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Panel data - what do we mean by that?

Cross-sectional data gives us information in a particular moment
concerning some characteristics of interest from a set of units.

Table 1: Banks - Cross-section data (1st trimester)

Average balance Number Employees Interest rate Liquidity
A 4861.11 1815 0.000 1000975.5
B 6199.81 1681 0.023 1010559.6
C 4252.28 2469 0.042 997914.6
D 4424.75 1406 0.011 983638.6
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In some cases, it is usual to collect the data in multiple time periods.

Table 2: Banks - Cross-section data (1st trimester)

Average balance Number Employees Interest rate Liquidity
A 4159.14 3198 0.031 998424.7
B 6384.36 1578 0.010 989282.4
C 3744.51 1669 0.004 998610.1
D 5070.14 1555 0.037 994026.9

Table 3: Banks - Cross-section data (2nd trimester)

Average balance Number Employees Interest rate Liquidity
A 4038.07 2137 0.086 992836.4
B 4707.47 2021 0.027 1002526.5
C 5258.79 2060 0.047 1001520.5
D 3847.87 2782 0.086 996923.4

Table 4: Banks - Cross-section data (3rd trimester)

Average balance Number Employees Interest rate Liquidity
A 5216.75 3145 0.001 1000747.1
B 4457.51 2482 0.001 992903.1
C 5891.14 1103 0.001 1003975.6
D 5595.98 1851 0.002 1018961.5
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Rearraging the data

Table 5: Banks - panel data

Trimester Average balance Number Employees Interest rate Liquidity
A 1st trimester 4159.14 3198 0.031 998424.66
A 2nd trimester 4038.07 2137 0.086 992836.42
A 3rd trimester 5216.75 3145 0.001 1000747.11
B 1st trimester 6384.36 1578 0.01 989282.4
B 2nd trimester 4707.47 2021 0.027 1002526.52
B 3rd trimester 4457.51 2482 0.001 992903.12
C 1st trimester 3744.51 1669 0.004 998610.14
C 2nd trimester 5258.79 2060 0.047 1001520.46
C 3rd trimester 5891.14 1103 0.001 1003975.58
D 1st trimester 5070.14 1555 0.037 994026.87
D 2nd trimester 3847.87 2782 0.086 996923.44
D 3rd trimester 5595.98 1851 0.002 1018961.49
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Balanced/Unbalanced panel

Table 6: Banks - unbalanced panel data

Trimester Average balance Number Employees Interest rate Liquidity
A 1st trimester 4159.14 3198 0.031 998424.66
A 2nd trimester 4038.07 – 0.086 992836.42
A 3rd trimester 5216.75 3145 0.001 1000747.11
B 1st trimester 6384.36 1578 0.01 989282.4
B 2nd trimester 4707.47 2021 0.027 1002526.52
B 3rd trimester 4457.51 2482 0.001 992903.12
C 1st trimester 3744.51 1669 0.004 998610.14
C 2nd trimester 5258.79 2060 0.047 1001520.46
C 3rd trimester – 1103 0.001 1003975.58
D 1st trimester 5070.14 1555 0.037 994026.87
D 2nd trimester 3847.87 2782 0.086 996923.44
D 3rd trimester 5595.98 1851 0.002 1018961.49
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Why panel data?

A classical regression model may help to predict the balance banks
variation depending on the number of employees. Small banks tend
to have lower balance values.

The existence of a small bank with a high balance (due to an
unobserved effect like being located in a very rich neighbourhood)
will not affect much the model.

But, when we introduce repeated measures. . .

The existing heterogeneity becomes a persistent factor!

OLS assumption of uncorrelated explanatory variables with errors
falls down!
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Panel data analysis - advantages

1- Controlling for heterogeneity

2- More informative data - less collinearity, more efficiency

3- allows to observe changes over time

4- Identify and measure effects that are simply not detectable in
pure cross-section or pure time-series data
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Examples

European Community Household Panel
(ECHP)[https://ec.europa.eu/eurostat/web/microdata/european-
community-household-panel](EUROSTAT 2001): panel survey
consisting of annual interviews with a sample of households and
individuals.

