
Distributed SILC: An Easy-to-Use Interface for
MPI-Based Parallel Matrix Computation

Libraries

Tamito Kajiyama1,2, Akira Nukada1,2, Reiji Suda1,2,
Hidehiko Hasegawa3, and Akira Nishida1,4

1 CREST, Japan Science and Technology Agency, Saitama 332–0012, Japan
2 The University of Tokyo, Tokyo 113–8656, Japan

kajiyama@is.s.u-tokyo.ac.jp
3 University of Tsukuba, Tsukuba 305–8550, Japan

4 21st Century COE Program, Chuo University, Tokyo 112–8551, Japan

Abstract. The present paper describes the design and implementation
of distributed SILC (Simple Interface for Library Collections) that gives
users access to a variety of MPI-based parallel matrix computation li-
braries in a flexible and environment-independent manner. Distributed
SILC allows users to make use of MPI-based parallel matrix computation
libraries not only in MPI-based parallel user programs but also in sequen-
tial user programs. Since user programs for SILC are free of a source-level
dependency on particular libraries and computing environments, users
can easily utilize alternative libraries and computing environments with-
out any modification in the user programs. The experimental results of
two test problems showed that the implemented SILC system achieved
speedups of 2.69 and 7.54 using MPI-based parallel matrix computation
libraries with 16 processes.

1 Introduction

The traditional way of using matrix computation libraries based directly on
library-specific application programming interfaces usually leads to a source-
level dependency on the libraries in use. This source-level dependency is the
primary reason why users (i.e., application programmers) are often required to
make a considerable amount of modifications to their user programs, for example
when porting them to other computing environments or when trying out other
libraries having different sets of solvers, matrix storage formats, arithmetic pre-
cisions, and so on. To address this issue inherent in the traditional programming
style, we have been proposing an easy-to-use application framework named Sim-
ple Interface for Library Collections (SILC) [1,2]. A user program in the SILC
framework first deposits data such as matrices and vectors into a separate mem-
ory space. Next, the user program makes requests for computation by means
of mathematical expressions in the form of text. These requests are translated
into calls for appropriate library functions, which are carried out in the separate

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 860–870, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Distributed SILC 861

double *A, *B;
int desc_A[9], desc_B[9], *ipiv, info;

/* create matrix A and vector B */

PDGESV(N, NRHS, A, IA, JA, desc_A, ipiv, B,
IB, JB, desc_B, &info);

/* solution X is stored in B */

(a)

silc_envelope_t A, b, x;

/* create matrix A and vector B */

SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("x = A \\ b"); /* call PDGESV() */
SILC_GET(&x, "x");

(b)

Fig. 1. A comparison of two C programs (a) in the traditional programming style and
(b) in the SILC framework, both making use of ScaLAPACK to solve a system of linear
equations Ax = b

memory space independently of the user program. Finally, the user program
fetches the results of computation from the separate memory space.

Figure 1 shows two user programs written in C, one in the traditional program-
ming style and the other in the SILC framework. The traditional user program
shown in Fig. 1 (a) prepares matrix A and vector b using library-specific data
structures and makes a call for a library function in ScaLAPACK [3] to solve a
system of linear equations Ax = b. The user program for SILC shown in Fig. 1
(b) realizes the same computation using the following three routines: SILC_PUT to
deposit A and b into a separate memory space, SILC_EXEC to issue a request for
solution of the linear system by means of a mathematical expression in the form of
text, and SILC_GET to retrieve the solution x. The mathematical expression spec-
ified as the argument of SILC_EXEC is translated into a call for the library function
in ScaLAPACK for example, and carried out in the separate memory space.

We have developed a SILC system for sequential and shared-memory parallel
computing environments [1,2]. The current implementation of SILC is based on
a client-server architecture, in which a user program is a client of a SILC server
running in a remote computing environment. Since a user program for SILC
does not contain any library-specific code, no modification to the user program is
required to utilize alternative matrix computation libraries. Moreover, users can
automatically gain the advantages of parallel computation by using a SILC server
that runs in a parallel computing environment. The main overhead in using SILC,
on the other hand, is the cost of data communications between a user program
and a SILC server. However, it is not difficult to reduce the relative amount of
communication overhead, since the time complexities of matrix computations
tend to be larger than their space complexities. For instance, solving a dense
linear system with N unknowns takes O(N3) time, while the time necessary
for data communications is of O(N2). Consequently, in many cases the use of a
faster matrix computation library and computing environment results in good
speedups even at the cost of data communications.

2 SILC for Distributed Parallel Computing Environments

We have been developing a SILC system for distributed parallel computing en-
vironments that allows users to make use of MPI-based matrix computation


