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A B S T R A C T

Vascular Dementia is a severe disease that results from dead nerve cells’ accumulation in blood vessels. This
affects the blood flow and impairs memory and decision-making abilities. Machine learning and deep learning
have been used in detecting this disease. Nevertheless, their accuracy has been inconsistent, explaining why
their utilization in diagnosing patients has led to poor performance. We developed several transfer learning
architectures that improve classification accuracy and diagnosis performance in assessing vascular dementia.
The process first entails the preprocessing of the dataset where a random selection ensures data representation
is balanced. We used a dataset containing resting-state fMRI scans to split training, testing, and validation
into 80%, 10%, and 10%. We employ different Convolutional Neural Network architectures such as VGG16,
VGG19, DenseNet121, and InceptionResNetV2 to enhance classification. To, enhance these, we incorporated
Rectified Linear Unit and leaky activation functions for the training phase to counteract problems associated
with vanishing gradient common in deep learning tasks. Our methodology ensures effective information flow
throughout different layers, which is essential for a divergent information hierarchy in medical information.
As such, the specifics show that our approach achieved 84.67% in accuracy in the multi-classification, which
is better than the current state-of-the-art research in the same field. Therefore, the result shows that transfer
learning-based approaches are suitable when combined with strategic pre-processing and activation functions
in improving the diagnosis of vascular dementia using MRI images.
1. Introduction

Healthcare is undergoing a profound transformation, transitioning
from traditional methods to advanced approaches. Central to this evolu-
tion is cutting-edge communication technologies like 5G and beyond 5G
(B5G), alongside the integration of machine learning and deep learning
algorithms (Ahad et al., 2024; Butt, Ahad, Wasim, Madeira, & Cham-
ran, 2023). These technologies play pivotal roles in enabling smart
healthcare systems and revolutionizing how medical services are deliv-
ered, monitored, and optimized. With 5G/B5G’s ultra-fast speeds, low
latency, and high capacity, healthcare professionals can leverage real-
time data transmission for remote consultations, surgical procedures,
and patient monitoring, irrespective of geographical constraints (Ahad
et al., 2023). Machine learning and deep learning further enhance this
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paradigm shift by analyzing vast datasets to predict diseases, personal-
ize treatments, and streamline administrative tasks (Butt, Ahad, Wasim,
Shayea et al., 2023).

In recent years, unprecedented progress in the field of biomedical
image analysis and artificial intelligence has led to a new understanding
of and method for diagnosing many pathologies. Cancer remains a
difficult issue in the global medical field. Dementia is defined as a
progressive decline in cognitive function that interferes with a per-
son’s ability to learn new information and recall previously learned
information (Iadecola, 2013; Román, 2002). Among the types of the
enigmatic pathology, Vascular Dementia is the second most prevalent,
after Alzheimer’s disease . According to research, VD affects approxi-
mately 15% to 20% of patients with another dementia in Europe and
the United States and even more in Asian countries — up to 30% (Liu,
Yao, Liu, & Sato, 2019). Etiologically, just like AD, the incidence of VD
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Fig. 1. A general way to identify the disease.
increases with age; therefore, this issue is of special relevance in aging
populations worldwide. Vascular dementia is a broad term for cognitive
impairment due to brain tissue damage from major artery strokes,
vessel narrowing, and other vascular lesions. VD presents many clinical
challenges given its high prevalence and poor treatment response (Li,
Hsu, & Rudzicz, 2019). VD is both a critical and a preventable di-
agnosis. Therefore, accounting for its high tendency and morbidity is
essential. However, low incidence should also be accounted for given
the high contrast between potential therapies and outcomes in those di-
agnosed and untreated. Advanced techniques such as Diffusion Tensor
Imaging (DTI) and resting-state functional magnetic resonance imaging
(rs-fMRI) have significantly expanded the potential to study changes in
the brain function and structure typical of dementia (Braaten, Parsons,
McCue, Sellers, & Burns, 2006; T. O’Brien & Thomas, 2015). As a result,
they can be extensively employed for diagnosis and classification. Deep
learning is a form of artificial intelligence that has revolutionized
several fascinating areas lately: DNA analysis, computer vision, natural
language processing, and brain circuitry. A general way to identify the
VD is illustrated in Fig. 1.

