Fungus: the Funge Machine

Alexios Chouchoulas
alexios@vennea.demon.co.uk

Abstract

The Funge family of programming languages consists of a group of n-dimensional,
stack-based programming languages. The most prominent and original member of the
family, Befunge (a two-dimensional language), was invented in 1993 by Chris Pressey.
The Funge family is Turing-Complete, yet was designed to be ‘a nightmare to compile’
[?]. Considering the author is aware of two compilers for Befunge, it would be reasonable
to claim that Funge programmers are at home with nightmares. This paper describes
Fungus, an architecture designed and optimised for Funge. It is hoped that this will give
rise to further nightmares, possibly involving Cthulhu in a bikini teaching INTERCAL to
first-year law students.

Fungus is a microcoded, 16-bit, two-dimensional extreme RISC machine extremely
suited to the interpretation of Funge at the hardware level. The author visualises the im-
plementation of Funge compilers to generate Fungus-native code. The reader to whom
the concept of Cthulhu in a bikini sounds acceptable may additionally visualise opti-
mising Funge compilers for Fungus (in which case, the image of a lecture theatre full of

future lawyers should be considered).

1 Introduction

The Funge family of programming languages consists
of a group of n-dimensional, stack-based programming
languages. The most prominent and original member of
the family, Befunge (a two-dimensional language), was
invented in 1993 by Chris Pressey. Befunge, like its n-
dimensional® siblings, is Turing-complete, yet was de-
signed to be ‘a nightmare to compile’ [?]. It can safely
be said that Funges are ‘unusual’ languages. For an ex-
ample, the following is the archetypal ‘Hello World’ pro-
gramme in Unefunge (one-dimensional Funge):

052*"dlroW olleH">:#,_Q

This programme already demonstrates quite a few of
the features of a Funge (the syntax used here is the com-
mon denominator, Befunge’'93): the existence of a stack;
changing the direction of the PC; “Ognirts”-type strings
et cetera. In the discussions to follow, it is assumed that
the reader already knows at least Befunge '93. Other-
wise, apart from boredom, insanity of click-happiness,
the reader has little reason to be reading this paper.

Compiling Funges is problematic because of its self-
modifying tendencies and multi-directional PC. Befunge
compilers are not impossible to write, but they arenight-
marish. Considering there at least two compilers for
Befunge available, it would be reasonable to claim that
Funge programmers are at home with nightmares.

lwhere n € N,n > 0 — the existence of fractal and zero-
dimensional Funges is left as an excercise to the suicidal reader. The
author purposefully avoids contemplating the existence of negative-
dimension Funges in a last bid to retain sanity.

Following the example of the (in)famous Lisp ma-
chines, would it not be possible to accelerate and fa-
cilitate the creation of a Funge system using dedicated
hardware? Not only is this possible, it also an idea per-
verted enough to fit in with Funge itself.

This paper describes Fungus, an architecture de-
signed and optimised for the execution of Funge soft-
ware. It is hoped that this will give rise to further night-
mares, quite likely involving Cthulhu in a bikini teaching
INTERCAL to first-year law students.

Fungus is a microcoded, 16-bit, two-dimensional ex-
treme RISC machine extremely suited to the interpreta-
tion of Funge at the hardware level. The author visu-
alises the implementation of Funge compilers to gener-
ate Fungus-native code. The reader to whom the con-
cept of Cthulhu in a bikini sounds acceptable may addi-
tionally visualise optimising Funge compilers for Fungus
(in which case, the image of a lecture theatre full of future
lawyers should be considered).

The entire concept is theoretical, but a working emu-
lator of Fungus can be built. Funge machines (like Lisp
machines before them) can be utilised in the exploration
of hack value, and as a means of punishing cocky un-
dergraduates who think programming is an activity best
done using a mouse. It is this author’s belief that emerg-
ing programmers should be made painfully aware of the
nightmares lurking in these Black Arts. The thorny path
of Fear eventually leads to the green meadows of Knowl-
edge.

2 Design Aims

Certainly, any Turing-Complete architecture can run
Funge, in the same was as any architecture can run Lisp.
Fungus therefore aims to be a minimal microprocessor
capable of supporting the execution of Funge at a low
level. The following features are therefore desired:

e Microcoded design. The processor is aware of
a very small set of basic micro-instructions that
help implement other, more complex macro-
instructions. This allows Fungus to interpret var-
ious dialects of Funge.

e Two-dimensional memory model. Since Befunge
is by far the most common language of the family,
this is also the dimensionality of the Fungus archi-
tecture. Befunge subsumes Unefunge, and higher
dimensions could, potentially, be introduced to the
architecture through hacking microcode. Memory
is seen as two-dimensional, which is entirely ac-
ceptable, especially since certain types of DRAMs
use a row/column scheme for address selection.

e Vector registers. To support Funge at the lowest
possible level, the architecture’s PC is an R? vector.
An additional APC register (also in R? is employed
to provide the direction vector. For higher dimen-
sionalities, the reader is urged to look at the works
of Cray Research.

e Hardware queue. Although Funges are stack-
based languages, recent dialects have introduced
the ability to push values to either the bottom or
top of the stack, and pull values from either the
bottom or top of the stack. These preferences are
user-selectable, leading to the so-called stack ac-
tually behaving more like two different queues or
stacks. The author believes this to be an extremely
perverse, counter-intuitive, bug-prone, paradigm-
breaking design and applauds it wholeheartedly.
Fungus embraces this ingenious bit of design and
implements a hardware stack/queue using two
stack pointer registers dealt with by microcode.

e Hardware contexts. In an effort to allow com-
plex operating systems to run on Fungus (an ad-
ditional form of punishment for rapidly despairing
students), Funge implements hardware contexts,
somewhat similar and at the same time completely
different from those of traditional memory man-
agers. Hardware context registers allow delimiting
a rectangular area of memory and allowing a pro-
gram to run in it without having access to memory
outside its own. The PC wraps around the edges of
this region, thus forming a sub-torus of the super-
torus that is Fungus’ main memory. Lahey space is
not supported by the hardware, but the masochis-
tic topology enthusiast can still extract hours of
pleasure attempting to visualise this sub-/super-
torus relation.

