
A Hierarchical Visualization Tool to Analyse the Thermal 
Evolution of Construction Materials 

 Emilio Corchado1, Pedro Burgos1, María del Mar Rodríguez2, Verónica Tricio2   

1 Department of Civil Engineering. University of Burgos, 09006 Burgos, Spain 
escorchado@ubu.es,pburgos@ubu.es 
2 Department of Physics. University of Burgos, 

09001 Burgos, Spain 
foulquie@arquinex.es,vtricio@ubu.es 

Abstract. This paper proposes a new visualization tool based on feature selec-
tion and the identification of underlying factors. The goal of this method is to 
visualize and extract information from complex and high dimensional data sets. 
The model proposed is an extension of Maximum Likelihood Hebbian Learning 
based on a family of cost functions, which maximizes the likelihood of identi-
fying a specific distribution in the data while minimizing the effect of outliers. 
We present and demonstrate a hierarchical extension method which provides an 
interactive method for visualizing and identifying possibly hidden structure in 
the dataset. We have applied this method to investigate and visualize the ther-
mal evolution of several frequent construction materials under different thermal 
and humidity environmental conditions. 

1   Introduction 

We introduce a novel method which is closely related to exploratory projection pur-
suit. It is an extension of a neural model based on the Negative Feedback artificial 
neural network [2]. This method is called Maximum-Likelihood Hebbian learning 
(ML) [3, 6, 5].  
In this paper we provide a hierarchical extension to the ML method. This extension 
allows a dynamic investigation and visualization of a data set in which each subse-
quent layer extracts structure from increasingly smaller subsets of the data. The 
method reduces the subspace spanned by the data as it passes through the layers of 
the network therefore identifying the lower dimensional manifold in which the data 
lies.  
The Negative Feedback neural network has been linked to the statistical techniques of 
Principal Component Analysis (PCA) [2], Factor Analysis [1] and Exploratory Pro-
jection Pursuit (EPP) [4]. The originality of this paper is the development and appli-
cation of Hierarchical Maximum Likelihood Hebbian Learning (HML) to provide a 
novel approach. 
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2   A Family of Learning Rules 

Consider an N-dimensional input vector, , and a M-dimensional output vector, y , 

with  being the weight linking input  to output i  and let 

x
jijW η  be the learning 

rate. 
The initial situation is that there is no activation at all in the network. The input data 
is fed forward via weights from the input neurons (the -values) to the output neu-
rons (the -values) where a linear summation is performed to give the activation of 
the output neuron. This can be expressed as: 
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The activation is fed back through the same weights and subtracted from the inputs 
(where the inhibition takes place): 
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After that,  a learning rule is performed between input and outputs: 

 

Weight change: ( ) 1||.. −= p
jjiij eesignyW η∆  (3) 

 
This architecture is called Maximum Likelihood Hebbian Learning [3, 6, 5]. It is 
expected that for leptokurtotic residuals (more kurtotic than a Gaussian distribution), 
values of p<2 would be appropriate, while for platykurtotic residuals (less kurtotic 
than a Gaussian), values of p>2 would be appropriate.  
By maximizing the likelihood of the residual with respect to the actual distribution, 
the learning rule is matched to the pdf of the residual. Maximum Likelihood Hebbian 
Learning (ML) [3, 5, 6] has been linked to the standard statistical method of                 
EPP [4, 6].  

3   A Hierarchical Extension of the Model 

There may be cases where the structure of the data may not be captured by a single 
linear projection. In such cases a hierarchical scheme may be beneficial.  
This can be done in two ways, firstly by projecting the data using the ML [3, 5, 6] 
method, select the data points which are interesting and re-run the ML network on the 
selected data. Using this method only the projections are hierarchical. 
A second more interesting adaptation is to use the resulting projected data of the 
previous ML network as the input to the next layer. Each subsequent layer of the 
network identify structure among fewer data points in a lower dimensional subspace. 