Deep learning algorithms are well-suited for learning complex pat-
terns and representations from data. In many modern applications,
they are the most effective tool to achieve the desired results. It is
particularly relevant in medical image analysis (He, Gao, Sabnis, &
Sun, 2023; Morton, St. John, & Tyas, 2019). Despite this fact, in the
study of Vascular Dementia, there is still no effective way to detect and
classify VD with high accuracy and efficiency. The novel deep-learning
approach to the application of deep-learning architectures on rs-fMRI
datasets will improve the performance of detection for early detection
of VD. Such a tool will also enable the multi-classification of VD cases,
which is currently impossible due to the classification gap (Shankle,
Mani, Pazzani, & Smyth, 1997; Wang, Xu, Zhao, & Lou, 2019). Thus,
the primary goals of the research are:

• To analyze the characteristics and applicability of deep-learning
architectures in early detection of VD based on the rs-fMRI data.
2

• To assess the feasibility of discovering multiple phenomena of VD
and creating a divided and advanced classification system.

• Get insights on deep learning-based methodologies: advantages
and limitations for VD diagnosis and classification.

• Develop a framework to help neurosurgeons and radiologists
more efficiently recognize and classify VD cases to improve treat-
ment procedures for patients.

The research on deep learning’s role in VD diagnosis and classification
could make a substantial contribution to neuroimaging and demen-
tia research. It could have a significant impact on patient outcomes
and treatment approaches. Ultimately, different classifiers are used
to distribute the data equally in two classes for binary classification.
The number of output neurons can be increased to classify the re-
sults into multiple forms (multi-classification) . The most common
approach used for training a model is the backpropagation approach.
This research reviewed recent literature and found one of the best
methodologies for detecting VD and its classification. It also represents
the methodology for detecting the VD early and multi-classifying them
using different deep learning-based architectures with highly normal-
ized datasets (Charidimou, Jäger, & Werring, 2012). A general model
that finds the best results is illustrated in Fig. 2.

Around 17% of people affected with Dementia will have VD. Esti-
mations showed that the 65 age group has an excessive effect on this
disease. On the Other hand, in terms of detection and classification, no
vacant accuracies exist with a machine learning algorithm that proves
the person has VD 100%. Existing Machine learning-based architectures
cannot classify VD into Multiple divisions. Hence, these are the main
factors to conduct this research study.

1.1. Contribution and organization of the paper

The present study’s main value is that it thoroughly analyzes the rs-
fMRI dataset using a range of deep learning architectures. We sought
to identify the best-performing model for early-stage VD detection by
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Fig. 2. Block diagram of Deep Learning Architectures to classify MRI-based vascular Dementia.
comparing and contrasting the architectures’ capabilities. The solutions
developed in this study do not have novel characteristics. In turn,
they contribute to the development of future research on deep learn-
ing architecture-based VD detection, and likely Alzheimer’s Disease
detection. Our experimental outcomes show that this solution was
successful.

The manuscript is organized as follows: Section 2 elaborates on
the literature review. The following Section 3 illustrates the proposed
methodology. Furthermore, Section 4 focuses on the result discussion
of the experimental outcomes and conclusion drawn in Section 5,
respectively.

2. Literature review

In this section, the context research has been identified. On the
detection and classification of Vascular Dementia related to medical
image analysis, highlight the techniques and algorithms working based
on recent year studies. Machine learning and deep learning architec-
tures can leave the paradigm change for detecting different diseases in
medical image analysis. MRI and CT scans help us to determine and
evaluate disease detection.

