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Abstract
Reconstruction-based Model-Based Reinforce-
ment Learning (MBRL) agents, such as Dreamer,
often fail to discard task-irrelevant visual distrac-
tions that are prevalent in natural scenes. In this
paper, we propose a reconstruction-free MBRL
agent, called DreamerPro, that can enhance ro-
bustness to distractions. Motivated by the recent
success of prototypical representations, a non-
contrastive self-supervised learning approach in
computer vision, DreamerPro combines Dreamer
with prototypes. In order for the prototypes to
benefit temporal dynamics learning in MBRL, we
propose to additionally learn the prototypes from
the recurrent states of the world model, thereby
distilling temporal structures from past observa-
tions and actions into the prototypes. Experi-
ments on the DeepMind Control suite show that
DreamerPro achieves better overall performance
than state-of-the-art contrastive MBRL agents
when there are complex background distractions,
and maintains similar performance as Dreamer in
standard tasks where contrastive MBRL agents
can perform much worse.

1. Introduction
Model-Based Reinforcement Learning (MBRL, Sutton,
1991; Sutton & Barto, 2018) provides a solution to many
problems in contemporary reinforcement learning. It im-
proves sample efficiency by training a policy through simu-
lations of a learned world model. Learning a world model
also provides a way to efficiently represent experience data
as general knowledge simulatable and reusable in arbitrary
downstream tasks. In addition, it allows accurate and safe
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decisions via planning.

Among recent advances in image-based MBRL, Dreamer is
particularly notable as the first MBRL agent outperforming
popular model-free RL agents with better sample efficiency
in both continuous and discrete control (Hafner et al., 2020;
2021). Unlike some previous MBRL methods (e.g., Kaiser
et al., 2020), Dreamer learns a world model that can be
rolled out in a compact latent representation space instead
of the high-dimensional observation space. In addition,
policy learning can be done efficiently via backpropagation
through the differentiable dynamics model.

In image-based RL, the key problem is to learn a low-
dimensional state representation and, in the model-based
case, also its forward dynamics. While these can be learned
by directly maximizing the rewards (Schrittwieser et al.,
2020), due to reward sparsity, it is more practical to intro-
duce auxiliary tasks that provide richer learning signal to
facilitate representation learning (Sutton et al., 2011; Jader-
berg et al., 2016). Dreamer achieves this by shaping the
latent representation and dynamics in a way that reduces the
reconstruction error of the observation sequences.

However, reconstruction-based representation learning has
limitations. First, it wastes the representation capacity to
learn even the visual signals that are irrelevant to the task
such as noisy backgrounds (Zhang et al., 2021; Nguyen
et al., 2021). Second, reconstruction can be computationally
expensive for high-resolution observations, especially in
models like Dreamer that need to reconstruct long-range
videos. These limitations make it hard to scale Dreamer to
natural scenes. Therefore, it is of particular interest to de-
velop a reconstruction-free version of Dreamer for MBRL.

The currently dominant approaches for reconstruction-free
MBRL optimize a contrastive loss over a batch of several
consecutive frames (Okada & Taniguchi, 2021; Nguyen
et al., 2021). Although they can greatly outperform Dreamer
under complex background distractions, for the standard
DeepMind Control (DMC) suite (Tassa et al., 2018), they
showed quite inconsistent results by performing much worse
than Dreamer on some tasks. Moreover, we find through
visualization that in the presence of background distractions,
the contrastively learned latent states can sometimes discard
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key task-relevant information. One possible reason is that
the background distractions are visually different across
the batch, leading to a degenerate solution that reduces the
contrastive loss by distinguishing between the backgrounds.

In this paper, we seek to further enhance the robustness of
reconstruction-free MBRL agents. Inspired by the proto-
typical representations that have shown more accurate and
robust performance than contrastive methods in computer
vision (Caron et al., 2020; 2021), we hypothesize that in-
corporating prototypes into MBRL so that they are jointly
learned with the temporal dynamics, may also bring some
benefits such as consistency or robustness. Hence, we pro-
pose DreamerPro, the first non-contrastive reconstruction-
free MBRL agent that combines Dreamer with prototypes.
Similar to SwAV (Caron et al., 2020), by encouraging uni-
form cluster assignment across the batch, we implicitly push
apart the embeddings of different observations. Importantly,
we set the number of prototypes as the product of batch size
and sequence length, so that the embeddings within the same
sequence (where the distractions tend to be visually similar)
are also pushed apart. This helps avoid degenerate solutions
and encourage extraction of task-relevant information. How-
ever, SwAV treats each observation independently, ignoring
the temporal structures that are crucial in MBRL. To address
this issue, DreamerPro additionally learns the prototypes
from the recurrent states of the world model, thereby dis-
tilling temporal structures from the recurrent states into the
prototypes.

We evaluate DreamerPro on the standard setting of DMC,
and also on a natural background setting, where the back-
ground is replaced by natural videos irrelevant to the task.
DreamerPro achieves better overall performance than state-
of-the-art contrastive MBRL agents (Okada & Taniguchi,
2021; Nguyen et al., 2021) in natural background DMC, and
maintains similar performance as Dreamer in standard DMC.
Our visualization also shows that DreamerPro is better at
retaining task-relevant information in both settings.