Address Bus

Data Bus

|vc| |cs|

Register File

7' Control
Unit
I A Mux I I B Mux I illiill
To CPU

\/ Units

ALU

Figure 1: Block diagram of the processor.

e Sharp blades. Itis said UNIX gives one enough rope
to shoot oneself in the foot. Fungus is required
to conform to this time-honoured programming
tradition, but the rope tricks are becoming dated.
Hence, Fungus aims at providing one with enough
sharp blades to shoot oneself in the foot. Various
early-Fighties-style design flaws are introduced in
an effort to make the user’s life even more miser-
able.

e Ease of implementation. Fungus is designed as
a project that can be implemented using simple
solid-state components (of the 74zzx family, for
instance). This allows Funge to be inflicted on
students taking Electrical Engineering, in addition
to those taking Computer Science. Also, this in-
creases hack value by allowing the reader to toy
with the idea of physically building the processor,
thereby making such a reader appear (to others) a
guru of esoteric hardware?.

3 Hardware

The design of Fungus intentionally resembles a simpli-
fied version of the MIPS R x 000 architecture [?]. The data
flow is built around a register file and an arithmetic/logic
unit (ALU). Like the MIPS, all Fungus instructions in-
volve the ALU and almost all involve the register file.
Here is an explanation of the constituent parts, as out-
lined in Fig. 1:

2not to mention somewhat obsessive-compulsive.

Register File. A 8 x 18-bit RAM containing the values of
the eight, 18-bit registers of the CPU. The register
file (RF) has two read (output) 18-bit ports A and
B and one write (input) 18-bit port C. Each port
can address independently any of the eight regis-
ters by means of three sets of three address lines
each. An additional latch line clocks data from the
input port into the register addressed by the C ad-
dress lines.

ALU. This has two input ports (A and B) and one out-
put port (C), all 18 bits wide. It also has three con-
trol lines to select the operation to be performed.
The result of performing the selected operation on
the two input ports appears on the output port af-
ter a certain stabilisation delay. An additional pair
of control lines selects the current mask mode.

Memory Address Register (MAR). This register can only
be written by the CPU. It buffers and outputs an
18-bit address to the system’s address bus. A con-
trol line latches data from the ALU’s C (output) port
into this register when this is required.

Memory Register (MR). This register buffers and makes
available data read from or written to system mem-
ory. This register has three ports. One is tri-state
(bi-directional) and directly connected to the sys-
tem’s data bus; the other allows values from the
ALU'’s C (output) port to be written to the register;
and the third allows values to be read from the reg-
ister.

Instruction Register (IR). This register is connected to
the system’s data bus and is latched during the
fetch cycle. It contains the instruction word cur-
rently being executed. This is connected to the
control unit and, indirectly, to the ALU.

A MUX. The A multiplexer selects one of two data
sources for the ALU’s port A. The two choices are
the RF’s A port (using a register’s value as the left-
hand operand); and the contents of the MR register
(to access data read from memory). A single con-
trol line chooses among the two.

B MUX. Like the A multiplexer, this unit selects among
different data sources for the ALU’s right-hand
operand. There are three choices here: the value of
the RF’s B output port (to access a register’s value);
avalue drawn from the current Instruction Register
(IR), as processed by the Vector Control (VC) unit
(to access literals embedded in the current instruc-
tion); or a value from the Constant Store (CS) ROM
unit, to use a hardwired constant value. Two con-
trol lines choose among the three sources.

Vector Control (VC). This unit takes the literal 9-bit
field the IR and either outputs it as a rd literal to
the ALU, or copies the nine bits to both wo and rd
and outputs the entire word to the ALU. This allows

17 9 8 0
18-bit scalar ‘ ‘

9-bit R? vector ‘ Y ‘ x ‘

9-bit wo/rds ‘ y Wo ‘ ‘ xrd ‘

Figure 2: The Fungus data types.

a 9-bit literal L to be used either as a scalar literal
or as the vector (L, L). A single control line selects
the behaviour of this unit.

Constant Store (CS). This small 18-bit ROM contains a
number of constants used in processing pico-code
and other things. Scalars like like 1, -1 and vectors
(1,1) and (-1, —1) are stored permanently in this
ROM. Combined with masking modes in the ALU,
this implements useful features and simplifies the
CPU pico-code.

Control Unit (CU). This unit is driven by the contents
of the IR. It contains a ROM containing VLIW pico-
instructions. Each bit of a pico-instruction directly
drives one of the control signals controlling the
various units of Fungus. A pico-PC steps through
the ROM executing pico-instructions.

4 Programming Model

4.1 Word Length

Fungus is an 18-bit word machine. The author strongly
believes in machines with word lengths that are not
a multiple of four. The multiple-of-three approach is
a time-honoured one, with support from such giants
as IBM and Digital. Besides, forcing programmers to
start thinking in octal after well nigh twenty-five years of
thinking in hexadecimal works in accordance with Fun-
gus philosophy 3.

The system deals with 18-bit words and pairs of 9-
bit wos and rds. These are known in mainstream com-
puter science as most signifncant and least significant
half-words, respectively.

An 18-bit quantity can have one of three interpreta-
tions, as illustrated in Fig. 2:

1. An 18-bit scalar value, in the range 0-262,143.

2. An R? vector, where the wo and rd represents the y
and z ordinates respectively. The wo and rd are in
the range 0-511.

3. The two ordinates of the vector representation may
be accessed individually using instruction mask-
ing. This allows Fungus to access individual wos
and rds in memory.