Castellazzi et al. (2020) explored machine learning algorithms to
differentiate vascular Dementia from Alzheimer’s disease. The collec-
tion of subjects is 77 for MRI scans that are further extended to DTI
and rs-fMRI analysis, which could engender the three dataset classes.
The first is the DTI dataset, extracted from VD patients. GT dataset
is extracted from AD, and GT+DTI datasets are extracted from MXD
dementia patients. Three types of algorithms, Artificial Neural Network
(ANN), Support Vector Machine (SVM), and Adaptive Neuro-fuzzy
inference system, were used for detection purposes. Two models of ANN
are used. The first is a Multilayer perceptron (MLP), and the other is the
Radial Basis Function Network (RBFN). The MLP model implemented in
MATLAB is composed of three layers. It comprises n inputs, 8 neurons
in the hidden layer, and one in the output layer. The sigmoid function
is used as an activation function. For model training, the Bayesian
regularization backpropagation approach is used. The variant of RBFN
three-layer feed-forward network is used with Gaussian function. The
3

new rbe function is used in MATLAB to set the equal 0.1 for the RB
layer.

Wang et al. (2019) proposed the detection of vascular Dementia
with Electroencephalography techniques and then classification using
SVM classifiers. By using electroencephalogram (EEG) features through
3 supervised machine learning approaches, i.e., linear discriminant
analysis (LDA), backpropagation neural network (BP), and support
vector machine (SVM) as classifiers to discriminate early vascular
dementia patients. With EEG connectivity patterns as features and ma-
chine learning methods as classifiers, classifier performance is assessed,
then feature selection and cross-validation (LOOCV) are combined.
Feature selection was performed within LOOCV to select the relevant
classification features. The classification was executed using MATLAB
and LIBSVM toolbox. An EEG uses small metal discs attached to the
scalp to capture brain cell signals’ electrical impulses. Electrical signals
are used by the nerve cells for interaction with each other. Wavy lines
will surface on an EEG recording due to this brain operation. Target
stimuli (green circles) and no target stimuli (red circles) were noted
for a clearer understanding of how differential functions. Each stimulus
appeared randomly in the middle of the display, and its diameter was
measured.

Ford et al. (2019) compared machine learning algorithms with
epidemiological approaches to detect Dementia for initial care patients.
The data on dementia patients was collected over five years. It was
designed with the same split sets between each model. This data is
divided into a training set (80%) and a test set (20%). The primary step
is to use the baseline statics model and logistic regression with the least
absolute selection and shrinkage operator (LASSO) implementations.
This data is used for binary classification, and LASSO implements
help prioritize the data and evaluate the weight features. This model
can be compared with four machine learning algorithms: the random
forest, naive Bayes, support vector machine, and neural network. All
the values or data can then be analyzed with e1071, PROC, ROCR,
and Python, which can be used for implementation. When the data is
tuned with several model parameters, there is no improvement because
the model is over-simple. Each model is accessed for capability for
classification vs. controls under the Receiver Operating Characteristics
Curve (AUROC). The feature can be retained with a logistic regression
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model. After analysis, the total curve is about 0.74, and the precision is
0.31. Overall results show that logistic regression with the random for-
est benefits support vector and neural networks because they produce
interpret feature weights. The main limitation is that binary features
can lose the information, and the correct dataset can replicate the novel
data sets. Another limitation is that the variables can represent the same
features as the multi-level model.