2. Preliminaries
In this section, we briefly introduce the world model and
learning algorithms used in DreamerV2 (Hafner et al., 2021)
which our model builds upon. To indicate the general
Dreamer framework (Hafner et al., 2020; 2021), we omit its
version number in the rest of the paper.

2.1. Reconstruction-Based World Model Learning

Dreamer learns a recurrent state-space model (RSSM,
Hafner et al., 2019) to predict forward dynamics and rewards
in partially observable environments. At each time step t,
the agent receives an image observation ot and a scalar
reward rt (obtained by previous actions a<t). The agent

then chooses an action at based on its policy. The RSSM
models the observations, rewards, and transitions through a
probabilistic generative process: p(o1:T , r1:T | a1:T ) =∫ T∏

t=1

p(ot | ht, st) p(rt | ht, st) p(st | ht) ds1:T , (1)

where the latent variables s1:T are the agent states, and
ht = GRU(ht−1, st−1, at−1) is a deterministic encoding
of s<t and a<t (Chung et al., 2014). To infer the agent states
from past observations and actions, a variational encoder is
introduced:

q(s1:T | o1:T , a1:T ) =
T∏

t=1

q(st | ht, ot) . (2)

The training objective is to maximize the evidence lower
bound (ELBO): JDreamer =

T∑
t=1

Eq

[
log p(ot | ht, st)︸ ︷︷ ︸

J t
O

+ log p(rt | ht, st)︸ ︷︷ ︸
J t

R

−DKL(q(st | ht, ot) ∥ p(st | ht))︸ ︷︷ ︸
J t

KL

]
. (3)

2.2. Policy Learning by Latent Imagination

Dreamer interleaves policy learning with world model learn-
ing. During policy learning, the world model is fixed, and
an actor and a critic are trained cooperatively from the latent
trajectories imagined by the world model. Specifically, the
imagination starts at each non-terminal state ẑt = [ht, st] en-
countered during world model learning. Then, at each imag-
ination step t′ ≥ t, an action is sampled from the actor’s
stochastic policy: ât′ ∼ π(ât′ | ẑt′). The corresponding re-
ward r̂t′+1 and next state ẑt′+1 are predicted by the learned
world model. Given the imagined trajectories, the actor
improves its policy by maximizing the λ-return (Schulman
et al., 2016; Sutton & Barto, 2018) plus an entropy regular-
izer that encourages exploration, while the critic is trained
to approximate the λ-return through a squared loss.

3. DreamerPro
To compute the Dreamer training objective, more specifi-
cally J t

O in Equation 3, a decoder is required to reconstruct
the image observation ot from the state zt = [ht, st]. Be-
cause this reconstruction loss operates in pixel space where
all pixels are weighted equally, Dreamer tends to allocate
most of its capacity to modeling complex visual patterns
that cover a large pixel area (e.g., backgrounds). This leads
to poor task performance when those visual patterns are task
irrelevant, as shown in previous work (Nguyen et al., 2021).
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Projections

Figure 1. DreamerPro learns the world model through online clus-
tering, eliminating the need for reconstruction. At each time step
t, it first compares the observation to a set of trainable prototypes
{c1, . . . , cK} to obtain the target cluster assignment wt. Then,
it predicts this target from both the world model state zt and an-
other augmented view of the observation (each aug(ot) denotes an
independent application of data augmentation). The predictions
are improved by optimizing the two objective terms, J t

Temp and
J t

SwAV, respectively, where the first term crucially distills tempo-
ral structures from zt into the prototypes.

Fortunately, during policy learning, what we need is accu-
rate reward and next state prediction, which are respectively
encouraged by J t

R and J t
KL. In other words, the decoder

is not required for policy learning. The main purpose of
having the decoder and the associated loss J t

O, as shown in
Dreamer, is to learn meaningful representations that cannot
be obtained by J t

R and J t
KL alone.

The above observations motivate us to improve robustness
to visual distractions by replacing the reconstruction-based
representation learning in Dreamer with reconstruction-free
methods. To this end, we propose to combine Dreamer
with the prototypical representations used in SwAV (Caron
et al., 2020), a top-performing self-supervised representa-
tion learning method for static images. We name the result-
ing model DreamerPro, and provide the model description
in the following.

DreamerPro uses the same policy learning algorithm as
Dreamer, but learns the world model without reconstructing
the observations. This is achieved by clustering the observa-
tion into a set of K trainable prototypes {c1, . . . , cK}, and
then predicting the cluster assignment from the state as well
as an augmented view of the observation. See Figure 1 for
an illustration.

Concretely, given a sequence of observations o1:T sampled
from the replay buffer, we obtain two augmented views
o
(1)
1:T , o

(2)
1:T by applying random shifts (Laskin et al., 2020a;

Yarats et al., 2021b) with bilinear interpolation (Yarats et al.,
2022). We ensure that the augmentation is consistent across
time steps. Each view i ∈ {1, 2} is fed to the RSSM to

obtain the states z
(i)
1:T . To predict the cluster assignment

from z
(i)
t , we first apply a linear projection followed by ℓ2-

normalization to obtain a vector x(i)
t of the same dimension

as the prototypes, and then take a softmax over the dot
products of x(i)

t and all the prototypes:

(u
(i)
t,1, . . . , u

(i)
t,K) = softmax

(
x
(i)
t · c1
τ

, . . . ,
x
(i)
t · cK
τ

)
.