3obfuscation and baroque design.

0 x 511
o] - [
(000,000) (000,777)
Memory Array
y Each element is
one word
777,777) v
511 []

Figure 3: The Fungus address space.

To the programmer, it is most convenient to write
Fungus numbers in base eight (octal), with three octal
digits to a wo or rd and six octal digits to a word.

4.2 Byte order

Fungus does not have bytes, hence no byte order. How-
ever, this specification does require that the wo (y ordi-
nate) is most significant. Hence, Fungus is wo-endian or
y-endian. Note, however, that symbolic vector notation
gves the z ordinate first as (z, y).

4.3 Address Space

For convenience, the address space is identical to the
word length: 18 bits wide. The programmer is free to use
vectors or scalars to address memory, but Fungus inter-
nally uses vectors. Of the 18 address lines provided by
the microprocessor, the most significant 9 (A9—A;7) cor-
respond to the wo and the y ordinate. The least signifi-
cant 9 lines (Ay—As) correspond to the rd and the x ordi-
nate. Thus, the maximum amount of memory address-
able by Fungus is 256 kwords*.

Unlike conventional architectures, this memory is or-
ganised as a two-dimensional array, with 512 x 512 ele-
ments. Hence the use of vectors to address memory.

Interestingly, this vector view of memory is neither
alien nor inconsistent with existing RAM technology.
Most DRAM chips distinguish between Tow’ and ‘col-
umn’ addresses and use external signals like CAS to
change the semantics of their address pins. It would ap-
pear that computer technology has been building up to
Fungus, doubtlessly the peak of CPU design for the dis-
cerning sadomasochist.

The topology of the address space is toroidal. This is
a side effect of the use of vector registers, as outlined in
Section 4.5. An intentional lack of overflow detection in
the ALU allows wrapping around of vector ordinates to
simulate this popular yet simple Funge topology.

“that is 2'® words, with one kword being 1024 words, as the Elder
Gods intended.

17 9 8 0

$0 0 0 0

$1 pPC, PC, PC
$2 APC, APC, APC
$3 A, Ay, A

$4 B, B. B

$5 Cy Cq C

$6 D, D, D

$7 E, E, E

Figure 4: The Fungus register file.

4.4 Memory

Memory also consists of 18-bit words. Fungus only reads
and writes 18-bit quantities. Thus, the 256 kwords of ac-
cessible memory is 18-bits wide.

For the byte-ophiliac reader, a word is 2.25 bytes. A
single 512-word row or column of memory is 1,152 bytes
(1.125 kbytes). The entire address space corresponds to
589,824 bytes, or 576 kbytes. However, this is irrelevant
as values cannot be accessed in byte-sized chunks but
only in word-sized quanta.

The address space may be expanded using memory
mapping, swapping and paging techniques with exter-
nal, kludgy hardware. Again, this is consistent with Fun-
gus design.

4.5 Registers

As seen in Fig. 4, Fungus has eight word-wide registers.
Registers may be treated as 18-bit scalar values and two-
dimensional vectors with 9-bit wo and rd ordinates. The
registers are referred to by number as $0-$7 (pronounced
like ‘big-money-zero’), or by name. All registers can be
used as general purpose registers by the programmer
who points loaded guns at her feet, but in reality, all but
three registers have special uses:

$0 or 0: a source of zeroes. In compliance with Fungus
design philosophy, this register is writable. Chang-
ing it, however, will massively disrupt CPU opera-
tion as $0 is used internally by CPU picocode.

$1 or PC: the program counter. Like all CPUs, this regis-
ter points to the next instruction to be fetched from
memory. Unlike all CPUs, the PC is a vector.

$2 or APC: the program counter delta. This vector
value is added to the PC vector immediately after
an instruction fetch. The ordinate values are arbi-
trary, though values of -1 (left or up), 0 (no change)
and 1 (right, down) are typical. Here are a few ex-
amples of useful A PC values:

e (000,000): halts the CPU (PC stops moving).
e (777,000): PC moves to the north.
e (001,000): PC moves to the south.

e (000,777): PC moves to the east.
e (000,001): PC moves to the west.

Diagonal movement is, of course possible, as are
flying PCs, though these should not be attempted
by the faint of heart.

$3 or A: the first general purpose register.
$4 or B: the second general purpose register.
$5 or C: the third and last general purpose register.

$6 or D: a general purpose register. This one is used to
store temporary copies of the A PC register by the
TRP command. It can still be used outside system
traps/micro-instructions.

$7 or E: likewise, this register may hold temporary
copies of the PC register during a TRP.

5 CPU Architecture

Many CPUs of the past have been microcoded. Ma-
chine code instructions are internally interpreted as
short programmes in microcode. Fungus makes an ex-
tra step towards the cliff of insanity by introducing pico-
instructions and pico-code. The CPU is built on top of a
simple® RISC core, as a multi-layer architecture.

Pico-code. Executed inside the CPU, Fungus pico-code
is a simple Very Long Instruction Word (VLIW) ma-
chine language. Pico-code is immutable and re-
sides in a ROM inside the CPU. It translates in-
structions to control signals for the CPU’s compo-
nent units. Pico-code is not accessible by the pro-
grammer.

Microcode. Is the lowest possible level of machine code
executed by the CPU. This is a RISC language, with
one instruction per word. Microcode is not muta-
ble in itself, but it is expandable using user defined
traps.

Befunge code. This can be implemented as a set of
traps in microcode. Each Befunge instruction is the
least significant 8 bits of an instruction word. The
instructions are interpreted and executed in Mi-
crocode. Other versions of Befunge can be imple-
mented by redefining the traps; a feature that al-
lows for diverse lower extremity injuries via chem-
ically propelled metal projectiles.

6 Instruction Set

Fungus is a Reduced Instruction Set Computer (RISC).
The instruction set is as small as possible. There are 26
instructions and they are all one word wide. Instructions

Sby INTERCAL standards

are not executed in a single clock tick, however: they
range from three to eight cycles, with most instructions
needing three.