Gill et al. (2020) explored two kinds of machine learning algo-
rithms. The first can deal with predicting future abnormalities vs.
normal impairments. The second can deal with three types of classifica-
tion to evaluate the normal, mild, and restricted diagnosis using basis
features. Both experiments can test clinical and brain cognitive features
and could be combined to check the performance of algorithms. For
cross-validation, they used the Monto Carlo 10-fold cross-validation
approach that divides the trained data into 10 parts, in which the 9
parts were considered for training and 1 for further testing. It can
generate the datasets of 100 samples and apply the 10 times iterations.
In the end, the confidence level increased. An estimated clean and
clear transparency is 95%. The absolute difference is noted. It followed
83 participants affected in the early stages, 112 in the mild stage,
and 145 in the restricted stage. The author compared both types of
features, predicting better features than a lonely combination. The
approach gives the ROC range of 0.87 scores and 0.73 scores as well.
When predicting the second experiment, they achieved the 7 features
overall on separating with an accuracy of 58.8%. In the second-class
experiment, the machine learning algorithm can achieve the 2 features
from differential ordinary to mild. The third-class machine learning
algorithm can show a low accuracy, estimated at 58.8% lower when we
compared it with the second class. The overall classification shows that
it is much more challenging to classify these stages from one another.
Combining results of the previous state-of-the-art methods estimation
shows that previously used methods can only focus on the modality of
single-image datasets.

Sobhaninia, Rezaei, Karimi, Emami, and Samavi (2020) described
the expanded MRI image dataset for enlarging datasets classification by
pairwise GAN. Most datasets currently available are relatively moderate
in scale and are frequently followed by incomplete MRIs in various
modalities. The authors increased the number of brain MRI images in
the training dataset using a pairwise Generative Adversarial Network
(GAN) model to solve the problems of inadequately big datasets and
insufficient picture modality for deep Learning. The pairwise GAN
will generate synthetic MRIs in several modalities. A post-processing
method for achieving the patient-level diagnostic outcome by integrat-
ing the slice-level glioma subtype classification findings is plurality
voting. A two-stage training technique is proposed to learn glioma
features using GAN-augmented MRIs accompanied by real MRIs. The ef-
fectiveness of the suggested scheme, isocitrate dehydrogenase 1 (IDH1)
modification, and IDH1 wild-type mutation has been tested on a dataset
to characterize glioma molecular subtypes. Experimental studies on the
dataset have yielded positive outcomes (with a test accuracy of 88.82
percent). Parallels with other state-of-the-art approaches were included.

Meenakshi and Revathy (2020) explored the Evolution channel
selection algorithm with the EEG signal to differentiate the VD from
Stroke-related patients. This paper shows the number of different tech-
niques to detect VD patients. The first and primary technique is Sav-
itzky Golay filters that are used for the denoising part. The second
most reliable technique is RC dispersion entropy, which extracts the
datasets on the other end. The differential evolution feature selection
(DEFS) algorithm was used to detect the signal more precisely. The
composition of three techniques for detection was given the best lo-
calization. The SVM classifier used the input and output stages with
the leading DEFS algorithm for classification. The results showed that
the 6 channels could improve classification outcomes with a working
memory load. The overall result concludes that SVM with the DEFS
algorithm can show precise results with a destination of 89 Rehman,
4

Naz, Razzak, Akram, and Imran (2020) explored the machine learning
algorithm to tackle the challenge of precisely identifying Dementia. In
this study, they reviewed the quality measures of the previous methods.
They set the background analysis to train the model and extracted the
parameters. The study is concentric, just like wavelength. The steps are
to use the raw datasets, preprocess the data, feature extraction, and
vector calculation, use the classifier, and then organize the prediction
measures. On the other end, the same wavelength is used for testing
the parameters with the distinction of parameters. From a clinical
perspective, the methodology for previous detections does not find rel-
evant results for clinicians. Machine learning methods to discriminate
the healthy controls from AD are better. The study indicates that the
machine learning techniques for detecting dementia-related patients
do not fulfill the precise needs. However, the collaboration process
between the clinicians is a better approach. A better machine learning
algorithm requires better disciplinary processes.

