE 101(3), 676–697 (2013)
Li, S., Qi, H.: Sparse representation based band selection for hyperspectral images. In: IEEE International Conference on Image Processing, pp. 2693–2696 (2011)
Du, Q., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral band selection using a collaborative sparse model. In: Geoscience and Remote Sensing Symposium, pp. 3054–3057 (2012)
Chien, H.C., Lai, C.H., Liu, K.H.: Unsupervised band selection based on group-based sparse representation. In: Asian Conference on Computer Vision, pp. 389–401 (2016)
Sun, K., Geng, X., Ji, L.: A new sparsity-based band selection method for target detection of hyperspectral image. IEEE Geosci. Remote Sens. Lett. 12(2), 329–333 (2015)
Sun, W., Jiang, M., Li, W., Liu, Y.: A symmetric sparse representation based band selection method for hyperspectral imagery classification. Remote Sens. 8(3), 238 (2016)
Bo, C., Lu, H., Wang, D.: Hyperspectral image classification via JCR and SVM models with decision fusion. IEEE Geosci. Remote Sens. Lett. 13(2), 177–181 (2016)
Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)
He, L., Ruan, W., Li, Y.: Sparse representation based hyperspectral imagery classification via expanded dictionary. In: Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4 (2012)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Sparse representation for target detection in hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 5(3), 629–640 (2011)
Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)
Chang, C.-I., Du, Q., Sun, T.-L., Althouse, M.L.: A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 37(6), 2631–2641 (1999)
Yuan, Y., Zhu, G., Wang, Q.: Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans. Geosci. Remote Sens. 53(2), 631–644 (2014)
Du, Q., Yang, H.: Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. Lett. 5(4), 564–568 (2008)
Yang, H., Du, Q., Chen, G.: Unsupervised hyperspectral band selection using graphics processing units. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(3), 660–668 (2011)
Martınez-Usó, A., Pla, F., Sotoca, J.M., Garcıa-Sevilla, P.: Clustering-based multispectral band selection using mutual information. In: International Conference on Pattern Recognition (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Li, F., Zhang, P., Lu, H. (2020). An Improved Unsupervised Band Selection of Hyperspectral Images Based on Sparse Representation. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-04946-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04945-4
Online ISBN: 978-3-030-04946-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)