6.1 Addressing Modes

Fungus does not have the usual large family (or small
country) of addressing modes. In fact, the mention of
addressing modes with respect to this architecture is of-
ficially deprecated. However, in the interest of provid-
ing an explanation to users hopelessly lodged in this
paradigm, here is a list of ‘addressing modes’:

Immediate. An instruction operates on a literal, storing
the address in a register.

Indexed. An instruction accesses memory by applying
an arithmetic or logic operation on two register val-
ues, and using the result as the memory address.
The result of the instruction is stored in the target
register.

Register. An instruction operates on one or two regis-
ters, storing the result in a third, target register.

6.2 Masking Modes

Since Fungus is an R? machine, it needs to deal with vec-
tor values, but also with their ordinates in an indepen-
dent fashion. To provide facilities, it also needs to access
words as scalar values. This duplication of functionality
would increase unacceptably the size of the instruction
set. This, in the interest of additional obfuscation, mask-
ing modes were introduced. Not to be mistaken with ad-
dressing modes, masking modes modify the semantics
of instructions as follows:

Vector mode. This is the default. The wo and rd parts of
aword are treated independently. Literals are writ-
ten like (123, 456) (although this is not necessary;
the same literal could still be written 123456). The
result of 7770004001001 would be 000001. In vector
notation: (777,0) 4+ (1,1) = (0,1).

X mode. This mode masks the wo (y ordinate) part of
words. In this way, all instructions affect only the
rd (x ordinate) part of data. In this context, the ad-
dition (777,0) + (1,1) yields (777, 1).

Y mode. As above, but the rd (x ordinate) part of data is
masked, making it immutable.

Scalar mode. Treats words as scalars. In scalar mode,
the addition 115333 + 225511 would yield 343044
(note how the carry crosses the wo-rd boundary).

6.3 Instruction Format

There are two groups of instructions: group 0 involves a
target register and 9-bit literal; group 1 involves a target

17 15 12 9 0

GO |0i M | oP | X | L
Gl |1 M | oOP X ALU A B
17 15 12 9 6 3 0

Figure 5: Instruction Format.

register and one or two source registers. The two groups
are illustrated in Fig. 5. The formats themselves are as
follows.

Group 0. Comprises of the following fields (in order of
increasing significance):

L: 9 bits. A 9-bit literal argument.

X: 3 bits. The target register.

OP: 3 bits. The instruction opcode.

M: 2 bits. Masking mode.

0: 1 bit. The instruction group (always 0).

Group 1. Comprises of the following fields (in order of
increasing significance):

B: 3 bits. For binary instructions, the register used
as right-hand operand. For unary instruc-
tions, this field acts as an extension of the ALU
field.

A: 3 bits. The register used as left-hand operand.
ALU: 3 bits. The ALU op code.

X: 3 bits. The target register.

OP: 3 bits. The instruction opcode.

M: 2 bits. Masking mode.

1: 1 bit. The instruction group (always 1).

7 Instruction Reference

7.1 Arithmetic and Logic Binary Operations

Overview All instructions in this category are G1 in-
structions. In fact, they are the same instruction: ALU,
engaging the ALU in different modes. For the program-
mer’s convenience, the ALU instructions is assembled
and disassembled as different sub-instructions, depend-
ing on the contents of the ALU. Since binary arithmetic
and logic instructions are effectively one instruction, se-
mantics are exactly the same throughout. Only the arith-
metic or logic operation differs.

Operation These instructions apply an arithmetic or
logic operation on the contents of registers A (denoted
by bits aaa) and B (denoted by bits bbb) and store the re-
sult in register X (denoted by bits xxx).

Masking Modes Use of MMs modifies the way arith-
metic/logic is performed and masks the result. Vector
mode (e.g. ADD) adds vector operands (wo and rd ordi-
nates added separately). Scalar mode (e.g. XOR.s) treats
register contents as 18-bit words. X and Y modes (e.g.
SUB.x and AND.y respectively) add only the rd and wo
parts of a word respectively, leaving the rest untouched.

Examples The easiest and most illustrative instruction
is, of course, addition. Using initial register values $1 =
1234565, $2 = 6543215, $3 = 5555555, $4 = $5 = $6 =

$7 = 2222224, the following instructions can be exe-
cuted:

ADD $4,%1,%2 ; $4 is now 777777

ADD.x $5,%$1,%$2 ; $5 is now 222777

ADD $6,%$1,%$3 ; $6 is now 700233

ADD.s $7,$1,$3 ; $7 is now 701233

Final register values: $4 = 777777g, $5 = 2227775,
$6 = 7002333, $7 = 7012335. Note the difference between
the last two instructions. The Scalar mode instruction
(.s prefix) propagates the carry past the wo/rd bound-
ary, whereas the default, vector mode does not.

7.1.1 ADD — Add registers

Instruction ADDXx,a,b

Format 1mm 000 xxx 000 aaa bbb
Semantics X—A+B

Cycles 4

7.1.2 SUB — Subtract registers

Instruction SUBXx,a,b

Format imm 000 xxx 001 aaa bbb
Semantics X—A-B

Cycles 4

7.1.3 AND — Bitwise And

Instruction ANDx,a,b

Format imm 000 xxx 010 aaa bbb
Semantics X—ANANB

Cycles 4

Note Since there is no carry, this instruction works in
exactly the same way in both Vector and Scalar modes.

7.1.4 OR— Bitwise Or

Instruction ORXx,a,b

Format imm 000 xxx 011 aaa bbb
Semantics X~ AVB

Cycles 4

Note Since there is no carry, this instruction works in
exactly the same way in both Vector and Scalar modes.