(4)

Here, u(i)
t,k is the predicted probability that state z(i)t maps to

cluster k, τ is a temperature parameter, and the prototypes
{c1, . . . , cK} are also ℓ2-normalized.

Analogously, to predict the cluster assignment from an aug-
mented observation o

(i)
t , we feed it to a convolutional en-

coder (shared with the RSSM), apply a linear projection
followed by ℓ2-normalization, and obtain a vector y(i)t . We
summarize this process as: y(i)t = fθ(o

(i)
t ), where θ collec-

tively denotes the parameters of the convolutional encoder
and the linear projection layer. The prediction probabilities
are again given by a softmax:

(v
(i)
t,1, . . . , v

(i)
t,K) = softmax

(
y
(i)
t · c1
τ

, . . . ,
y
(i)
t · cK
τ

)
,

(5)

where v
(i)
t,k is the predicted probability that observation o

(i)
t

maps to cluster k.

To obtain the targets for the above two predictions (i.e.,
Equations 4 and 5), we apply the Sinkhorn-Knopp algo-
rithm (Cuturi, 2013) to the cluster assignment scores com-
puted from the output of a momentum encoder fθ̄ (He et al.,
2020; Grill et al., 2020; Caron et al., 2021), whose param-
eters θ̄ are updated using the exponential moving average
of θ: θ̄ ← (1 − η)θ̄ + ηθ. For each observation o

(i)
t , the

scores are given by the dot products (ȳ(i)t · c1, . . . , ȳ(i)t · cK),
where ȳ

(i)
t = fθ̄(o

(i)
t ) is the momentum encoder output.

The Sinkhorn-Knopp algorithm is applied to the two aug-
mented batches {o(1)1:T }, {o

(2)
1:T } separately to encourage uni-

form cluster assignment within each augmented batch and
avoid trivial solutions. We specifically choose the number
of prototypes K = B × T , where B is the batch size and T
is the sequence length, so that the observation embeddings
are implicitly pushed apart from each other both within each
sequence and across different sequences. The outcome of
the Sinkhorn-Knopp algorithm is a set of cluster assignment
targets (w(i)

t,1, . . . , w
(i)
t,K) for each observation o

(i)
t .

Now that we have the cluster assignment predictions and
targets, the representation learning objective is simply to
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maximize the prediction accuracies:

J t
SwAV =

1

2

K∑
k=1

(
w

(1)
t,k log v

(2)
t,k + w

(2)
t,k log v

(1)
t,k

)
, (6)

J t
Temp =

1

2

K∑
k=1

(
w

(1)
t,k log u

(1)
t,k + w

(2)
t,k log u

(2)
t,k

)
. (7)

Here, J t
SwAV improves prediction from an augmented view.

This is the same loss as used in SwAV (Caron et al., 2020),
and is shown to induce useful features for static images.
However, it ignores the temporal structures that are crucial
in MBRL. Hence, we add a second term, J t

Temp, that im-
proves prediction from the state of the same view. This has
the effect of making the prototypes close to the states that
summarize the past observations and actions, thereby distill-
ing temporal structures into the prototypes. From another
perspective, J t

Temp is similar to J t
O in the sense that we are

now ‘reconstructing’ the cluster assignment of the observa-
tion instead of the observation itself. This frees the world
model from modeling complex visual details, allowing more
capacity to be devoted to task-relevant features.

The overall world model learning objective for Dreamer-
Pro can be obtained by replacing J t

O in Equation 3 with
J t
SwAV + J t

Temp:

JDreamerPro =

T∑
t=1

Eq[J t
SwAV + J t

Temp + J t
R − J t

KL] ,

(8)

where J t
R and J t

KL are now averaged over the two aug-
mented views.

4. Experiments
Environments. We evaluate our model and the baselines
on six image-based continuous control tasks from the Deep-
Mind Control (DMC) suite (Tassa et al., 2018). We choose
the set of tasks based on those considered in PlaNet (Hafner
et al., 2019). Specifically, we replace Cartpole Swingup
and Walker Walk with their more challenging counterparts,
Cartpole Swingup Sparse and Walker Run, and keep the
remaining tasks. In addition to the standard setting, we also
consider a natural background setting (Zhang et al., 2021;
Nguyen et al., 2021), where the background is replaced by
task-irrelevant natural videos randomly sampled from the
‘driving car’ class in the Kinetics 400 dataset (Kay et al.,
2017). Following TPC (Nguyen et al., 2021), we use two
separate sets of background videos for training and evalua-
tion, containing 683 and 69 videos respectively. Hence, the
natural background setting tests generalization to unseen
distractions. We note that the recently released Distracting
Control Suite (DCS, Stone et al., 2021) serves a similar pur-
pose. However, the background distractions in DCS seem

less challenging, as there are fewer videos and the ground
plane is made visible for most tasks. In our preliminary
experiments, our model and all the baselines achieved close
to zero returns on Cartpole Swingup Sparse in the natural
background setting. We therefore switch back to Cartpole
Swingup in this setting.