2020 American Life Panel Survey on Impacts of COVID-19 (Grace
Carman and Nataraj 2019) (RAND corporation) American Life Panel
ALP (since 2006) assess the effects of the corona virus disease 2019
pandemic on individuals and households across a variety of topics
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Typical data set of panel data
Let x and y be observable random variables, and let c be an
unobservable random variable.

The main interest is to study the partial effects of the observable
explanatory variables xj in the population regression function.

yit = β0 + xT
it β + ci + uit , i = 1, ..., N; t = 1, ..., T , (1)

i - households, individuals,
countries,firms, etc.
t - time for each cross-section;
β0 - scalar;
β - vector K × 1;

xit - the ith observation on K
explanatory variables (K × 1
vector);
ci - unobservable
individual-specific effect;
uit - remainder
disturbance,idiosyncratic errors.
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Example - The Grunfeld data

The Grunfeld data set contains investment annual data for 11 firms
from US from 1935 until 1954 a total of 220 observations (11 firms
× 20 years) with values of the following variables (in dollars with
reference to the year 1947):

▶ invest: Gross investment
▶ value: market value
▶ capital: stock of plant and equipment
▶ firm: General Motors, US Steel, General Electric, Chrysler,

Atlantic Refining, IBM, Union Oil, Westinghouse, Goodyear,
Diamond Match, American Steel

▶ year: 1935-1954
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Example - The Grunfeld data

invest value capital firm year
1 317.6 3078.5 2.8 General Motors 1935
2 391.8 4661.7 52.6 General Motors 1936
3 410.6 5387.1 156.9 General Motors 1937
4 ... ... ... NA ...
26 361.6 2202.9 254.2 US Steel 1940
27 472.8 2380.5 261.4 US Steel 1941
28 445.6 2168.6 298.7 US Steel 1942
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Example - The Grunfeld data
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Regression model for panel data - vector form
The equation in (1) may be written as

y = β0INT + Xβ + u,

where

y =



y11
y12
...

y1T
...

yNT


INT =



1
1
...

...
1

 X =



x111 x211 ... xK11

...
x11T x21T ... xK1T
x121 x221 ... xK21

...
x12T x22T ... xK2T
...

x1NT x2NT ... xKNT


and u is a (NT × 1) matrix with, ui = ci + µit , i = 1, ..., N; t = 1, ..., T .
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By definition of the model in (1),

1- E [ut |xt , c) = 0 and

2- E [xT
t ut ] = 0

for , i = 1, ..., T .
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Linear regression with panel data

Is is possible to consider different approaches to estimate the
parameters of a panel data model:

▶ Pooled OLS
▶ First differences
▶ Random effects
▶ Fixed effects
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Pooled OLS

When the c variable is uncorrelated with the explanatory variables,
data may be treated as independent; if ci = c, constant, OLS may
be used to obtain consistent and efficient estimates of the common
model parameters (Greene 2011).

This means we will have a single equation for all the data set.

yit = β0 + xT
it β + uit , i = 1, ..., N; t = 1, ..., T ,

with the usual assumptions:
▶ P1: linearity
▶ P2: exogeneity
▶ P3: homocedasticity and

non-correlation of u

▶ P4: non stochastic x
▶ P5: non multicollinearity
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Pooled OLS

Repeated observations are pooled together, regardless the unit they
arise from.

▶ No problem when there is no heterogeneity among the units.

▶ But, if c is correlated with any element of xt , then pooled OLS
estimates will be biased and inconsistent!
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Pooled regression model for Grunfeld data

Ignoring the existence of a firm effect, the regression pooled model
will be represented by the equation

investit = β0 + β1valueit + β2capitalit + uit . (2)

and we obtain the same parameter OLS estimates for all the unities.

In this case we get the fitted regression equation,

ˆinvest it = −38.41 + 0.115valueit + 0.228capitalit .
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Pooled regression model for Grunfeld data

Table 7: OLS pooling estimates - Grunfeld data

Estimate Std. Error t-value Pr(>|t|)
(Intercept) -38.4100540 8.4133709 -4.565358 8.4e-06
value 0.1145344 0.0055188 20.753369 0.0e+00
capital 0.2275141 0.0242283 9.390448 0.0e+00

With this model, both Capital and Value shows positive and
significant relationship with Investment of a firm.
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Pooled regression model for Grunfeld data
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First differences

Suppose we have T = 2 observed times for the variables of the
model and admit c is constant over time.