Group 0

GM OP X L Cycles Instruction Semantics
OM 000 X L 8 TRP L TPC « PC; TAPC «— APC; PC « (L,0); APC « (—1,0)
OM 001 X L 4 LI X,L X «— L
OM 010 X L 4 LV X,L X —(L,L)
OM 011 X L 5/6 SZ X,L X =0= PC « PC+ APC
OM 100 X L 5/6 SNZ X,L X #0= PC+ PC+ APC
OM 101 X L 718 DZ X,L APC « (—1,-1); X =0= APC « (1,1)
OM 110 X L 718 DNZ X,L APC «— (-1,-1); X #0= APC « (1,1)
OM 111 X L 5 RET PC «— TPC; APC «— TAPC
Group 1
GM OP X ALU A B Cycles Instruction Semantics
IM 000 X 000 A B 4 ADD X,A,B X<+ A+ B
IM 000 X 001 A B 4 SUB X,A,B X — A-B
IM 000 X 010 A B 4 AND X,A,B X +— AAB
1M 000 X 011 A B 4 OR X,A,B X —AVB
IM 000 X 100 A B 4 XOR X,A,B X +— A®B
IM 000 X 101 A B 4 (reserved)
IM 000 X 110 A B 4 (reserved)
IM 000 X 111 A 000 4 NOT X,A X — —=A
IM 000 X 111 A 001 4 SHR X,A X — |A/2]
IM 000 X 111 A 010 4 INV X,A X — A+(1,1)
IM 000 X 111 A 011 4 DEV X,A X —A—-(1,1)
IM 000 X 111 A 100 4 INC X,A X —A+1
IM 000 X 111 A 101 4 DEC X,A X—A-1
IM 000 X 111 A 110 4 (reserved)
1M 000 X 111 A 111 4 (reserved)
IM 001 X OP! A B 5 LW X,A,B X «—[A o B]
IM 010 X OP' A B 5 LX X,A,B X, «— [A o Bl,
IM 011 X OP! A B 5 LY X,A,B X, < [A o B],
IM 100 X OP! A B 5 SW X,A,B [Ao Bl — X
IM 101 X OP! A B 5 SX X,A,B [Ao B, — X
IM 110 X OP! A B 5 SY X,A,B [A o B], — X,
IM 111 X 000 A B 4 (reserved)

Table 1: Fungus instruction set.

7.1.5 XOR — Bitwise Exclusive Or

Instruction XORXx,a,b

Format imm 000 xxx 100 aaa bbb
Semantics X—A®B
Cycles 4

Note Since there is no carry, this instruction works in
exactly the same way in both Vector and Scalar modes.

7.2 Arithmetic and Logic Unary Operations

Overview Instructions in this category are cascaded
extensions of the ALU instruction, where the ALU oper-
ation is 111, and the B field is to select a unary ALU op-
eration. These are, of course, G1 instructions.

Operation These instructions apply an arithmetic or
logic operation on the contents of register A (denoted by
bits aaa), storing the result in register X (denoted by bits
XXX).

Masking Modes As always, use of MMs modifies the
way arithmetic/logic is performed and masks the re-
sult. Vector mode (e.g. DEV) increases vector operands
(wo and rd ordinates increased separately). Because of
the logic or kludgy nature of most of these instructions,
masking modes do not work as expected. Please read
along for more details following each instruction.

7.2.1 NOT — Bitwise Negation

Instruction NOT x,a,b

Format imm 000 xxx 111 aaa 000
Semantics X — A=

Cycles 4

Masking Modes Since there is no carry, this instruction
works in exactly the same way in both Vector and Scalar
modes. In X and Y modes, only the rd and wo of the tar-
get register are modified respectively.

7.2.2 SHR— Shift Right

Instruction SHRx,a

Format 1mm 000 xxx 111 aaa 001
Semantics X «— [A/2]

Cycles 4

Notes This instruction halves the source register,
rounding down. The most significant bit (or bits, in vec-
tor mode — see below) are zero-padded. There is no cor-
responding SHL instruction. This can be simulated at the
assembly level using the ADD instruction. Hence SHL x,a
is equivalent to ADD x,a,a (aleft shift effectively doubles
the operand). In the interest of simplicity, only single bit
shifts are available.

Masking Modes In Vector mode, the wo and rd parts of
a word are shifted separately. In scalar mode, the entire
word is shifted in unison. In X and Y modes, the rd and
wo are respectively shifted without disturbing the other
half of the target register.

Examples Using $1 = 1234565 and $4 = $5 = $6 = $7 =
333333s:

SHR.s $4,%1 ; $4 is now 051627
SHR.x $5,%1 ; $5 is now 333227
SHR.y $6,$1 ; $6 is now 051333
SHR $7,%1 ; $7 is now 051227

Note the difference between the scalar and vector in-
structions. Shifted bit values do not cross the wo/rd
boundary in vector mode. Also of note is the third in-
struction which shifts 1235 = 83, to the right yielding
51g = 411¢ (rounding down).

7.2.3 INV —Increment Vector

Instruction INVx,a

Format imm 000 xxx 111 aaa 010
Semantics X «— A+ (1,1)

Cycles 4

Notes This unusual instruction increments a vector by
adding (1,1) to it. At first it sounds inane, but masking
modes turn this instruction to a powerful tool. Grasping
the use of INV (and a few other similar instructions) is
an important part of understanding fully the mentality
of the Fungus architecture.

Masking Modes In Vector mode, the vector value of
register a is incremented along the main diagonal by
adding the vector (1, 1) to it. In X mode, only the rd is in-
cremented, effectively moving the vector register a along
the X axis. In Y mode, only the wo is incremented, ef-
fectively moving the vector register a along the Y axis. In
scalar mode, the constant 001001z is added to register a.

Examples Using $1 = $6 = $7 = 1234564:

INV $5,%1 ; $7 is now 124457
INV.x $6,$1 ; $5 is now 123457
INV.y $7,%1 ; $6 is now 124456

This instruction is useful in incrementing vector
pointers.