Balasooriya and Nawarathna (2017) proposed the EEG technique
with K Nearest Neighbor (KNN) and SVM classifiers and the infirmity of
a fuzzy neighborhood analyzer. In this study, data can be collected from
five vascular dementia patients. Fifteen are mildly affected by strokes,
and fifteen are those who are in the stage of recovery. The analysis
proceeds in two folds. First is the discrimination of VD, mild stroke
patients, and recovery stage patients using the fuzzy neighborhood pre-
serve analyzer with the enhancement of QR decomposition. It aims to
expand and observe the spectral features that discriminate mild-stroke
patients from control subjects. However, there are 19th channels that
are analyzed using ICA wavelet analysis. The ratio can be calculated
to show the VD and mild Stroke patients to analyze the dominion
frequency relative power. The nonlinear features like permutation En
and FD were used to calculate the regulation, which can be less in VD
and stroke patients. The SVM classifier and k nearest neighbor classifier
can detect the recovery base patients. The result showed that the SVM
and KNN estimated accuracy is 89%. The Decomposition technique
showed 67% accuracy.

The study indicates that the machine learning techniques for detect-
ing dementia-related patients do not fulfill the precise needs. Still, the
collaboration process between the clinicians is better to approach the
better machine learning algorithm, which requires better disciplinary
processes.

3. Proposed methodology

A convolutional neural network (CNN) is a form of artificial neural
network used to analyze pixel input, which is used in image recognition
and processing. A CNN employs a system similar to a multilayer per-
ceptron, which is already optimized for low processing requirements,
including input, hidden, and output layers. The hidden layer can con-
tain different convolutional layers, average pooling, fully connected
convolutional layers, and normalization layers.

Gradient vanishing is a challenging problem in tuning deep learning
models, especially when the network has more layers. The value of
derivatives decreases with each layer in backpropagation, causing a
gradient vanishing problem. This problem typically arises when the
sigmoid function is used as an activation function in the neural network
model. This problem is tackled in the proposed research using ReLU and
Leaky ReLU activation functions wherever needed. A detail pictorial
description of proposed model is shown in Fig. 2.

3.1. Dataset details

The dataset used in the proposed experimentation for detecting
and classifying vascular Dementia is resting-state functional magnetic
resonance imaging (rs-fMRI) (Perry, Parvizi, & Pinheiro-Chagas, 2021).
It is a multi-class dataset with five classes named Binswanger Dementia,
hemorrhagic Dementia, Multi-Infarct Dementia, Strategical Dementia,
and Subcortical Dementia, as shown in Table 1. The first class of dataset

is Binswanger dementia, also called subcortical vascular Dementia,
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Table 1
Rs-fMRI Dataset.

Dataset classes Actual image count Random selection

(Unbalanced) (Balanced)

rs-fMRI Dataset

Binswanger Dementia 4608 4400
hemorrhagic Dementia 4608 4400
Multi-Infarct Dementia 7080 4400
Strategical Dementia 4608 4400
Subcortical Dementia 4608 4400

which is a type of Dementia caused by widespread, microscopic areas of
damage to the deep layers of white matter in the brain. A characteristic
pattern of BD-damaged brain tissue can be seen with modern brain
imaging techniques such as CT scans or magnetic resonance imaging
(MRI). The second dataset class is hemorrhagic Dementia, in which
blood accumulates and compresses surrounding areas of brain tissues.
The third class is multi-infarct Dementia, most commonly known as
vascular Dementia, which is caused by multiple strokes or disruption
of blood flow to the brain. The fourth class of the dataset is strategic
Dementia. The last class listed in the dataset is subcortical Dementia,
a clinical syndrome characterized by slow mental processing, forgetful-
ness, impaired cognition, apathy, and depression. All these classes have
different numbers of the image dataset. To make a dataset balanced, up-
sampling and down-sampling techniques are typically used to represent
each class in the dataset equally. In the preprocessing step of the
proposed methodology, we make our dataset balanced by these known
techniques of up-sampling and downsampling.

The novelty of this research lies in the fact that it multi-classifies
the rs-fMRI dataset to determine the cause of Dementia by classifying
it into one of the 5 classes mentioned above. Previously, only binary
classification was done with a dataset reported and compared within
the results section.

