
Logic Machin e A r c h i t e c t u r e :

I n f e r e n c e M e c h a n i s m s

E ~ n g L. L~,~k

Northern Illinois University
Argonne National Laboratory

W i l l i ~ Mc 5)zne

Northwestern University

Ross A. Ovsrbeek

Northern Illinois University

ABSTRACT

Logic Machine Archi tec ture (LMA) is a layered implemen ta t ion of theorem-proving
tools. The kernel of formula storage, retrieval, and manipula t ion primitives (layers
0 and 1) is descr ibed elsewhere[2], The layer descr ibed here (layer 2) contains
resolution- and equali ty-based inference rules, subsumption, and demodulation, It
is des igned to provide all of the tools requi red to c rea te a theorem-prover with
minimal effort. Although LMA is cur rent ly imp lemen ted in Pascal, an in terface to
LISP will be included in the original release, This pape r includes the design princi-
ples and techniques used in layer 2, as well as two simple t h eo rem provers which
i l lustrate the services of layer 2 - one wri t ten in LISP and the o ther in Pascal.

1.] n t r ~ l u e t i o n .

Research in au toma ted t heo rem proving has been h indered by a lack of powerful, widely
available theorem-proving systems, The t ime and effort r equ i red to c rea te useful p rograms has
proven to be substantial , Many r e sea rche r s simply do not have access to a sys tem suitable for
exper imentat ion, Logic Machine Archi tecture (LMA) has b e e n designed to provide a varied set of
software tools sui table for use by everyone f rom r e s e a r c h e r s in t h e o r e m proving to developers of
application sys tems based on t h e o r e m provers. The tools themselves are wri t ten in Pascal, but
an in ter face to LISP will be included in the original distr ibution.

The purpose of LMA is to make it possible to easily and quickly prduce diverse theorem-
proving programs, e i ther to t e s t new ideas in theorem-proving or to implement application sys-
t ems based on theorem-proving principles, As an example of how easy it is to cons t ruc t a
t h e o r e m prover using the layer 2 primitives, we give a two-page Pascal t heo rem prover in Appen-
dix B. The corresponding LISP version of the same t h e o r e m prover is inAppendix C.

Throughout the his tory of au tomated theo rem proving r e sea rche r s have expressed the
desire for tools tha t would allow comparisons be tween varied approaches within a common
environment . To achieve this level of exper imenta t ion will require a sys tem that is well layered,
easily modifiable, and well supported. It is hoped tha t LMA will evolve into such a sys t em and will
offer the envi ronment in which comparisons between clause-based formalisms, natural deduc-
tion, and h igher -order logics can meaningfully occur.

LMA has been conceived and implemented as a layered archi tec ture . Each layer has an
independen t funct ion and provides a set of well-defined services. This type of a rch i tec tu re
allows a user to select the tools appropr ia te to his task, A use r of t h eo rem provers can imple-
m e n t a powerful theorem-prover in a few days (or simply use one of the s t andard programs

85

included in the release). On the other hand, someone wishing to construct a system based on a

new formalism will use only the tools provided in the lower layers to construct a set of new tools

(which, if they follow the architectural guidelines of the higher layers, can be added to the ser-

vices provided by the higher layers).

Layer 0 of LMA implements several abstract data types required in outer layers. Layer 1

contains the functions requdred to create and maintain a database of formulas. These two layers

have been described in detail in [5].

Layer 2 is a package of routines that define the abstract data types list, clause, literal, and
terTn,. In addition it provides a package of inference rules, demodulation, and subsumption.

These provide the basic services from which a theorem prover can be easily constructed.

Layer S, when it is completed, will provide uniprocessing modules from which a multipro-

cessing theorem prover could be configured. Layer 4~ will implement the logic required to

configure and manage cooperating multiple processes.

This paper discusses the details of layer 2. It is broken into the following sections:

a) a discussion of the implementation of the basic data types - list, clause, literal and

term - and the inference services provided for clauses,

b) an overview of how subsumption is implemented,

c) an overview of a generalized approach to implementing inference rules, and

d) a discussion of the interface to IJSP.

The last section attains its significance from the fact that LMA is currently written in Pascal. It is

included to accentuate our desire to provide a set of tools usable by AI researchers and accessi-

ble from any major language.

2. The Abstract Data Types of Layer 2

~I. The Fundamental Role of Objects

Layer 1 of L~A was designed to be general enough to support almost any research requiring

the manipulation of logical formulas. It provides the storage, retrieval, and manipulation ser-

vices required to manage a large database of formulas. The "query" capability - that is, the abil-

ity to rapidly retrieve all formulas satisfying a specified set of properties - is particularly criti-

cal. The initial release of layer 2 of LMA will provide only the abstract data types required to

support clause-based theorem-proving systems. However, it is designed with the specific goal

that this set can be enriched, using the powerful services of layer i, to include the features

required to support other formalisms.

One explicit goal of LMA is flexibility based on a layered architecture. Throughout the

implementation an attempt has been made to hide the underlying data structures through a

well-deflned set of services provided to the user. Hence, layer 2 will contain the services

required to hide the exact structure of the data types list, clause, literal, and term.

While the internal structure of any abstract data type deflned by layer 2 is hidden from the

user of layer 2, one aspect of their implementation is not hidden - they must all be instances of

the general data type object. Objects are defined in [~], and are the central data type supported
by layer I. Briefly, an object is a structural concept which allows a natural representation of

logical formulas, among other things. Objects are of three types: names, variables, and applica-

tions. Applications are trees with names and variables for leaves. (For example, the term

f (z,a) can be represented by an application object with three subobjects: the name f, the vari-

able z, and the name a.) The definition of lists, clauses, literais, and terms as objects has the fol-

lowing inlmediate implications, because of the object-oriented services provided in !ayer i:

86

