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Abstract. Many evolutionary algorithm applications involve either fitness func-
tions with high time complexity or large dimensionality (hence very many fit-
ness evaluations will typically be needed) or both. In such circumstances, there
is a dire need to tune various features of the algorithm well so that performance
and time savings are optimized. However, these are precisely the circumstances
in which prior tuning is very costly in time and resources. There is hence a need
for methods which enable fast prior tuning in such cases. We describe a candi-
date technique for this purpose, in which we model a landscape as a finite state
machine, inferred from preliminary sampling runs. In prior algorithm-tuning tri-
als, we can replace the ‘real’ landscape with the model, enabling extremely fast
tuning, saving far more time than was required to infer the model. Preliminary
results indicate much promise, though much work needs to be done to establish
various aspects of the conditions under which it can be most beneficially used.
A main limitation of the method as described here is a restriction to mutation-
only algorithms, but there are various ways to address this and other limitations.

1   Introduction

The study of fitness landscapes [14] in the context of evolutionary search strives to
understand what properties of fitness landscapes seem correlated with the success of
specific evolutionary algorithms (EAs). Much progress has been made, with a number
of landscape metrics under investigation as well as sophisticated statistical techniques
to estimate landscape properties [1,5,7,9,11,13]. Meanwhile, much effort has also
gone into constructing landscapes with well understood properties in attempt to yield
hypotheses and guidelines which may apply to ‘real’ landscapes [4,6,8,11,12]. For the
most part, a striking aspect of such investigations has been the ability of EAs consis-
tently to undermine predictions [1,6,10]. Correlation between proposed metrics or
landscape features and evolutionary algorithm difficulty tends to be weak, or bothered
by the presence of convincing counterexamples. Here we present an alternative ap-
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proach to exploring landscapes and algorithm performance on them. We model a land-
scape as a finite state machine, whose states represent fitness levels and state transition
probabilities characterize mutation. Such a model can be approximately inferred from
sampling during an EA (or other algorithm) run, and then used for test-driving a range
of algorithms under consideration to apply to the ‘real’ landscape.

This promises to be valuable in cases where good results are at a premium, but fit-
ness evaluations on the ‘real’ landscape are prohibitively expensive, precluding inten-
sive a priori algorithm comparison and/or parameter tuning; in contrast, a fitness
evaluation on a landscape state machine (LSM) is computationally trivial. The success
of this technique for algorithm comparison depends on the degree to which the LSM
approximation captures those features of the real landscape which are salient in terms
of algorithm comparison. Viability also depends on whether sufficiently useful LSMs
can be inferred without incurring undue cost in prior search of the real landscape. We
start to investigate these questions, and conclude that the technique is promising.

2   Landscape State Machines

What we call a landscape state machine (LSM) is simply a finite state machine (FSM)
which models certain aspects of a search landscape. To be specific, given a search
space E, an operator M (which takes a point Es ∈ , and returns another point from E)

and an associated transition matrix T (such that ijt  gives the probability of yielding
point Ej ∈  after applying M to Ei ∈ ).  An LSM model of this landscape is a set of
states and arcs (S, A), such that S corresponds to a partition of the set E, and A corre-
sponds to an abstraction of T. In the extreme, the LSM can model a landscape pre-
cisely, with precisely one state for each point in E, and A corresponding precisely to T.

In the general case, one state in the LSM will map onto many points in E. We will
normally expect the mapping between S and E to be such that each state s corresponds
to a set of points in E with equivalent fitness. More generally, we may define an
equivalence relation R, which partitions E into c of equivalence classes cEE ,...,1 . The
states in the LSM can then correspond precisely to the equivalence classes. In the case
that the equivalence relation R forces equality in both fitness and genotype, the LSM
model becomes the exact model described above. More generally, and as we later do
in section 4, we might define R in such a way that states may be associated with a
partition of the fitnesses into bands (e.g. all points with fitness between 0.2 and 0.3
might define an equivalence class).

2.1   Examples and Motivation

Before we discuss the uses of this simple LSM concept, an example will serve to clar-
ify and motivate the issues involved. Consider the simple MAX-ONES problem, in
which a candidate solution is a binary string of length L, and the fitness of a candidate
(which is to be maximised) is the number of 1s it contains. Further, imagine we are
interested in addressing this problem with an EA, and will employ the single-gene bit-