The variable c is known as an unobserved effect or omitted or
latent variable in panel data.

Examples:

▶ skills; field of knowledge; family background; region.

▶ number of workers; region; organic structure.

In the two different periods, there is no change in the family
background of an individual, or in the organic structure of a firm!
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First differences
With ci = c representing some characteristic constant over time, if
we apply the first differences transformation in model (1), this effect
will be eliminated.

Applying the first difference transformation results in the model,

yit − yi(t−1) = β(xit − xi(t−1)) + (c − c) + (µit − µi(t−1)),

or

∆y = ∆xβ + ∆u.

Assuming a random sample, it is possible to apply OLS and obtain a
FD estimator,

β̂FD.
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First differences - OLS

OLS estimation implies no correlation between between the error
term and the independent variables, so the following conditions
must be observed:

F1 - E [∆xT ∆u] = 0, and

F1 condition refers to the strict
exogeneity assumption (a
variable is said to be strictly
exogenous if it does not depend
on current, past, and future
values of the error term uit).

F2- rank E [∆xT ∆u] = K .

F2 implies that we must not
have explanatory variables
constant in time (since the
variables present in the model
result from differences in time it
would mean a column of zeros
and fail of F2).
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First differences model for Grunfeld data

Table 8: First difference estimates - Grunfeld data

Estimate Std. Error t-value Pr(>|t|)
(Intercept) -1.6539169 3.2002661 -0.516806 0.605846
value 0.0896966 0.0079583 11.270796 0.000000
capital 0.2905922 0.0506193 5.740738 0.000000

In this case the estimated regression equation is

ˆinvest it = −1.654 + 0.09valueit + 0.291capitalit .
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Random effects
Random effects approach treats the composite error of the model,
νit = ci + uit in (1), in a context of generalized least squares (GLS)
framework which demands for additional conditions RE1, RE2 and
RE3:

RE1 :
{

E [uit |xi , c)] = 0, t = 1, 2, ..., T ;
E [ci |xi ] = E [ci ] = 0.

RE2 : rankE [XT
i Ω−1Xi ] = K

where Ω = E [vivT
i ], (assumed to be positive definite) and

vi = ciJ + ui , (J is T dimensional ones vector).
(GLS and feasible GLS are consistent under Assumptions RE.1 and RE.2
(Wooldridge 2010).)
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Random effects

and

RE3 :
{

E [uiuT
i |xi , c] = σ2

uI
E [c2

i |xi ] = σ2
c

which implies


E [u2

i ] = σ2
u

E [uius ] = 0, ∀t ̸= s
E [vivT

i |xi ] = E [vivT
i ].

Unis share the same β coefficients and the same intercept; it is
assumed that the difference that may exist among individuals (or
time periods) lies in their individual specific errors.
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Random effects

So, in a random effects approach, the matrix Ω may be written as

Ω =


σ2

c + σ2
u σ2

c ... σ2
c

σ2
c σ2

c + σ2
u ... σ2

c

... ...
. . . ...

σ2
c σ2

c ... σ2
c + σ2

u


or

Ω = σ2
uI + σ2

c JJT .
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Random effects

The random effects estimator is the FGLS estimator that uses the
variance matrix Ω̂, assuming that σ̂2u and σ̂2

c are consistent
estimators of σ2

u and σ2
u, respectively, i.e.,

β̂RE =
( N∑

i=1
XT

i Ω̂−1Xi

)−1( N∑
i=1

XT
i Ω̂−1yi

)
,

is consistent and efficient under the condition E [vi |xi ] = 0.
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LM - Breush-Pagan test Poold vs random

Breusch and Pagan (1980) propose a Lagrange multiplier test for
the random effects model based on the OLS residuals eit :

H0 : σ2
c = 0 vs H1 : σ2

c ̸= 0.

The test statistic is LM (Greene 2011),

LM = nT
2(T − 1)

[ ∑n
i=1(T ēi .)2∑n

i=1
∑T

t=1 e2
it

− 1
]

;

under H0 LM ∼ χ1.

