Abstract
We present a procedure for proving inductive theorems which is based on explicit induction, yet supports mutual induction. Mutual induction allows the postulation of lemmas whose proofs use the theorems ex hypothesi while the theorems themselves use the lemmas. This feature has always been supported by induction procedures based on Knuth-Bendix completion, but these procedures are limited by the use of rewriting (or rewriting-like) inferences. Our procedure avoids this limitation by making explicit the implicit induction realized by these procedures. As a result, arbitrary deduction mechanisms can be used while still allowing mutual induction.
Work supported by Ministère des Affaires Etrangères
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Bachmair. Proof by consistency in equational theories. In Proc. 3rd LICS Symp., Edinburgh (UK), pages 228–233, 1988.
E. Bevers and J. Lewi. Proof by consistency in conditional equational theories. In S. Kaplan and M. Okada, editors, 2nd CTRS Workshop, LNCS, vol. 516, pages 195–205. Springer-Verlag, 1991.
S. Biundo, B. Hummel, D. Hutter, and C. Walther. The Karlsruhe induction theorem proving system. In 8th CADE Conf., LNCS, vol. 230. Springer-Verlag, 1986.
Adel Bouhoula and MichaËl Rusinowitch. Automatic case analysis in proof by induction. In Ruzena Bajcsy, editor, Proc. 13th IJCAI Conf., Chambéry (France), volume 1, pages 88–94. Morgan Kaufmann, August 1993
R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New York, 1979.
R. S. Boyer and J. S. Moore. A theorem prover for a computational logic. In M. E. Stickel, editor, Proc. 10th CADE Conf., Kaiserslautern (Germany), LNCS, vol. 449, pages 1–15. Springer-Verlag, 1990
F. Bronsard and U. S. Reddy. Conditional rewriting in Focus. In S. Kaplan and M. Okada, editors, 2nd CTRS Workshop, LNCS, vol. 516, pages 2-13. Springer-Verlag, 1991.
F. Bronsard and U. S. Reddy. Reduction techniques for first-order reasoning. In M. Rusinowitch and J. L. Rémy, editors, 3rd CTRS Workshop, LNCS, vol. 656, pages 242–256. Springer-Verlag, 1992.
A. Bundy. A rational reconstruction and extension of recursion analysis. In IJCAI, 1989.
R. M. Burstall. Proving properties of programs by structural induction. Computer Journal, 12:41–48, 1969.
N. Dershowitz. Completion and its applications. In Resolution of Equations in Algebraic Structures, volume 2: Rewriting Techniques, pages 31–86. Academic Press, San Diego, 1989.
N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science B: Formal Methods and Semantics, chapter 6, pages 243–320. North-Holland, Amsterdam, 1990.
N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Comm. ACM, 22(8):465–476, August 1979.
S. J. Garland and J. V Guttag. Inductive methods for reasoning about abstract data types. In ACM POPL Symp., pages 219–228. ACM, 1988.
J. A. Goguen. How to prove inductive hypotheses without induction. In 5th CADE Conf., LNCS, vol. 87, pages 356–372. Springer Verlag, Jul 1980.
B. Gramlich. Induction theorem proving using refined unfailing completion techniques. In ECAI, 1989. (also vailable as Technical Report SR-89-14, Universität Kaiserslautern, Germany.).
D. Hofbauer and R. D. Kutsche. Proving inductive theorems based on term rewriting systems. In J. Grabowski, P. Lescanne, and W. Wechler, editors, Proc. 1st ALP Workshop, pages 180–190. Akademie Verlag, 1988.
G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors. J. Comp. and System Sciences, 25:239–266, 1982.
J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories without constructors. Information and Computation, 82:1–33, 1989.
D. Kapur and D. R. Musser. Proof by consistency. Artificial Intelligence, 31(2):125–157, February 1987.
D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using test sets. J. Symbolic Computation, 11:83–112, 1991.
D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford, 1970.
E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. In Proc. AAAI Conf., pages 240–245. AAAI Press and MIT Press, July 1990.
R. Kowalski. Studies in the completeness and efficiency of theorem-proving by resolution. PhD thesis, University of Edinburgh, 1970.
D. McAllester. Term rewriting induction. theorem-provers@ai.mit.edu electronic bulletin board, 1990.
D. R. Musser. On proving inductive properties of abstract data types. In ACM POPL Symp., pages 154–162. ACM, 1980.
U. S. Reddy. Term rewriting induction. In M. Stickel, editor, 10th CADE Conf., volume 449 of LNAI, pages 162–177. Springer-Verlag, 1990.
Jean-Luc Rémy. Etude des systèmes de Réécriture Conditionnels et Applications aux Types Abstraits Algébriques. Th. Etat, INPL, Nancy (France), 1982.
G. A. Robinson and L. T. Wos. Paramodulation and first-order theorem proving. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 4, pages 135–150. Edinburgh University Press, 1969.
J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12:23–41, 1965.
C.-P. Wirth and B. Gramlich. On notions of inductive validity for first-order equational clauses. In 12th CADE Conf., 1994.
H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction principle for equational specifications. In E. Lusk and R. Overbeek, editors, 9th CADE Conf., LNCS, vol. 310, pages 162–181. Springer-Verlag, 1988.
Author information
Authors and Affiliations
Corresponding author
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bronsard, F., Reddy, U.S., Hasker, R.W. (1994). Induction using term orderings. In: Bundy, A. (eds) Automated Deduction — CADE-12. CADE 1994. Lecture Notes in Computer Science, vol 814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58156-1_8
Download citation
DOI: https://doi.org/10.1007/3-540-58156-1_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58156-7
Online ISBN: 978-3-540-48467-7
eBook Packages: Springer Book Archive