
Comparing Genetic Algorithms, Simulated
Annealing, and Stochastic Hillclimbing on

Timetabling Problems

Peter Ross, Dave Come

Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, U.K.

Abs t r ac t . Much recent research has focussed on applying genetic algo-
rithms (GAs) to real educational institution timetabling problems. This
work is generally successful, but it is as yet unclear whether a simpler
stochastic hillclimbing (SH) strategy would generally do just as well, and
how both GA and SH might compare with the use of simulated annealing
(SA) on timetabling problems. We begin to investigate these concerns by
comparing GA, SH, and SA on a collection of real timetabling problems.
Comparisons are done in terms of final solution quality, and number
of distinct solutions obtained. When considering the latter criterion, we
necessarily compare the GA with modified SH and SA algorithms which
continually restart to look for new solutions. The main conclusions are
that SH and SA are generally the best strategy as far as solution quality
is concerned. For a certain fairly small range of problems though, the
GA either betters or equals the performance of SA and SH, but deliv-
ers the added value of a large number of usefully distinct, equally good
solutions. Finally, we note that our results are to be taken in the con-
text of particular implementations of SA, SH, and GA; although steps
are taken to optimise parameters and such for each implementation, dif-
ferent conclusions may have been reached if, in particular, we had used
more sophisticated SA cooling schedules, and/or more sophisticated GA
operators. Such complexities concerning GA/SA comparisons in general
are discussed.

1 Introduction

Research on the application of Genetic Algorithms (GAs) to t imetable optimi-
sation problems is gathering pace. Since early papers on the subject presented
some initial ideas [1, 4, 5], later researchers have pursued a number of differ-
ent approaches on individual examples of t imetabling problems [7, 2, 10]. The
central problem is illustrated well by the exam timetabling case. A number of
events (usually examinations), must be assigned timeslots subject usually to the
following constraints:

1. There are a finite, usually small, set of timeslots. Eg, 3 per day over 10 days.
2. Obviously, two exams must not be set at the same t ime if one or more

students need to sit both of them.

95

3. It would be nice to avoid cases of students having to sit exams in consecutive
timeslots.

Constraint 3 above, and similar constraints, make this an extremely hard
combinatorial optimisation problem. The problem is essentially to satisfy con-
straints 1 and 2, while optimising over violations of constraint 3 and similar.
Often, for example, room assignments need to be made for each event, with
associated room capacity constraints, further complicating the problem.

There seem to be currently three main approaches to using GAs in this area.
The differences lie in the representation strategy and operators used. Paechter
et al [8] use an indirect encoding of a timetable, containing essentially a list
of instructions for a timetable building procedure which makes sure to satisfy
constraints as it goes, somewhat like a greedy algorithm, typically ending with a
collection of events which cannot be thus placed in the timetable without violat-
ing a constraint; Paechter's method is to minimise the number of such unplaced
events. Burke et al [2], on the other hand, use a combination of graph colouring
techniques with GA search. All timetables are feasible, satisfying all constraints
except that extra timeslots are used when necessary. That is, instead of 'un-
placed' events, Burke et al place events into extra timeslots. Their strategy is
to apply operators to such timetables which preserve satisfaction of all the con-
straints, with the objective of minimising the number of extra timeslots used.
Finally, Ross et al's method is to allow constraint violations in the timetable, but
penalise such violations according to a simple penalty function strategy; this ap-
proach is then backed up by powerful intelligent local mutation operators which
then aid in the process of minimising the extent of the constraint violations.
Also, research is going ahead on the use of Simulated Annealing (SA) for real
timetabling problems. Thompson & Dowsland [11], for example, use the same
representation as Ross et al but use SA instead of GA to solve real timetabling
problems in the University of Wales at Swansea.

What is conspicuously rare in this line of research so far is a comparative
study of different approaches. We perform such a study here, comparing the
performance of Ross et al's GA-based approach briefly discussed above, with
Simulated Annealing, and Stochastic Hillclimbing (SH), on five variants of a
real, challenging timetable optimisation problem.

In section 2 we give details of the test problems, review the representation
strategy and neighbourhood operator common to each algorithm, and then give
details of each algorithm. Section 3 briefly discusses the performance measures
we use in this study. Section 4 then outlines the general experimental approach,
and presents the raw results of a large number of experiments on each of the
test problems. Finally, section 5 offers some interpretation of the results, and a
concluding discussion.

2 P r o b l e m s a n d A l g o r i t h m s

Each of stochastic hillclimbing (SH), simulated annealing (SA), and a simple
genetic algorithm (GA) is tested here on a range of timetabling problems. The