Rejecting H0 means the pooled model is not suitable.

30 / 75



Random effects model for Grunfeld data

Table 9: Random effects estimates - Grunfeld data

Estimate Std. Error z-value Pr(>|z|)
(Intercept) -53.9436014 25.6969760 -2.09922 0.0357975
value 0.1093053 0.0099138 11.02556 0.0000000
capital 0.3080360 0.0163873 18.79724 0.0000000

Obtaining the commom part of the estimated equation,

ˆinvest it = −53.944 + 0.109valueit + 0.308capitalit .
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with estimated deviations from the intercept which may be obtained
from equation

ĉi = β0 + ȳi − x̄i β̂RE ,

reulting in different equations for each firm, with deviations
deviations from common intercept

General Motors -11.26035
US Steel 154.90212
General Electric -175.64458
Chrysler 26.40907
Atlantic Refining -58.30666
IBM 30.71117
Union Oil -11.61131
Westinghouse -2.82158
Goodyear -31.75337
Diamond Match 46.49745
American Steel 32.87806
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Fixed effects

OLS is also possible to use with some adequate transformation of
the model:
▶ regression with deviations

from the group means
(within transformation)

yit −ȳi . = (xit −x̄i .)T β+uit −ūi .,

▶ regression with the group
means (between groups
transformation)

ȳi . = x̄T
i . β + ui − ūi .,

where ȳi . = 1
T
∑T

t=1 yit , x̄T
i . = 1

T
∑T

t=1 xT
it , and ūi . = 1

T
∑

t=1 uit .
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Fixed effects

The within transformation results in the within or Fixed Effects
(FE) estimator.

This model assumes differences across units can be captured in
differences in the constant term and each intercept is a
parameter to be estimated.

In this case, we must have strict exogeneity of the explanatory
variables conditional on ci ,

FE1 : E (uit |xi , ci) = 0, t = 1, 2, ..., T

but we admit correlation between ci and xi , and this is the main
difference between the RE and the FE estimator.
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We also must observe the conditions

FE2 : rankE [(xit − x̄i)T (xit − x̄i)] = K ,

and

FE3 : E [uiuT
i |xi , ci ] = σ2

uIT

to assure efficiency (Wooldridge 2010).
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Fixed effects (FE) estimator

The FE estimator (also known as within estimator) may be
expressed as

β̂EF =
( N∑

i=1

T∑
t=1

(xit − x̄i .)T (xit − x̄i .)
)−1( N∑

i=1

T∑
t=1

(xit − x̄i .)T (yit − ȳi .)
)

.

Under FE1 to FE3, the FE estimator, β̂EF is an unbiased estimator,
conditional to X and the different values of the intercept for each
unit may be obtained by

ĉi = ȳi − x̄i β̂FE .
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Alert!

▶ Time-constant factors must not be included in xit with FE
model.

As we allow for correlation between ci and xi , this means that we
cannot tell the difference between the effects from time-constant
observable variables and time-constant unobservable ci !

Variables like gender, location, field of action, etc., (constant over
time) should not be included.
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F-test for pooled vs FE

▶ Is it acceptable considering all the intercepts as equal?

An F statistic comparing the unrestricted model (FE) with a
restricted model (pooled model with Q restriction on β0 may be
considered to test if all the intercepts are equal (Baltagi 2021),
(Gujarati 2004):

F = SSRr − SSRur
SSRur

N(T − 1) − K
Q ∼ FQ.N(T−1)−K

Rejecting H0 means the pooled model is not adequate.
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F-test for pooled vs FE (Grunfeld data)

With the Grunfeld data, the we obtain the indication that a
common intercept is not adequate for the data.