Baselines. Our main baselines are Dreamer (Hafner et al.,
2021), Dreaming (Okada & Taniguchi, 2021), and TPC
(Nguyen et al., 2021), the state-of-the-art for reconstruction-
based and reconstruction-free MBRL. In particular, TPC
has shown better overall performance than CVRL (Ma et al.,
2021), DBC (Zhang et al., 2021), and CURL (Laskin et al.,
2020b) on the same datasets, and therefore is a strong base-
line. The recently proposed PSE (Agarwal et al., 2021) has
demonstrated impressive results on DCS. However, it is
only shown to work in the model-free setting and requires a
pretrained policy, while DreamerPro learns both the world
model and the policy from scratch.

Implementation Details. We implement DreamerPro1 and
Dreaming based on a newer version of Dreamer2, while the
official implementation of TPC3 is based on an older version.
For fair comparison, we re-implement TPC based on the
newer version. We adopt the default values for the Dreamer
hyperparameters, except that we use continuous latents and
tanh normal as the distribution output by the actor. We
find these changes improve Dreamer’s performance in the
standard DMC, and therefore use these values for all models
in both the standard and the natural background settings.
Following TPC, we increase the weight of the reward loss
J t
R to 1000 for all models in the natural background setting

to further encourage extraction of task-relevant information.
While in the original TPC, this weight is chosen separately
for each task from {100, 1000}, we find the weight of 1000
works consistently better in our re-implementation, which
also obtains better results than reported in the original paper.
We use the default batch size of 50 for Dreamer, Dreaming,
and DreamerPro. The batch size for TPC is chosen to be 150,
so that it has similar wall clock training time as DreamerPro.

Evaluation Protocol. For each task, we train each model
for 1M environment steps (equivalent to 500K actor steps,
as the action repeat is set to 2). The evaluation return is
computed every 10K steps, and averaged over 10 episodes.
In all figures and tables, the mean and standard deviation
are computed from 3 independent runs.

1https://github.com/fdeng18/dreamer-pro
2https://github.com/danijar/dreamerv2/tre

e/e783832f01b2c845c195587158c4e129edabaebb
3https://github.com/VinAIResearch/TPC-ten

sorflow

https://github.com/fdeng18/dreamer-pro
https://github.com/danijar/dreamerv2/tree/e783832f01b2c845c195587158c4e129edabaebb
https://github.com/danijar/dreamerv2/tree/e783832f01b2c845c195587158c4e129edabaebb
https://github.com/VinAIResearch/TPC-tensorflow
https://github.com/VinAIResearch/TPC-tensorflow
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Figure 2. Performance curves in standard DMC. DreamerPro is the only model that is comparable or better than Dreamer on all tasks.

Table 1. Final performance in standard DMC.

Task Dreamer Dreaming TPC DreamerPro

Cartpole Swingup Sparse 820± 23 830± 12 770± 9 813± 32
Cheetah Run 840± 74 745± 18 782± 82 897± 8
Cup Catch 967± 3 965± 13 948± 7 961± 10
Finger Spin 559± 54 722± 197 524± 127 811± 232
Reacher Easy 721± 51 975± 2 503± 185 873± 127
Walker Run 737± 26 422± 25 222± 29 784± 28

4.1. Performance in Standard DMC

We show the performance curves in Figure 2 and the final
performance in Table 1 for the standard setting. DreamerPro
is the only model that achieves comparable or even better
performance than Dreamer on all tasks. Notably, Dreamer-
Pro maintains similar performance as Dreamer on Walker
Run where the other baselines failed. Moreover, Dreamer-
Pro demonstrates the best data efficiency on Cup Catch.
We show through visualization in Section 4.3 that this is
because DreamerPro can extract task-relevant information
faster than the baselines. We also notice a large variance in
DreamerPro’s performance on Finger Spin. Further inves-
tigation reveals that DreamerPro learned close to optimal
behavior (with average episode returns above 950) on two of
the seeds, while converged to a suboptimal behavior (with
average episode returns around 500) on the other seed. The
low variance of Dreamer indicates that it hardly achieved
close to optimal behavior. Our results suggest for the first
time that prototypical representations can be beneficial to

MBRL even in the absence of visual distractions.

4.2. Performance in Natural Background DMC

Figure 3 and Table 2 respectively show the performance
curves and final evaluation returns obtained by all models
in the natural background setting. Dreamer completely fails
on all tasks, showing the inability of reconstruction-based
representation learning to deal with complex visual distrac-
tions. In contrast, DreamerPro achieves better performance
on 5 out of 6 tasks when compared to Dreaming and TPC
individually. Considering the fact that contrastive methods
tend to perform better in computer vision with larger batch
sizes, we additionally train TPC with a batch size of 300
(denoted TPC-Batch-300). Among all the models, Dreamer-
Pro achieves the best performance on 4 out of 6 tasks, with
large performance gains on Cartpole Swingup, Finger Spin,
and Walker Run. These results indicate that the advantage
of prototypical representations over contrastive learning in
computer vision can indeed be transferred to MBRL for
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Figure 3. Performance curves in natural background DMC. DreamerPro significantly outperforms all baselines on Cartpole Swingup,
Finger Spin, and Walker Run, while Dreamer completely fails on all tasks.

Table 2. Final performance in natural background DMC.

