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Abstract. In this paper we provide a summary of the fundamental properties
of probabilistic automata over infinite words. Such probabilistic automata are a
variant of standard automata with Büchi or other ω-regular acceptance conditions,
such as Rabin, Streett, parity or Müller, where the nondeterministic choices are
resolved probabilistically. Acceptance of an infinite input word can be defined
in different ways: by requiring that (i) almost all runs are accepting, or (ii) the
probability for the accepting runs is positive, or (iii) the probability measure of
the accepting runs is beyond a certain threshold. Surprisingly, even the qualitative
criteria (i) and (ii) yield a different picture concerning expressiveness, efficiency,
and decision problems compared to the nondeterministic case.

Introduction

Automata over infinite objects play a central role for verification purposes, reasoning
about infinite games and logics that specify nondeterministic behaviors. Many vari-
ants of ω-automata have been studied in the literature that can be classified according
to their inputs (e.g., words or trees), their acceptance conditions (e.g., Büchi, Rabin,
Streett, Muller or parity acceptance) and their branching structure (e.g., deterministic,
nondeterministic, or alternating). See, e.g., [9,18] for an overview of automata over
infinite objects.

Although probabilistic finite automata (PFA) have attracted many researchers, see
e.g. [8,12,13,15], probabilistic language acceptors for infinite words just have recently
been studied. The formal definition of probabilistic ω-automata is the same as for non-
deterministic ω-automata, the only difference being that all choices are resolved by
probabilistic distributions. Acceptance of an infinite word σ = a1 a2 a3 . . . can then be
defined by imposing a condition on the probability of the accepting runs for σ. We con-
sider here three types of accepted languages. The probable semantics requires positive
probability for the accepting runs, the almost-sure semantics requires that the accept-
ing runs for σ have probability 1, while the threshold semantics relies on some fixed
threshold λ ∈]0,1[ and requires that the acceptance probability is greater than λ.

Given the well-known fact that PFA are more expressive that NFA and that many
relevant decision problems for PFA are undecidable, it is no surprise that PBA with the
threshold semantics are more powerful than NBA and that the emptiness problem and
other decision problems are undecidable for them. The definition of the accepted lan-
guage under the probable semantics via the criterion “the probability for the accepting
runs is > 0” appears to be the natural adaption of the definition of the accepted lan-
guage of a nondeterministic automaton which relies on the criterion “there is at least
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one accepting run”. One therefore might expect that probabilistic and nondeterministic
ω-automata are rather close and enjoy similar properties. This, however, is not the case.
The class of languages that are accepted by a PBA with the probable semantics strictly
subsumes the class of ω-regular languages and it is closed under union, intersection and
complementation. Furthermore, there are ω-regular languages that are recognizable by
probable PBA of linear size while the sizes of smallest NBA for these languages grow
exponentially. The price we have to pay for this extra power of probabilistic automata
is that basic problems like checking emptiness, universality or equivalence are undecid-
able for PBA under the probable semantics.

The almost-sure semantics of PBA is “weaker” in the sense that each almost-sure
PBA can be transformed into an equivalent PBA with the probable semantics, but not
vice versa. Moreover, the class of languages that are recognizable by PBA with the
almost-sure semantics does not cover the full class of ω-regular languages, it is not
closed under complementation and contains non-ω-regular languages. On the positive
side, the emptiness and universality problem for almost-sure PBA are decidable.

Organization. Section 1 recalls the definition of nondeterministic ω-automata with
Büchi, Rabin or Streett acceptance conditions and introduces their probabilistic variants.
Results on the expressiveness and efficiency of probabilistic Büchi automata are sum-
marized in Section 2. Composition operators for PBA and probabilistic automata with
Rabin and Streett acceptance are considered in Section 3. Decision problems for PBA
will be discussed in Section 4. Finally, Section 5 contains some concluding remarks.

The material of this paper is a summary of the results presented in the papers [2,3].
Further details can be found there and in the thesis by Marcus Größer [10].

1 Probabilistic ω-Automata

We assume some familiarity with classical nondeterministic automata over finite or
infinite words; see e.g. [9,18]. We just recall some basic concepts of nondeterministic
ω-automata, and then present the definition of probabilistic ω-automata.

Definition 1 (Nondeterministic ω-automata). A nondeterministic ω-automaton is a
tuple N = (Q,Σ,δ,Q0,Acc), where

– Q is a finite nonempty set of states,
– Σ is a finite nonempty input alphabet,
– δ : Q×Σ → 2Q is a transition function that assigns to each state q and letter a ∈ Σ

a (possibly empty) set δ(q,a) of states,
– Q0 ⊆ Q is the set of initial states,
– Acc is an acceptance condition (which will be explained later).

N is called deterministic if |Q0| = 1 and |δ(q,a)| = 1 for all q ∈ Q and a ∈ Σ.

Given an input word σ = a1 a2 a3 . . .∈Σω, a run for σ in N is a maximal state-sequence
π = q0 q1 q2 . . . such that q0 ∈ Q0, qi+1 ∈ δ(qi,ai+1) for all i ≥ 0. Maximality means
that either π is infinite or ends in state qn if δ(qn,an+1) = /0. Each finite run q0 q1 . . .qn