The F observed value is 5.7218251 with 20 , 187 degrees of freedom
and a p-value close to zero.
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Fixed effects model for Grunfeld data

Table 10: Fixed effects estimates - Grunfeld data

Estimate Std. Error t-value Pr(>|t|)
value 0.1101291 0.0112998 9.746075 0
capital 0.3100334 0.0165405 18.743924 0

For the fixed effects we obtain the estimated β coefficients,

ˆinvest it = 0.11valueit + 0.31capitalit ,
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Fixed effects model for Grunfeld data

And also, the intercept for each firm. For example,

ˆinvest it = −70.299 + 0.11valueit + 0.31capitalit ,

for the General Motors firm, and

ˆinvest it = 101.905 + 0.11valueit + 0.31capitalit ,

for the US Steel.
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Which model to choose? Fixed or random effects?
Hausman test

In most situations it is unlikely to have zero correlations between the
random effects and the explanatory variables. In that case, β will be
inconsistent.

The Hausman test (Hausman, Hausman, and Jerry 1978) helps to
evaluate if that correlation exists.

Under the hypothesis of no correlation, both estimators are
consistent. So, it is expected both to produce similar estimates.

The Hausman test focus in the difference [ ˆβFE − ˆβRE ]
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The Hausman test

The Hausman statistic test is

W = [ ˆβFE − ˆβRE ]T Ψ̂−1[ ˆβFE − ˆβRE ],

and W ∼ χ2
k−1, where Ψ̂ = Var [ ˆβFE − ˆβRE ],

▶ Not to reject H0 means both estimators are consistent and, in
that case, ˆβRE is a better option because it is more efficient.

▶ Rejecting H0 means the ˆβFE should be chosen because ˆβRE is
not consistent.
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The Hausman test - Grunfeld data

The Hausman test for the Grunfeld data points not to reject the H0
hypothesis with a p − value = 0.1375503.

This means that the β̂RE estimator should be considered since in
this case, both estimators are consistent but β̂RE is more efficient.
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Which model to choose?

A useful summary scheme shows the possible paths searching for an
adequate model (Mesquita, Fernandes, and Filho 2021).
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Robust methods

▶ In real panel data, it is common to have the faillure of the
assumed hypotheses and frequently, atypical observations
occur.

▶ Outliers are observations with low probability of belonging to
the same distribution of the majority of the data.

▶ Classical estimation of PDM (FGLS) may be seriously affected
by the presence of outliers.

▶ It’s important to detect the presence of outliers in panel data,
but visual observation is not easy, given the multivariate nature
of this type of data.
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Robust methods

Robust estimation must be less affected by the presence of outliers.

Some robust procedures have been proposed for PDM: Bramati and
Croux (2007), Aquaro and Cízek (2018), Dhaene and Zhu (2017),
Ji, A., et al. (2023). These authors adapted robust regression
methods (P. J. Rousseeuw and Leroy 1987) to PDM.

The implementation of robust estimation methods is not as
accessible as the implementation of classical estimation methods for
this type of models, and, perhaps for this reason, there are few
papers with application of robust methodologies in the fields of
economics and finance.

We intend to make a contribution to reverse this trend, proposing a
robust estimator for PDM that may be more easy to apply.
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FGLS

Our proposal is to robustify the FGLS estimator, recalling that its
implementation includes three steps.

▶ Estimate the Pooled Model parameters using Least Squares
and collect the residuals (error estimates).

▶ Estimate the errors covariances matrix Ω by sample covariances
matrix of the residuals of the former step.

▶ Estimate the model parameters by FGLS with the estimated
covariance matrix obtained in the former step.

We propose RFGLS (Robust Feasible Generalized Least Squares)
estimator where wet implemented robust techniques in FGLS steps.
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RFGLS algorithm
1. Estimate the Pooled Model parameters using robust regression

method - we used Least Trimmed Squares (LTS) (P. J.
Rousseeuw 1984) and compute the corresponding residuals.

2. Estimate the errors covariance matrix applying a robust
covariance matrix estimator - we use Minimum Volume
Ellipsoide (MVE) (P. Rousseeuw 1985) applied to LTS
residuals.

3. Filter the original data matrix - we used univariate-and-bivariate
filter (UBF) (Agostinelli et al. 2015) and Leung et al., (2017).

4. Replace the identified outliers in the former step with the
means of each variable.

5. Estimate the model parameters by FGLS from the filtered data
matrix and use the robust estimated covariance matrix
obtained at the second step.
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Robust methods involved
▶ Least Trimmed Squares (LTS) estimator (P. J. Rousseeuw

1984):

This is a robust regression method that estimates the model
parameters through the minimization of the sum of the h smallest
squared residuals.

