
Decomposition of Distributed
Nonmonotonic Multi-Context Systems�

Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter,
Michael Fink, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{bairakdar,dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract. Multi-Context Systems (MCS) are formalisms that enable the inter-
linkage of single knowledge bases, called contexts, via bridge rules. Recently,
a fully distributed algorithm for evaluating heterogeneous, nonmonotonic MCS
was described in [7]. In this paper, we continue this line of work and present
a decomposition technique for MCS which analyzes the topology of an MCS.
It applies pruning techniques to get economically small representations of con-
text dependencies. Orthogonal to this, we characterize minimal interfaces for
information exchange between contexts, such that data transmissions can be min-
imized. We then present a novel evaluation algorithm that operates on a query
plan which is compiled with topology pruning and interface minimization. The
effectiveness of the optimization techniques is demonstrated by a prototype im-
plementation, which uses an off-the-shelf SAT solver and shows encouraging
experimental results.

1 Introduction

In the last years, there has been increasing interest in systems comprising multiple
knowledge bases. The rise of distributed systems and the World Wide Web fostered
this development, and to date, several formalisms are available that accommodate mul-
tiple, possibly distributed knowledge bases. One formalism are Multi-Context Systems
(MCS) consisting of several theories (the contexts) that are interlinked with bridge rules
which allow to add knowledge to a context depending on knowledge in other contexts.
E.g., the bridge rule a← (2 : b) of a context C1 means that C1 should conclude a if
context C2 believes b. MCS have applications in various areas, such as argumentation,
data integration, or multi-agent systems. There, contexts may model the beliefs of an
agent while the bridge rules model an agent’s perception of the environment, i.e., other
contexts.

Among the various MCS proposals (e.g., [10,11,12]), the general MCS framework
of [5] is of special interest, as it generalizes previous approaches in contextual reason-
ing and allows for heterogeneous and nonmonotonic MCS, i.e., with different, possibly
nonmonotonic logics in its contexts (thus furthering heterogeneity), and bridge rules

� This research has been supported by the Austrian Science Fund (FWF) project P20841 and by
the Vienna Science and Technology Fund (WWTF) project ICT 08-020.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 24–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Decomposition of Distributed Nonmonotonic Multi-Context Systems 25

may use default negation (to deal, e.g., with incomplete information). Hence, nonmono-
tonic MCS interlinking monotonic context logics are possible. This MCS framework
can conveniently capture the following scenario, which we use as a running example.

Example 1. A group of four scientists, Ms. 1, Mr. 2, Mr. 3, and Ms. 4, just finished their
conference visit and are now arranging a trip back home. They can choose between
going by train or by car (which is usually slower than the train); and if they use the
train, they should bring along some food. Moreover, Mr. 3 and Ms. 4 have additional
information from home that might affect their decision.

Mr. 3 has a daughter, Ms. 6. He is fine with either transportation option, but if Ms. 6
is sick then he wants to use the fastest vehicle to get home. Ms. 4 just got married, and
her husband, Mr. 5, wants her to come back as soon as possible. He urges her to try to
come home even sooner, while Ms. 4 tries to yield to her husband’s plea.

If they go by train, Mr. 3 is responsible for buying provisions. He might choose either
salad or peanuts. The options for beverages are coke or juice. Mr. 2 is a modest person
as long as he gets home. He agrees to any choice that Mr. 3 and Ms. 4 select for vehicle
but he dislikes coke. Ms. 1 is the leader of the group and prefers to go by car, but if
Mr. 2 and 3 go by train then she would not object. A problem is that Ms. 1 is allergic
to nuts.

Mr. 3 and Ms. 4 do not want to bother the group with their circumstances and com-
municate just their preferences, which is sufficient for reaching an agreement. Ms. 1
decides which option to take based on the information she gets from Mr. 2 and Mr. 3.

Similar scenarios have already been investigated in the realm of multi-agent systems
(see, e.g., [6] on social answer set programming). We do not aim at introducing a new
semantics for such scenarios; our example is meant to be a plain showcase application of
MCS. We stress that MCS have potential as a host for KR formalisms, just like answer
set programs have; however, in this paper we concentrate on efficient MCS evaluation.

The distributed algorithm introduced in [7], called DMCS, computes the semantics
of an MCS, which is given in terms of equilibria. Roughly, an equilibrium is a collection
of local models (belief sets) for the individual contexts that is compatible with the bridge
rules. The principle of the algorithm is, starting from context Ck (the root), that models
will be processed at each context. Bridge rules, which access beliefs in other contexts,
implicitly span belief import dependencies between contexts. This relationship is used
to navigate the system, and models returned from invoked neighbors are combined with
the local beliefs and passed back to the invoking contexts. DMCS uses a parameter for
projecting models to relevant variables to reduce data payload.

Experiments for an instantiation of DMCS with answer set programming contexts
revealed some scalability issues which can be tracked down to the following problems:
(1) contexts are unaware of context dependencies in the system beyond their neighbors,

and thus treat each neighbor in a generic way. Specifically, cyclic dependencies
remain undetected until a context, seeing the invocation chain, requests models
from a context in the chain. Furthermore, a context Ck does not know whether a
neighbor Ci already requests models from another neighbor Cj which then would
be passed to Ck; hence, Ck makes possibly a superfluous request to Cj .