7.2.4 DEV — Decrement Vector

Instruction DEVx,a

Format imm 000 xxx 111 aaa 011
Semantics X «— A —(1,1)

Cycles 4

Notes Works like INV, but decrements vectors.

Masking Modes Works like INV, but the constant (1, 1)
(or the scalar 001001g) is substracted from register ¢ and
stored in register x.

7.2.5 INC —Increment Scalar

Instruction INCx,a

Format imm 000 xxx 111 aaa 100
Semantics X —A+1

Cycles 4

Notes This mundane, scalar counterpart of INV incre-
ments a scalar value. This is a particularly kludgy in-
struction, but needed for many uni-dimensional tasks.
As such, it lacks the elegance of most other Funge in-
structions®.

Masking Modes In Vector mode, the vector (0,1) is
added to register a. In X mode, this instruction behaves
exactly like INV.x. In Y mode, this is a NOP. In scalar
mode, register x receives the scalar value a + 00000015.

Examples Using $1 = 123456g, $4 = $5 = $6 = $7 =

0000005:

INC $4,%1 ; $7 is now 123457
INC.s $5,%$1 ; $7 is now 123457
INC.x $6,%$1 ; $5 is now 123457
INC.y $7,%1 ; $6 is now 123456

7.2.6 DEC — Decrement Scalar

Instruction DECx,a

Format 1mm 000 xxx 111 aaa 101
Semantics X «— A—(1,1)

Cycles 4

Notes DEC’ works like INC, but decrements scalars.

Masking Modes Works like INC, but the constant (0, 1)
(or the scalar 000001g) is substracted from register ¢ and
stored in register x.

7.3 Literals

Loading registers with literal values is needed by any self
respecting architecture. Like the MIPS Rx000, Fungus
has a fixed single-word instruction length, which pre-
cludes loading an entire literal word into a register. A
pair of instructions are therefore provided, but, in true
Fungus fashion, they are not what the MIPS programmer
would expect.

6although it does offer a novel way to do a NOP.
“requests to change the name of DEC to COMPAQ will be diverted to
/dev/null, as soon as a Fungus-based xnix kernel is developed.

7.3.1 LI— Load Literal

Instruction LIx,L

Format Omm 001 xxx LLLLLLLLL
Semantics X« L

Cycles 4

Notes This instruction loads a literal value into a regis-
ter’s rd. Since the literal L is only 9 bits wide, only the rd
can be affected. The wo is zero-padded. To set a wo to a
literal value, please use LV.y.

Masking Modes In Vector and Scalar modes, LI and
LI.s simply copy the zero-padded literal L to register X.
In X mode, the literal overwrites the rd of register X. The
wo is not modified. In Y mode, this instruction zeroes
the wo of the target register without modifying the rd.

Examples Here are a few examples of the use of LI,
where $6 = $7 = 5555554:

LI $4,145 ; $4 is now 000145
LI.s $5,145 ; $7 is now 000145
LI.x $6,777 ; $5 is now 555777
LI.y $7,666 ; $6 is now 000555

Note how Scalar and Vector modes work in an iden-
tical fashion. Also noteworthy is the unusual LI.y con-
struct that zeroes an rd.

7.3.2 LV —Load Vector

Instruction LVx,L

Format Omm 010 xxx LLLLLLLLL
Semantics X — (L, L)

Cycles 4

Notes Yet another unusual instruction. This one dupli-
cates L to form the vector (L, L), which it then stores in
register X.

Masking Modes In Vector and Scalar modes, LV and
LV.s simply copy the literal vector (L, L) or the scalar
(2° 4+ 1)L (of doubtful usefulness) to the target register.
In X mode, this instruction behaves exactly like an LI . x.
In Y mode, the most useful invocation, L is stored in the
wo of the target register.

Examples Here are a few examples of the use of LV,
where $6 = $7 = 5555554:

LV $4,145 ; $4 is now 145145
LV.s $5,707 ; $7 is mow 707707
LV.x $6,777 ; $5 is now 555777
LV.y $7,666 ; $6 is now 666555

Note how Scalar and Vector modes work in an iden-
tical fashion and the use of LV.y to load a literal into a
wo.

Table 2: ALU operations and their corresponding nazg
expressions.

Op ALU B NazgExpression
ADD 000 B a+b
SUB 001 B a—1b
AND 010 B a&b
OR 011 B a | b
XOR 100 B a”b
NOT 111 000 ~a
SHR 111 001 >>a
INV 111 010 ++a
DEV 111 011 ——a
INC 111 100 +a
DEC 111 101 —a

7.4 Memory Input/Output

Overview Memory input and output is accomplished
through the abuse of six G1 instructions (dealing with
indexed register memory access). The G1 instructions
incorporate and subsume the ALU instruction. As such
they could be seen as 66 different instructions, but this
author will not because it’s not convenient enough?®.

Operation These instructions apply an arbitrary arith-
metic or logic binary or unary operation on the contents
of registers A (denoted by bits aaa) and B (denoted by
bits bbb, naturally only used on binary operations).

The result is then used to address memory. Load in-
structions transfer a word, wo or rd from that location
in memory to the X register. Store instructions transfer a
word from register X to the resultant location in memory.
This last case is the only exception in the use of register
X as a target register: Store instructions use memory as a
target and register X as a source.

Obviously, not all arithmetic and logic operations will
be useful in addressing memory. However, the elegance
of Fungus is such that using obscure operations is not
forbidden. It is, in fact, encouraged.

In the instruction descriptions below, the symbol o°
denotes an arithmetic or logic operation, either binary or
unary. Where the operation is unary, the nazg is written
in prefix fashion. Table 2 lists ALU operations and their
nazg symbols.