Task Dreamer Dreaming TPC TPC-Batch-300 DreamerPro

Cartpole Swingup 126± 16 332± 66 521± 80 479± 45 671± 42
Cheetah Run 30± 2 334± 17 444± 35 477± 16 349± 61
Cup Catch 88± 73 553± 60 477± 175 550± 69 493± 109
Finger Spin 10± 1 629± 207 655± 133 511± 115 826± 162
Reacher Easy 82± 39 400± 296 462± 130 614± 164 641± 123
Walker Run 35± 4 219± 9 161± 6 136± 17 394± 33

better robustness to visual distractions.

4.3. Visualization and Analysis

To better understand how the models work, we visualize the
learned latent states through reconstruction from an auxil-
iary decoder, which is trained along with the agent learning
process. For reconstruction-free methods, the world model
does not receive gradients from this decoder.

Figure 4 (Left) shows the reconstructions for Cup Catch in
the standard setting after 100K environment steps. We see
that the reconstruction of the ball is only possible from the
RSSM states learned by DreamerPro, explaining its better
data efficiency. Figure 4 (Right) shows the reconstructions
for Walker Run in the natural background setting after 1M
environment steps. Notably, only DreamerPro is able to
recover the posture of the Walker, demonstrating its superior
ability to retain task-relevant information.

We additionally visualize the learned latent states through
nearest neighbor queries in Figure 5 (more visualization can
be found in Appendix J and K). Here, we first sample a
batch of trajectories from the training replay buffer. Then,
given a query image, we show the three images in the batch
whose latent states are the closest to the query image. We
use the same batch and same query images for all models.

It can be seen that the nearest neighbors for DreamerPro
tend to have similar agent states as the query image, which is
not the case for the other models. Meanwhile, DreamerPro
can sometimes map similar backgrounds close to each other.
This indicates that while DreamerPro prioritizes extracting
task-relevant information, it may not fully discard the dis-
tractions. We note that this is less harmful than discarding
task-relevant information as is done in Dreamer and TPC,
because the policy network can also learn to ignore the dis-
tractions. Hence, we consider this a potential limitation to
be addressed in future work.
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and the remaining rows show the reconstruction from the RSSM state zt for each model.
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Query

Figure 5. Visualization of learned latent states through nearest neighbor queries.

4.4. Ablation Study

We now show the individual effect of the two loss terms,
J t
SwAV and J t

Temp, in Figure 6 (full results are pro-
vided in Appendix B). Here, each of the ablated ver-
sions, DreamerPro-No-SwAV and DreamerPro-No-Temp,
removes one of the loss terms. We did not investigate re-
moving both terms, as its failure has been shown in Dreamer
(Hafner et al., 2020). We train the ablated versions in nat-
ural background DMC, and observe that both terms are
necessary for achieving good performance. In particular,
naively combining SwAV with Dreamer (i.e., DreamerPro-
No-Temp) leads to inferior performance, as it ignores the
temporal structures. On the other hand, J t

Temp alone is not
sufficient to provide meaningful cluster assignment targets
and learning signals for the convolutional encoder.

5. Related Work
Self-Supervised Representation Learning for Static
Images. Recent work in self-supervised learning has
shown effectiveness in learning representations from high-
dimensional data. CPC (van den Oord et al., 2018) learns
representations by maximizing the mutual information be-
tween the encoded representation and its future prediction

using noise-contrastive estimation. SimCLR (Chen et al.,
2020) shows that the contrastive data can be generated
through random augmentations. MoCo (He et al., 2020),
on the other hand, improves the contrastive training by gen-
erating the representations from a momentum encoder in-
stead of the trained network. Despite the success in some
tasks, one weakness of the contrastive approaches is that
they require the model to compare a large number of sam-
ples, which demands large batch sizes or memory banks.
To address this problem, some works propose to learn the
image representations without discriminating between sam-
ples. Particularly, BYOL (Grill et al., 2020) introduces a
momentum encoder to provide target representations for the
training network. SwAV (Caron et al., 2020) proposes to
learn the embeddings by matching them to a set of learnable
clusters. DINO (Caron et al., 2021) replaces the clusters
in SwAV with categorical heads and uses the centering and
sharpening technique to prevent representational collapse.
Unlike our model, these works treat each image indepen-
dently and ignore the temporal structure of the environment,
which is crucial in learning the forward dynamics and policy
in MBRL.

Representation Learning for Model-Free Reinforcement
Learning. It has been shown that adopting data augmenta-
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Figure 6. Ablation study. Both J t
SwAV and J t

Temp are necessary for achieving good performance.

tion techniques like random shifts in the observation space
enables robust learning from pixel inputs in many model-
free reinforcement learning algorithms (Laskin et al., 2020a;
Yarats et al., 2021b; 2022). Recent works have also shown
that self-supervised representation learning techniques can
bring significant improvements to reinforcement learning
methods. For example, CURL (Laskin et al., 2020b) per-
forms contrastive learning along with off-policy RL al-
gorithms and shows that it signficantly improves sample-
efficiency and model performance over pixel-based methods.
Other works aim to improve the representation learning
quality by combining temporal prediction models in the
representation learning process (Schwarzer et al., 2021a;b;
Stooke et al., 2021; Yarats et al., 2021a; Guo et al., 2020;
Gregor et al., 2019). However, the main purpose of the
temporal prediction models in these works is to obtain the
abstract representations of the observations, and they are
not shown to support long-horizon imagination.