In this way, the method does not consider the n-h largest absolute
residuals in the estimation process.

LTS estimator tolerates n-h outliers and, for n=h corresponds to
OLS estimator.

The LTS estimator has low efficiency but provides a good initial
estimate.

50 / 75



Robust methods involved
▶ Minimum Volume Ellipsoide estimator (MVE) (P. Rousseeuw

1985):

This is a a robust location and scale estimation method that
searches, among all ellipsoids that contain at least half of the
sample points, for the one with the minimum volume.

The location MVE estimator corresponds to the mean of this
ellipsoid points and the scale MVE estimator corresponds to the
covariance matrix of the points of this ellipsoid.

The MVE estimator admits a high percentage of outliers without
producing arbitrary values of the estimate, but has low efficiency.
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Robust methods involved
Considering datasets in matrix form: rows are the cases and
columns are the variables, different types of outliers may occur.

Many real datasets contain outliers and it is important to be able to
detect him!

Figure 1: Rousseeuw & Bossche (2018). 52 / 75



Robust methods involved

▶ Traditionally, outlier refers to a case, a row of the data matrix -
casewise outlier.

▶ Recently, Alqallaf et al. (2009) proposed cellwise outlier,
when most of the data cells in a row are similar but some of
them are atypical.

▶ Robust fitting methods are less sensitive to casewise outliers
and allow to detect these type of outliers (Maronna, Martin,
and Yohai 2006).

▶ Recent work has been done on how to identify cellwise outliers
and how to deal with him in the estimation and fitting processe.
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Robust methods involved

▶ Univariate-and-bivariate filter (UBF) (Agostinelli et al. 2015)
and (Leung, Yohai, and Zamar 2017)

Univariate filter - flags cellwise outliers by comparing the
standardized empirical distribution of each marginal with a high
quantile of the standard normal distribution.

Bivariate filter - flags casewise outliers by comparing the squares of
the pairwise robust Mahalanobis distances with a high quantile of a
chi-square with 2 d.f. distribution. A cell is additionally flagged if
the number of flagged pairs exceeds a large quantile of the binomial
model, considering that the number of flagged pairs associated with
each cell approximately follows a binomial model.
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Simulation study

To evaluate the performance of proposed robust estimator, RFGLS,
we run a simulation study.

▶ We generate some data set and next we contaminated them,
including outliers in two ways and considering different
percentages of contamination.

▶ The simulation settings were defined taking into account the
works of Bramati and Croux (2007) and Aquaro and Cízek
(2018).

R packages used: plm, robustbase, rrcov and GSE.
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Simulation settings

▶ The dependent variables values are generated according to the
RE model, defined in 1.

▶ The errors values are generated according with a N(0, 1)
distribution.

▶ For the parameter vector, we consider β = (−1, 0, 1) and we
generate ci values according with a N(0, 1) distribution.

▶ The explanatory variables values are generated from a
multivariate (dimension three) standard normal.

▶ We generated data panels with 240 observations resulting from
two cases of the dimensions: N = 8 and T = 30 and N = 12
and T = 20.
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Contamination

In the sample generation process, we consider different scenarios of
contaminated samples:

▶ without contamination
▶ with 5% contamination
▶ with 10% contamination

The contamination is generated completely randomly over all
observations of the panel of data.
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Contamination

The contamination was introduced including outliers in two different
ways:

▶ only on y (to originate vertical outliers), by adding to some of
the y initially generated, a term generated according with
N(50, 1);

▶ on y and x (to originate bad leverage points), by replacing the
explanatory variables values, corresponding to the observations
already contaminated in y , by points coming from a k-variate
N(10, I) distribuction, with k = 3.

We run M = 100 replications for each of the 10 sampling schemes,
resulting in a total of 20 scenarios and 2000 runs.
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Estimation and performance assessment

For each run, we estimated the β coefficient of the model using
FGLS and RFGLS estimators.

We have used the Root Mean Squared Error (RMSE) criteria to
evaluate the performance of the two approaches each sampling
scheme,

RMSE =

√√√√√ 1
M

M∑
j=1

∣∣∣∣∣∣β̂j − β
∣∣∣∣∣∣2.