We will use this dataset with transfer learning models such as
VGGNET16, VGGNET19, DenseNet121, and InceptionResNetV2 in the
proposed method. The total count of images in each class is unbalanced.
We need to balance the dataset for better performance. After balancing
the number of images in each dataset class by subsampling and upsam-
pling, we get 22 000 images with 4400 images in each class. Different
dataset split ratios calculate results. The first split is 80% for training
and 20% for validation and testing. The second split is 70% for training
and 30% for validation and testing. The third split is 28% training and
72% validation and testing dataset. Then, we apply multiple powerful
CNN models on all these dataset distributions to detect vascular Demen-
tia and analyze the performance of the abovementioned deep learning
architectures.

3.2. Dataset acquisition

Data were acquired at the Stanford University Richard M. Lucas
Center for Imaging on a 3T General Electric SIGNA Premier scanner
using a 48-channel head coil (GE Healthcare, Milwaukee, WI, USA).
Blood oxygenation level-dependent (BOLD) functional MRI data were
acquired using a simultaneous multislice gradient-echo echo-planar
pulse sequence. Sequence parameters were similar to those used as
part of the Human Connectome Project: TR 1000 ms, TE 30 ms, flip
angle 64◦, 2.4 mm isotropic voxels, matrix 88 × 88 × 65, multislice 5×
acceleration. The signal dropout was minimized by visually selecting a
slice plane approximately 25◦ from the anterior–posterior commissural
plane towards the coronal plane. A T1-weighted anatomical scan was
acquired in each session using a 3DFSPGR three-dimensional sequence:
TR 1891 ms, TE 1.172 ms, TI 400 ms, flip angle 11◦, 1.0× 1.0× 1.2 mm
voxels, matrix 256 × 192 × 132. A gradient-echo B0 field map was
acquired to correct for spatial distortions: TE 6.5, 8.5 ms with slice
prescription/spatial resolution matched to the BOLD sequence (Perry
et al., 2021).
5

Data collected during a visual fixation task were used for functional
connectivity analysis. The patient fixated on a black ’+’ symbol at the
center of a light gray screen. The patient was asked to remain as still as
possible, awake and focused throughout each run. In between runs, the
patient was asked if he could successfully stay still during the previous
run to reinforce the expectation that this should be closely monitored.
Each run lasted 7 m 2 s, and three functional runs were collected (Perry
et al., 2021).

3.3. Dataset preprocessing by random selection

In our research on diagnosing vascular dementia using deep learn-
ing, preprocessing plays a pivotal role in shaping the performance
and reliability of our models. A key aspect of preprocessing is data
sampling, which involves the careful selection and manipulation of the
dataset to ensure balanced representation across different classes.

3.3.1. Balancing the dataset
One of the primary challenges in working with medical datasets,

including those related to vascular dementia, is the imbalance be-
tween classes. For instance, certain classes may have significantly more
samples than others, leading to biases in model training and reduced
generalization capability. To address this issue, we employ random
selection methods guided by human observation to balance the dataset.
Subsampling or up-sampling is a preprocessing step to balance an un-
balanced dataset, as the unbalanced dataset affects the model’s overall
accuracy. In this proposed research, we choose a random selection
method by human observation to limit the number of images in each
class. This method balances the overall number of images in each class.
Table 1 shows rs-fMRI Dataset.

4. CNN transfer learning models

4.1. Visual geometry group (VGGNET16-19)

The name VGGNET, abbreviated Visual Geometry Group, is given
by the science and engineering department of Oxford University. The
main aim is to analyze the depth and power of the convolutional
neural network that determines how many effects on accuracy and
large image dataset classification. The deep dense 16 CNN admitted
to deeper network layers and overcame more parameters; a minimal
3*3 convolutional filter is embedded in all layers. Suppose we talk
about the overall general representation of the model, including a list
of 5 convolutional layers, which can lead with the MaxPool. Another
significant difference is that more cascade Convolutional layers are
embedded in 5 sets. The diagram shows the overall network structure.