Model-Based Reinforcement Learning with Reconstruc-
tion. Model-based reinforcement learning from raw pixel
data can learn the representation space by minimizing the ob-
servation reconstruction loss. World Models (Ha & Schmid-
huber, 2018) learn the latent dynamics of the environment in
a two-stage process to evolve their linear controllers in imag-
ination. SOLAR (Zhang et al., 2019) models the dynamics
as time-varying linear-Gaussian and solves robotic tasks
via guided policy search. Dreamer (Hafner et al., 2020)
jointly learns the RSSM and latent state space from obser-
vation reconstruction loss. DeepMDP (Gelada et al., 2019)
also proposes a latent dynamics model-based method that
uses bisimulation metrics and reconstruction loss in Atari.
However, reconstruction-based methods are susceptible to
distractions irrelevant to the task (Nguyen et al., 2021). Fur-
thermore, in a few cases, the latent representation fails to
reconstruct small task-relevant objects in the environment
(Okada & Taniguchi, 2021).

Reinforcement Learning under Visual Distractions. A
large body of work on robust representation learning fo-
cuses on contrastive objectives. For example, CVRL (Ma

et al., 2021) proposes to learn representations from com-
plex observations by maximizing the mutual information
between an image and its corresponding embedding us-
ing contrastive objectives. However, the learning objective
of CVRL encourages the representation model to learn as
much information as possible, including task-irrelevant in-
formation. Dreaming (Okada & Taniguchi, 2021) and TPC
(Nguyen et al., 2021) tackle this problem by incorporating
a dynamics model and applying contrastive learning in the
temporal dimension, which encourages the model to cap-
ture controllable and predictable information in the latent
space. Bisimulation-based methods such as DBC (Zhang
et al., 2021) and PSE (Agarwal et al., 2021) are another
type of representation learning robust to visual distractions.
Using the bisimulation metrics that quantify the behavioral
similarity between states, these methods make the model
robust to task-irrelevant information. However, DBC cannot
generalize to unseen backgrounds (Nguyen et al., 2021),
and PSE is only shown to work in the model-free setting
and requires a pre-trained policy to compute the similarity
metrics, while our model learns both the world model and
the policy from scratch. Finally, TIA (Fu et al., 2021) is
a reconstruction-based approach that adversarially trains
a distractor model to separate the distractions from task-
relevant information. Its main drawback is the sensitivity
to hyperparameters—they need to be tuned for each task to
balance the loss terms. In contrast, our model can use the
same hyperparameter values across the DMC tasks.

6. Conclusion
In this work, we presented DreamerPro, the first non-
contrastive reconstruction-free MBRL agent based on proto-
typical representations. In experiments on the standard and
natural background DMC, DreamerPro showed better over-
all performance than state-of-the-art reconstruction-based
and reconstruction-free MBRL agents, and demonstrated
superior ability to extract task-relevant information. Future
work can investigate ways to further discard distractions
in the representation. It is also an interesting direction to
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improve reconstruction-free MBRL agents on Atari games,
as our initial experiments (Appendix C) show that they still
lag behind reconstruction-based MBRL agents. Lastly, pro-
totypes have been demonstrated to help exploration in the
model-free and distraction-free setting (Yarats et al., 2021a).
Our model provides a starting point to extend such explo-
ration to the model-based setting with distractions.
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A. Hyperparameters
For hyperparameters that are shared with Dreamer, we use the default values suggested in the config file in the official
implementation of Dreamer, with the following two exceptions. We set rssm.discrete = False and actor.dist
= tanh normal, as we find these changes improve performance over the default setting. The additional hyperparameters
introduced in DreamerPro are listed in Table 3. We find it helpful to freeze the prototypes for the first 10K gradient updates.
In the natural background setting, we add a squared loss that encourages the ℓ2-norm of projections (before ℓ2-normalization)
to be close to 1. This helps stabilize the model.

Table 3. Additional hyperparameters in DreamerPro.

Hyperparameter Value

Number of prototypes K 2500
Prototype dimension 32
Softmax temperature τ 0.1
Sinkhorn iterations 3
Sinkhorn epsilon 0.0125
Momentum update fraction η 0.05

B. Ablation Results
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Figure 7. Full ablation results in natural background DMC.
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C. Atari Results
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Figure 8. Performance curves on nine Atari games.

In this section, we compare DreamerPro with the baselines on a subset of nine Atari games. Our computational resources
only allow us to run 3 seeds for each model on each game. Hence, we choose the games that have relatively low variance
according to the performance curves in the Dreamer paper (Hafner et al., 2021). We divide the games into three categories
based on Dreamer’s convergence speed, i.e., 20M, 50M, and 100M environment steps, and pick three games from each
category.

We note that both Dreaming and TPC have specific tricks that cannot be easily adapted to discrete latents. For fair comparison,
we use continuous latents for all models. Following the author’s suggestion, we set the dimension of stochastic state st to be
100, and keep other Dreamer hyperparameters as default. For Dreaming and TPC, we tuned the weight of reward loss from
the set {1, 10, 100, 1000, 10000}, and used 10 for Dreaming and 1000 for TPC. We additionally tuned the number of future
prediction steps in Dreaming from the set {3, 5}, and found 3 works better. For DreamerPro, we added a future prediction
loss similar to what is used in SPR (Schwarzer et al., 2021a) and Dreaming. We also introduced an inverse dynamics loss
(Schwarzer et al., 2021b), and found that it is helpful in Freeway. We freeze the prototypes for 30K gradient updates, and
use the same hyperparameters as listed in Table 3.