Since RMSE is a measure of the estimation error, the estimator’s
performance will be better the lower the RMSE value.
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Results

Table 11: RMSE for FGLS and RFGLS, T = 30, N = 8 and contamination
0%, 5% and 10%

C0 C5 C10
conty conty and x conty conty and x

FGLS 0.15 1.26 2.70 1.71 2.81
RFGLS 0.25 0.24 0.19 0.27 0.21

▶ We can see that the RMSE values are always smaller for the
RFGLS estimator, except in the case where there is no data
contamination.

▶ This means that the robust estimator always generates more
accurate estimates in the contamination situations considered.
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Results

▶ We also note that in presence of bad leverage points
(contamination on y and x) the results obtained by RFGLS are
particularly good in contrast to the results obtained with FGLS
which are negatively affected in these cases.

▶ Only in the case of well-behaved samples, without outliers,
does the FGLS estimator outperform the RFLGS.

61 / 75



Results

Table 12: RMSE for FGLS and RFGLS, T = 20, N = 12 and
contamination 0%, 5% and 10%

C0 C5 C10
conty conty and x conty conty and x

FGLS 0.15 1.21 2.70 1.81 2.81
RFGLS 0.24 0.25 0.21 0.24 0.18

Notice the same pattern.
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Results

▶ The obtained estimates with RFGLS are more precise, with
lower RMSE, than those obtained with FGLS in all
contamination cases considered.

▶ In summary, for the considered cases, we conclude that without
contamination, the efficiency of the robust estimator is not as
good as the one of the classic estimator.

▶ The RMSE results for the robust estimator improve as expected
in the presence of outliers. This happens both for vertical
outliers and bad leverage points, for all dimensions and
percentages of contamination considered.

▶ The proposed robust estimator presents particularly positive
results that compare better to the classical estimator in the
presence of bad leverage points.
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Grunfeld data - outliers
To explore the existence of outliers in the Grunfeld data set we have
applied the Robust Malanobis distance (available with
chemometrics package) which allowed to identify three atypical
firms.

Figure 2: Grunfeld outliers
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Grunfeld data

We have estimated the parameters for the model with the Grunfeld
data set using RFGLS and FGLS methods.

Table 13: RFGLS and FGLS estimatives

x
beta1.RFGLS 0.0469826
beta2.RFGLS 0.1208576
beta1.FGLS 0.1097104
beta2.FGLS 0.3073739

To evaluate the performance of the two estimators in this case, we
calculated the multivariate residuals for each of the fitted models
and carried out a residual analysis. Then, we compared each of the
mean and standard deviation obtained values.
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Grunfeld data
Figure 3 shows that the robust method performs better. The residuals
obtained with the robust method RFGLS present smaller mean (left) and
standard deviation (right) values for every company.

Both mean and standard deviation were lower for the robust method.
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Final comments

▶ Panel data is a suitable representation for economical and
financial data. Financial and economic real data often contain
outliers and violate the assumptions usually assumed in the
model.

▶ Robust methods are recommended for this type of data
analysis. We propose a robust estimator for panel data model
which results from the robustification of the FGLS estimator,
called RFGLS.

▶ The RFGLS estimator performed well with contaminated
simulated data. The proposed robust estimator RFGLS improve
regardind to FGLS as expected in the presence of several type
of outliers.
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Final comments

▶ Either for vertical outliers or for leverage points and for all
dimensions and percentages of contamination considered,
RFGLS performs better than FGLS, according to RMSE. The
RFGLS produces particularly good estimates for panels of data
with bad leverage points.

▶ The RFGLS estimator did not perform as well without
contaminated data, as expected.

▶ The robust estimated model for the Grunfeld data is less
affected by the identified outliers (for the three firms, GM,
USS, GE) then the classical estimated model.
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To be continued. . .

▶ More simulations with different scenarios will allow a better
evaluation of the robustness properties of the proposed
estimator.

▶ Contaminate data panels by introducing the contamination in a
concentrated way in certain groups (concentrated
contamination) is another case already studied by other authors
which would also be interesting to analyse.

▶ Include a robust regression method in the last step may
improve the robustness properties of the robust estimator.
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