Masking Modes MMs in the context of load and store
instructions work slightly less intuitively than with other
instructions. Masking is only applied to the memory
address calculation, not the entire operation. All of LW,
LW.x, LW.y and LW.s load entire words from memory.

8and to add even more confusion and obfuscation to the architec-
ture.

9the author humbly submits the name nazg for this most useful
meta-symbol. One nazg to denote them all.

The difference is in the way the memory addresses are
calculated.

In vector mode, registers A and B are treated as vec-
tor values, and behave as specified in the corresponding
ALU operation. In scalar mode, registers A and B behave
like scalars, with carry crossing the wo/rd boundary, et
cetera. Modes X and Y are not particularly useful. They
respectively apply the operation on the rd and wo, but
the other half of the word is filled with zeroes.

Examples Here are a few examples of the flexibility af-
forded by this scheme, where $4 = 1234563, $5 = 1111113
and $6 = 5555554:

LW $4,$5+$6 ; $4 is mem[666666]

LW $4,$51%6 ; $4 is mem[555555]

LX $4,$5°$6 ; $4.x is mem[444444] .x

LW.x $4,$5+%6 ; $4 is mem[000666]

SY.x $4,$54%$6 ; mem[000111] .y is (123456).y
SW $4,+$5 ; mem[111112] is 123456

Note how the .x mode in the fifth example applies
the address calculation to the rd only, but a wo is written
to memory.

7.4.1 IW —Load Word

Instruction IWx,aoborSWx,0ob
Format imm 001 xxx alu aaa bbb
Semantics X «— [A o B]

Cycles 5

Notes Evaluates A nazg B (or nazg A for unary opera-
tions) and addresses memory with the operation result
to retrieve a whole word. The word is stored in register X.

7.4.2 LX—LoadRd
Instruction LXx,aoborSXx,ob
Format imm 010 xxx alu aaa bbb
Semantics X, < [A o B,
Cycles 5

Notes Evaluates A nazg B (or nazg A for unary opera-
tions) and addresses memory with the operation result
to retrieve an rd only. The rd is stored in register X’s rd.

7.4.3 LY —Load Wo

Instruction LYXx,aoborSYx,ob
Format imm 011 xxx alu aaa bbb
Semantics X, — [A o B],

Cycles 5

Notes Evaluates A nazg B (or nazg A for unary opera-
tions) and addresses memory with the operation result
to retrieve a wo only. The wo is stored in register X’s wo.

7.4.4 SW — Store Word

Instruction SWx,aoborSWx,ob
Format 1mm 100 xxx alu aaa bbb
Semantics [A o B]« X

Cycles 5

Notes Evaluates A nazg B (or nazg A for unary opera-
tions) and addresses memory with the operation result.
The word contained in register X is stored at that address.

7.4.5 SX—StoreRd

Instruction SXx,aoborSXx,0cb
Format 1mm 101 xxx alu aaa bbb
Semantics [A o Bl — X,

Cycles 5

Notes Evaluates A nazg B (or nazg A for unary opera-
tions) and addresses memory with the operation result.
The rd contained in register X is stored at that address’
rd.

7.4.6 SY— Store Wo

Instruction SYx,aoborSYx,ob
Format 1mm 110 xxx alu aaa bbb
Semantics [A o B|, — X,

Cycles 5

Notes Evaluates A nazg B (or nazg A for unary opera-
tions) and addresses memory with the operation result.
The wo contained in register X is stored at that address’
wo.

7.5 Flow Control

Flow control is implemented by means of three pairs of
instructions.

1. The trap mechanism inclues TRP and RET is a cross
between the subroutine calling of most architec-
tures, x86 software interrupts and Motorola 68k
traps. Traps can be used to build up to 512 macro-
instructions or system services, or to implement
Befuge on top of Fungus.

2. The skip mechanism includes the Sz and SNZ in-
structions. These skip the next instruction depend-
ing on the value of the specified register.

3. The divert mechanism includes the DZ and DNZ in-
structions. These modify (divert) the APC regis-
ter and hence the direction of the PC based on the
value of the specified register.

11

7.5.1 TRP —Trap

Instruction TRPL

Format 0XX 000 XXX LLLLLLLLL

Semantics TPC « PC; TAPC «— APC;
PC — (L,0); APC « (—1,0)

Cycles 8

Notes Bits marked ‘X’ in the instruction format above
are Don't-Care values. The target register is ignored and
assembly notation of TRP omits it altogether.

This is the most complex Fungus instruction. It works
as follows: the PC and APC registers are saved in the TPC
(87) and TAPC ($6) registers respectively; then APC is
made to point ‘north’ and PCis assigned the vector (0, L).
This effectively jumps to a specified subroutine on the
first row of memory. The subroutine performs any pro-
cessing necessary and issues the RET instruction to re-
turn to the caller.

These traps can be used for interrupt handling, sys-
tem service vectors, and to implement Befunge as a set
of macro-instructions built on top of Fungus.

Traps 32-127 correspond to ASCII characters. These
can be issued on most modern keyboards. The obser-
vant reader will no doubt have noticed that the instruc-
tion format for TRP uses don’t-care values for the ALU
and MM fields. Thus, the wo of a trap instruction is typi-
cally 0 and the rd denotes the trap to jump to.

In this way, plain text files comprising printable ASCII
characters are seen as traps by Fungus. Each trap per-
forms one Funge instruction and returns to the caller.
In this manner, complex Funges can be implemented
cleanly and elegantly on top of the lower-level Fungus
instruction set. At the same time, Fungus machine code
can still be mixed in with high-level Befunge instructions
for added hack value.

Trap vectors are arranged on the row 0 of the address
space for two reasons:

e RAM is expected to be mapped starting with row 0.

e Fungus boot ROM can modify row 0 to displace the
PC either ‘north’ or ‘south’. North wraps around
to row 777, where ROM is expected to be mapped.
Thus the default, ROM handler for a trap may be
set. South allows user-supplied traps to be imple-
mented.