4.2. Visual geometry group (VGGNET19)

The only difference between VGG16 and VGG19 is that one acing
uses 16 layers, and the other can use 19. The last three fully connected
layers are the same in both architectures.

4.3. Densely connected convolutional network (DenseNet121)

Among the most recent developments in deep Learning for image
classification is DenseNet. DenseNet is quite identical to ResNet with
few key distinctions. DenseNet convolves (.) the result of the preceding
stage with the result of the upcoming layer. In contrast, ResNet employs
an additive technique (+) that combines the lower layer (identity)
with either the upcoming layer. DenseNet was created to address the
diminishing gradient’s effect on the performance of high-level neural
networks. DenseNet comes in various variants, such as DenseNet121,
DenseNet160, and DenseNet201. The numbers indicate how many

layers there are in the algorithm.
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Fig. 3. VGGNET16 experimental result with 80–20 dataset distribution.
Table 2
Rs-fMRI Dataset distribution.

72-28 Dataset split 80-20 Dataset split

Validation 28% Training 72% Training 80%

rs-fMRI Dataset Distribution

1232 3168 3520
1232 3168 3520
1232 3168 3520
1232 3168 3520
1232 3168 3520

4.4. Inception ResNet V2

The Inception-ResNet-v2 framework is a variant including its Incep-
tion V3 framework. It is more detailed than the preceding Inception
V3, which is a specific variant of almost the same structure with the
repetitive residual blocks compacted. The inception frames have been
streamlined in this version with fewer concurrent towers than in the
prior Inception V3. An Inception-ResNet-v2 structure outperforms prior
state-of-the-art algorithms in terms of accuracy.

4.5. Generalization ability of Deep learning models

The deep learning models we used in our research have different
levels of generalization ability. DenseNet121 and InceptionResNetV2
are known for their strong generalization, meaning they can perform
well on new, unseen data beyond what they were trained on. VGG16
and VGG19, while simpler, still show decent generalization and can
recognize patterns in new data. Each model has its strengths and trade-
offs, with more complex models generally offering better generalization
but requiring more resources for training.

5. Results discussion and recommendations

As we see in the above analysis, the CNN model named DenseNet
with 121 layers performs well in predicting the classes of Vascular
Dementia. Its classification accuracy is higher than that of other CNN
models. We split 20 random samples from the test data set before
training. The DenseNet model correctly identifies and classifies the
results.

The overall results show that increasing the complexity of the model
may increase the classification performance. The prediction analysis is
based on 80%–20% dataset distribution, details provided in Table 2,
because this split has good accuracy and an F1 score. Our experi-
mental model performed well compared to the state-of-the-art model.
Table 3 shows the comparison of the proposed method with state-of-
the-art (Alizadeh et al., 2022; Hu, Ju, Shen, Zhou, & Li, 2016) (See
Figs. 3–5).

The traditional technique, which depends on the skill of radiother-
apists to evaluate and examine the components of the MRI, has been
6

utilized for detecting and categorizing Vascular Dementia. Operator-
assisted classification techniques are non-reproducible and are less
suitable for big datasets. Manual processing of huge datasets is a
time-consuming operation. Computer-aided diagnostic techniques are
required to process a large amount of data efficiently to tackle such
difficulties. The best-performing approaches for such challenges follow
a similar pattern (Balasooriya & Nawarathna, 2017; Ford et al., 2019;
Zhao et al., 2018). Instead of training a singular deep CNN model,
many deep CNN models are trained and merged to determine the
final results. To make maximum use of diverse aspects of the available
data, the models utilized vary in terms of network topologies, inherent
complexity, and loss functions. It is a community observation network
that achieves significantly better results than its components, but it is
not desirable for some applications due to neural network architecture
complexity. In this case, we use more complex models with accurate
results and satisfactory prediction results. We applied different models
for better accuracy and performance. Accuracy is still low. The F1 score
is comparatively less satisfactory. DensNET121 predicted VD better
than other models. This model could be used for better prediction by
changing the layer’s structure.