Compared to Dreaming and TPC, DreamerPro performs significantly better on Enduro, Ice Hockey, and Robotank, while
being comparable to the best model on the other games. However, DreamerPro still underperforms Dreamer on many games,
indicating that Atari remains an unsolved challenge for reconstruction-free MBRL.
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D. Additional Results in Standard DMC - Medium Benchmark
Figure 9 shows the performance curves of Dreamer and DreamerPro on the medium benchmark of standard DMC (Yarats
et al., 2022). Here, for each task, we train each model for 3M environment steps. The evaluation return is computed every
10K steps, and averaged over 10 episodes. The mean and standard deviation are computed from 6 independent runs.
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Figure 9. Performance curves in standard DMC - medium benchmark. DreamerPro is comparable or better than Dreamer on most tasks.
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E. Additional Results in Standard DMC - Easy Benchmark
Figure 10 shows the performance curves of Dreamer and DreamerPro on the easy benchmark of standard DMC (Yarats
et al., 2022). Here, for each task, we train each model for 1M environment steps. The evaluation return is computed every
10K steps, and averaged over 10 episodes. The mean and standard deviation are computed from 3 independent runs.
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Figure 10. Performance curves in standard DMC - easy benchmark. DreamerPro is comparable or better than Dreamer on most tasks.
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F. Model-Free Comparison
To see whether existing combinations of model-free RL with data augmentation and prototypes can achieve similar robustness
to distractions, we report in Table 4 the performance of DrQ-v2 (Yarats et al., 2022) and Proto-RL (Yarats et al., 2021a) in
the natural background DMC. We used the open-source implementation4 in the Unsupervised RL Benchmark (Laskin et al.,
2021), which incorporated the improvements of DrQ-v2 into Proto-RL. In addition to the default setting of Proto-RL that
involves reward-free pretraining for 500K steps and then finetuning for 500K steps, we also experimented with training
from scratch for 1M steps. In both settings, we combined intrinsic and extrinsic rewards, as this performed better than
using extrinsic rewards alone. DrQ-v2 was trained for 1M steps. Our results in Table 4 show that DrQ-v2 and Proto-RL
completely fail on many tasks when presented with distractions.

Table 4. Model-free comparison (natural background, 3 seeds).

Task
DreamerPro

(ours) DrQ-v2 Proto-RL
Proto-RL

(no pretraining)

Cartpole Swingup 671± 42 314± 169 157± 17 179± 7
Cheetah Run 349± 61 69± 48 38± 8 28± 18
Cup Catch 493± 109 560± 87 150± 84 128± 162
Finger Spin 826± 162 76± 105 23± 21 52± 21
Reacher Easy 641± 123 268± 153 125± 40 97± 45
Walker Run 394± 33 108± 13 33± 6 48± 6

G. Effect of the Number of Prototypes
Our preliminary experiments suggest that performance generally improves with more prototypes (see Table 5 below). Hence,
we use the maximum number of prototypes for a given batch. We expect that further increasing the number could be
beneficial. However, that would require maintaining a cache of previous batches, which we did not consider for simplicity.

Table 5. Effect of #prototypes in Walker Run (natural background, 1M steps).

#Prototypes 50 (1 seed) 500 (1 seed) 1250 (1 seed) 2500 (3 seeds)

Episode Return 267 313 425 394± 33

H. Training Speed Comparison
While the speed of Dreamer and DreamerPro at test time is similar, the training speed of Dreamer can be significantly lower
as the image resolution increases. In Table 6 below, we record during training the number of frames processed per second
(FPS) by Dreamer and DreamerPro on NVIDIA Quadro RTX 8000 GPUs. We made reasonable changes to the encoder and
decoder, adding one convolutional layer each time the image size is doubled. Other hyperparameters were kept fixed. We
used mixed precision in all settings except when training Dreamer on 256 × 256 observations (due to numerical instability).
Our results suggest that when observations are in high resolution (which is often desired in real world applications), the
computational overhead caused by augmentation and prototypes is far less than reconstruction.

Table 6. Training FPS comparison on standard Walker Run.

Image Size 64 × 64 128 × 128 256 × 256

Dreamer 48 26 3
DreamerPro 44 25 9

4https://github.com/rll-research/url benchmark

https://github.com/rll-research/url_benchmark
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I. Additional Visualization via Reconstruction
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Figure 11. Visualization of learned latent states through reconstruction from an auxiliary decoder.