Masking Modes MMs do not apply to the TRP com-
mand and are ignored.

Example The Unifunge programme 52*. that evalu-
ates and prints out ‘10’ looks as follows in 18-bit octal
words: 000065 000062 000052 000056. This disassem-
bles into the following Fungus code, for a hypothetical
Befunge programming environment.

TRP
TRP

065 ;
062

)5):
)27:

Push 5
Push 2

TRP 052 M R
TRP 056 ;.0

Multiply
Print number

7.5.2 RET — Return

Instruction RET

Format 0XX 001 XXX XXXXXXXXX
Semantics PC — TPC; APC «— TAPC
Cycles 5

Notes Bits marked ‘X’ in the instruction format above
are don’t-care values. Both target register and literal
value are ignored for this instruction. No arguments
need to be passed to it in assembly.

This instruction marks the end of a trap handler. It
simply restores the values of the PC and APC registers
using the values stored by the TRP instruction.

Masking Modes MMs do not apply to the RET com-
mand and are ignored.

7.6 Proposed Macro-Instructions
7.6.1 SZ— Skip If Zero

Instruction SZA
Format Omm 011 XXX XXX aaa XXX
Semantics X =0= PC < PC+ APC
Cycles 6-7 (see below)
Notes Bits marked ‘X’ in the instruction format above

are don’t-care values. The 9-bit literal is ignored for this
instruction. This instruction needs an extra clock cycle
when the skip is taken.

The Sz instruction tests register A. If the register is
zero (depending on the MM used), the next instruction
is skipped. Skipping is performed by adding APC to PC,
hence are skipped along the current direction of the PC.

Masking Modes MMs apply to the comparison. Vector
and scalar mode yield identical effects, testing the entire
word. X and Y mode only test the rd and wo’s bits respec-
tively.

7.6.2 SNZ — Skip Unless Zero

Instruction SNZA

Format Omm 100 XXX XXX aaa XXX
Semantics X #0= PC+« PC+ APC
Cycles 6-7 (see below)

Notes This instruction is almost identical to SZ above.

Bits marked ‘X’ in the instruction format above are
don't-care values. The 9-bit literal is ignored for this in-
struction. This instruction needs an extra clock cycle
when the skip is taken.

Table 3: Values of APC immediately after a DZ instruc-
tion.

DZA DZ.x A DZ.y A
A=0 (-1,-1) (=1,0) (0,—1)
A£0 (1,1) (1,0) (0,1)

The SNZ instruction tests register A. If the register is
non-zero (depending on the MM used), the next instruc-
tion is skipped. Skipping is performed by adding APC to
PC, hence instructions are skipped along the current di-
rection of the PC.

Masking Modes MMs apply to the comparison. Vector
and scalar mode yield identical effects, testing the entire
word. X and Y mode only test the rd and wo’s bits respec-
tively.

7.6.3 DZ — Divert If Zero

Instruction DZA

Format Omm 101 XXX XXX aaa XXX

Semantics APC — (0,0); APC «— (—1,—1);
X =0= APC «— (1,1)

Cycles 8-9 (see below)

Notes Bits marked ‘X’ in the instruction format above
are don’t-care values. The 9-bit literal is ignored for this
instruction. This instruction needs an extra clock cycle if
the register is zero.

The DZ instruction tests register A. If the register is
zero (depending on the MM used), the PC moves south-
west (APC = (1,1)). Otherwise, the PC moves northeast
(APC = (—1,-1)).

The APC register is updated immediately. The next
instruction to be fetched will be at address PC + APC.

Masking Modes MMs apply to the diversion (APC
assignment). Vector and scalar modes are identical,
assigning southwest/northeast directions to APC. X
mode will assign west/east directions; Y mode will asign
south/north directions. Table 3 illustrates this.

7.6.4 DNZ — Divert Unless Zero

Instruction DNZA

Format Omm 110 XXX XXX aaa XXX

Semantics APC — (0,0); APC «— (-1, —1);
X =0= APC «+ (1,1)

Cycles 8-9 (see below)

Notes Bits marked ‘X’ in the instruction format above
are don't-care values. The 9-bit literal is ignored for this
instruction. This instruction needs an extra clock cycle if
the register is non-zero.

Table 4: Values of APC immediately after a DNZ instruc-
tion.

DNZ A DNZ.x A DNZ.y A

A=0 (L,1) (1,0) (0,1)
A£0 (=1,-1) (=1,0) (0,—1)

The DNZ instruction tests register A. If the register is
non-zero (depending on the MM used), the PC moves
southwest (APC = (1,1)). Otherwise, the PC moves
northeast (APC = (-1, —1)).

The APC register is updated immediately. The next
instruction to be fetched will be at address PC + APC.

Masking Modes MMs apply to the diversion (APC
assignment). Vector and scalar modes are identical,
assigning southwest/northeast directions to APC. X
mode will assign west/east directions; Y mode will asign
south/north directions. Table 4 illustrates this.

7.7 Proposed Assembly Aliases

It is evident from the above discussion that the Fun-
gus instruction set is as minimalistic as possible. It
would help, however, to define a set of Assembly micro-
instructions to simplify commonly used tasks and to fill
in the missing Fungus instructions.

However, a macro-assembler for Fungus is a highly
non-trivial task. Expanding single Assembly commands
to multiple machine instructions disrupts the topology
of the programme. This could be detected by the assem-
bler, but correcting it in an elegant, space-efficient man-
ner is quite difficult.

Thus, Fungus assemblers should instead use instruc-
tion aliases: commands that expand to single machine
instructions. This simplifies disassembly too.

ADD x,a,a ; SHL x,a
DZ.x $0 ; GOE

DNZ.x $0 ; GOW

DZ.y $0 ; GON

DNZ.y $0 ; GOS

ADD $1,$0,R ; JR R

13