At some points, other models overfit; therefore, this is the best
model for larger datasets, especially when data images in different
classes are unbalanced. Finally, combining actual and unbalanced train-
ing datasets, comparisons with several current techniques have demon-
strated that the proposed methodology has achieved the best perfor-
mance to the state-of-the-art while being based on distinct datasets.
finally, the DenseNet model with 121 layers stands out in our analysis,
showcasing superior performance in predicting classes related to Vas-
cular Dementia. Its classification accuracy surpasses that of other CNN
models, as evidenced by the correct identification and classification of
results from a test dataset split into 20 random samples before training.
Our findings suggest that increasing the model’s complexity may lead
to enhanced classification performance.

While VGGNET16 exhibited high accuracy and performance, its
prediction results were comparatively lower due to model complexity.
This limitation prompts consideration for employing more complex
models in future experiments, as discussed earlier. Our conclusion from
this investigation is that DenseNet121 excels in accuracy classification
and prediction results, showcasing promise for advancing diagnostic
capabilities in Vascular Dementia.

6. Conclusion and future work

The study investigated the power of CNN models, which are used in
a very invasive way. In our study, the rs-fMRI-based dataset is used. The
primary step of the proposed methodology is to split the dataset into
three models. Firstly, the data images split on the training set into 80%,
70%, and 28%, respectively. Second is the validation set split into 10%,
15%, and 72%, respectively. However, the remaining images are settled
for the test dataset for further prediction on unseen data after training.
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Table 3
Results comparison of the proposed method with state-of-the-art.

Proposed model Modality Datasets Dataset distribution Used methodology Classification
mode

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

Differentiate the
Vascular
Dementia from
Alzheimer’s
disease
(Castellazzi
et al., 2020)

MRI rs-fMRI
dataset

80% Distribution

Radial Basis
Function Network

Binary
Classification

55.75 55.5 56 55.78

Multilayer
Perceptron

Binary
Classification

58.25 55.5 61 58.73

Support Vector
Machine with
Radial Basis
Function (Kernel)

Binary
Classification

81 93.5 68.5 74.8

Support Vector
Machine with MLP
sigmoid kernel

Binary
Classification

78.25 81 75.5 76.78

Adaptive
Neuro-Fuzzy
Inference System

Binary
Classification

82.75 73.5 92 90.18

Proposed
Methodology

Validation = 28%
Training = 72%

VGG16 Multi-
Classification

90.6 67.07 91.14 82.65

VGG19 88.92 59.72 89.82 79.8

DenseNet121 82.4 100 83.43 81.13

InceptionResNetV2 84.96 61.21 92.69 62.69

Training = 80%
Validation = 10%
Testing = 10%

VGG16
Multi-
Classification

94.15 81.43 94.2 88.39

VGG19 92.38 74.74 92.83 85.32

DenseNet121 84.67 78.97 97.22 79.89

InceptionResNetV2 88.92 71.55 94.94 72.64

Training = 70%
Validation =
15%
Testing = 15%

VGG16 Multi-
Classification

94 80.7 94.01 88.3

VGG19 92.21 73.97 92.59 85.14

InceptionResNetV2 88.58 70.62 94.96 71.81
Fig. 4. VGGNET19 experimental result with 80–20 dataset distribution.
Fig. 5. DenseNet121 experimental result with 80–20 dataset distribution.
The distribution is applied to advanced CNN models VGG16, VGG19,
DensNET121, and InceptionResNETV2. By comparing the results of all
these models, we achieved greater accuracy with DenseNET121. The
7

limitation of using VGGNET16 is that the accuracy and performance
results are high, but the prediction results are low. The main reason
for lower prediction results with VGGNET16 is the complexity of the
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model. We may apply more complex models in future experiments, as
discussed above. We concluded that the DensNET121 performs well on
accuracy classification and prediction results.
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