J. Additional Results of Nearest Neighbor Queries

<latexit sha1_base64="GRAo3Tjv/hQVGg/TOU8f/NVSfvc=">AAACAHicbVDLTgJBEOzFF+IL9ehlIjHhRHaJUY8kXDxi5JXAhswOszBhdmYzM2tCNly8e9Vf8Ga8+if+gZ/hAHsQsJJOKlXd6e4KYs60cd1vJ7e1vbO7l98vHBweHZ8UT8/aWiaK0BaRXKpugDXlTNCWYYbTbqwojgJOO8GkPvc7T1RpJkXTTGPqR3gkWMgINlZ6bDbqg2LJrbgLoE3iZaQEGRqD4k9/KEkSUWEIx1r3PDc2foqVYYTTWaGfaBpjMsEj2rNU4IhqP12cOkNXVhmiUCpbwqCF+ncixZHW0yiwnRE2Y73uzcX/vF5iwjs/ZSJODBVkuShMODISzf9GQ6YoMXxqCSaK2VsRGWOFibHprGwJpJwYHOhZwUbjrQexSdrVindTuX6olmrlLKQ8XMAllMGDW6jBPTSgBQRG8AKv8OY8O+/Oh/O5bM052cw5rMD5+gVu2Ja8</latexit>

TPC
<latexit sha1_base64="lYyWl89qi/dkFzGvMn6j58Wc+5w=">AAACBHicbVDLSgMxFL1TX7W+qi7dBIvQVZkpoi4LunBZwT6gHUomzbRhMsmQZIQydOverf6CO3Hrf/gHfoaZtgvbeiBwOOdezs0JEs60cd1vp7CxubW9U9wt7e0fHB6Vj0/aWqaK0BaRXKpugDXlTNCWYYbTbqIojgNOO0F0m/udJ6o0k+LRTBLqx3gkWMgINlbq3OWzVA3KFbfmzoDWibcgFVigOSj/9IeSpDEVhnCsdc9zE+NnWBlGOJ2W+qmmCSYRHtGepcKGaD+bnTtFF1YZolAq+4RBM/XvRoZjrSdxYCdjbMZ61cvF/7xeasIbP2MiSQ0VZB4UphwZifK/oyFTlBg+sQQTxeytiIyxwsTYhpZSAikjgwM9LdlqvNUi1km7XvOuapcP9UqjuiipCGdwDlXw4BoacA9NaAGBCF7gFd6cZ+fd+XA+56MFZ7FzCktwvn4B/2OYvQ==</latexit>

Dreamer
<latexit sha1_base64="ElGNZICtKKLsp0bxpDTmkkPaRYs=">AAACB3icbVDLSgMxFM34rPVVdekmWISuykwRdVnQhcsK9oHtUDJppg3NJENyRyhDP8C9W/0Fd+LWz/AP/Awz7Sxs64HA4Zx7OTcniAU34Lrfztr6xubWdmGnuLu3f3BYOjpuGZVoyppUCaU7ATFMcMmawEGwTqwZiQLB2sH4JvPbT0wbruQDTGLmR2QoecgpASs93mazTDe06pfKbtWdAa8SLydllKPRL/30BoomEZNABTGm67kx+CnRwKlg02IvMSwmdEyGrGuptDnGT2cXT/G5VQY4VNo+CXim/t1ISWTMJArsZERgZJa9TPzP6yYQXvspl3ECTNJ5UJgIDApn38cDrhkFMbGEUM3trZiOiCYUbEkLKYFSYyCBmRZtNd5yEaukVat6l9WL+1q5XslLKqBTdIYqyENXqI7uUAM1EUUSvaBX9OY8O+/Oh/M5H11z8p0TtADn6xdgdJoM</latexit>

DreamerPro
<latexit sha1_base64="slB7O1ISEqvr3jg8rnT8X/gvOC8=">AAACAnicbVA9TwJBEN3DL8Qv1NJmIzGhInfEqCWJjSUkHpDAhewtA2zY273s7plcLnT2tvoX7Iytf8R/4M9wgSsEfMkkL+/NZGZeGHOmjet+O4Wt7Z3dveJ+6eDw6PikfHrW1jJRFHwquVTdkGjgTIBvmOHQjRWQKOTQCaf3c7/zBEozKR5NGkMQkbFgI0aJsZLfSkClg3LFrbkL4E3i5aSCcjQH5Z/+UNIkAmEoJ1r3PDc2QUaUYZTDrNRPNMSETskYepYKEoEOssWxM3xllSEeSWVLGLxQ/05kJNI6jULbGREz0eveXPzP6yVmdBdkTMSJAUGXi0YJx0bi+ed4yBRQw1NLCFXM3orphChCjc1nZUso5dSQUM9KNhpvPYhN0q7XvJvadateaVTzkIroAl2iKvLQLWqgB9REPqKIoRf0it6cZ+fd+XA+l60FJ585Rytwvn4BoSGX/w==</latexit>

Query

Figure 12. Visualization of learned latent states through nearest neighbor queries.

K. Prototype Visualizations
We visualize the first 5 prototypes learned for each task in natural background DMC using nearest neighbor queries, shown
in each row of Figures 13 - 18. To do so, we sample a batch of trajectories from the training replay buffer, and obtain the
projection xt from latent state zt for each image. Then, given a prototype ck as query, we show the ten images in the batch
whose projections are the closest to the prototype. Consistent with our findings in Section 4.3, some prototypes are able to
capture specific agent states under different backgrounds, while others also map similar backgrounds close together.



DreamerPro: Reconstruction-Free MBRL with Prototypical Representations

Figure 13. Prototype visualization for Cartpole Swingup.

Figure 14. Prototype visualization for Cheetah Run.
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Figure 15. Prototype visualization for Cup Catch.

Figure 16. Prototype visualization for Finger Spin.
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Figure 17. Prototype visualization for Reacher Easy.

Figure 18. Prototype visualization for Walker Run.


