
Modeling Secure Navigation in

Web Information Systems�

Marianne Busch1, Alexander Knapp2, and Nora Koch1,3

1 Ludwig-Maximilians-Universität München,
Oettingenstraße 67, 80538 München, Germany

{busch,kochn}@pst.ifi.lmu.de
2 Universität Augsburg,

Universitätsstraße 6a, 86159 Augsburg, Germany
knapp@informatik.uni-augsburg.de

3 Cirquent GmbH,
Zamdorfer Staße 120, 81677 München, Germany

Summary. Secure web information systems are becoming increasingly
important due to rising cybercrime as well as the growing awareness of
data privacy. Besides authentication and confidential connections, both
data access control and navigational access control are the most rele-
vant security features in this field. Adding such security features, how-
ever, to already implemented web applications is an error-prone task.
Our approach enables web engineers to model security issues in an early
phase of the development process. We demonstrate the integration for the
UML-based Web Engineering (UWE) method. The approach supports
the engineer by providing means to model navigational security with a
plugin in a UML modeling tool. Additionally, the models can be used for
the verification of web systems and security properties, such as reacha-
bility of navigation nodes in general and of those that are restricted to
authorized users.

Keywords: Security, Web Engineering, Modeling, Verification.

1 Introduction

The article Top 25 Most Dangerous Software Errors1 clearly shows the rele-
vance of security aspects in software systems. The list includes items like “Im-
proper Access Control (Authorization)”, “Missing Encryption of Sensitive Data”
or “Missing Authentication for Critical Function”. These threats are exacerbated
by the global and 7/24 accessibility of web information systems (WISs) as well
as the unforeseeable range of customers. Therefore many of those systems re-
quire role dependent sessions. Login mechanisms mostly imply not only changed
� This work has been partially supported by the DFG project MAEWA II, WI 841/7-2,

the EU project ASCENS, 257414, and by the EU-NoE project NESSoS, 256980.
1 Common Weakness Enumeration CWE/SANS. Top 25 Most Dangerous Software

Errors. http://cwe.mitre.org/top25/#Details, last visited 2011-02-18.

http://cwe.mitre.org/top25/#Details

240

permissions regarding accessible data or activities, but also access to particular
non-public areas of a website. Restricted access often goes hand in hand with the
need to take care of freshness, confidentiality and integrity while transmitting
data over an insecure network as the Internet.

More often than not security is added to already implemented software, i.e.
too late in the development process, for example after data leaks have been
detected. However, incidents like publicly accessible credit card details or per-
sonal registration data could be mostly avoided using an engineering method
supporting the security concern from the beginning of the development process.
In fact, web application frameworks, such as Spring, Joomla, RubyOnRails, Lift
and Zope2 offer support for the implementation of security aspects. The support
varies from integrated elements in the language to specific modules or plugins
that need to be explicitly installed, mainly based on access control lists (ACL).
What still is missing is the possibility to handle these security topics earlier in
the web application life cycle.

Our aim is to provide convenient modeling techniques that enable WIS devel-
opers not only to figure out what customers need exactly, but also how their idea
of security can be specified in a concrete and intuitive manner and afterwards
seamlessly implemented in any selected framework. In particular, our approach
allows the developer to model security features such as access control, authenti-
cation and secure connections graphically with UML. The aim of authentication
is to gain access to a protected resource. The process of authorization determines
what a subject (e.g., a user or a program) is allowed to access, especially what
it can do with specific objects (e.g., files) [1]. First and foremost, WISs have to
protect not only data and restrict which functions can be called, but also have
to take navigational access control into account, i.e. the parts of webpages that
are accessible by a certain user. If only a certain user should have access, it is
likely that the connection should be secured, i.e. confidentiality, integrity and
freshness of the transmitted data have to be ensured. This guarantees that the
data cannot be eavesdropped. In addition, replayed or altered information is
recognized immediately.

Our UML extension for security aspects is a class and statechart-based ap-
proach that uses these techniques for a model-driven development of secure web
information systems. Class diagrams are used to specify the content as well
as the rights model, statecharts yield precise UML-based navigation models.
Additionally, the statecharts can be subjected to model checking for verifying
reachability of navigation nodes in general and of those that are restricted to
authorized users. In fact, UWE’s security features could be used in combination
with any UML-based web engineering approach. The web engineer can develop
secure web information systems in his favorite UML CASE tool; he only needs
to include the UML-based Web Engineering (UWE) profile which extends the
UML with a set of web and security features. Additional support is provided by

2 Wikipedia: Comparison of web application frameworks. http://en.wikipedia.org/
wiki/Comparison_of_Web_application_frameworks, last visited 2011-05-15.

http://en.wikipedia.org/wiki/Comparison_of_Web_application_frameworks
http://en.wikipedia.org/wiki/Comparison_of_Web_application_frameworks

 241

the MagicUWE plugin for MagicDraw3, which eases the modeling task by a set
of direct accessible stereotyped elements, shortcuts and patterns.

The remainder of this paper is structured as follows: Section 2 outlines the
main characteristics of web engineering approaches, in particular their imple-
mentation in UWE, and links them to security. Section 3 presents the UWE
security extension focusing on navigation and data access control, where we use
a simple online address book for illustration. How to work with our approach
is described in Sect. 4, presenting the tool support for constructing models and
their use for verification. Section 5 discusses related work. Finally, we give an
outlook on future steps in the development of secure web information systems.

2 Web Engineering

Web Engineering is a specific domain in which model-based software develop-
ment has been successfully applied. Existing approaches, such as OOHRIA [14],
OOWS [18], UWE [12], or WebML [16] already provide well-known methods and
tools for the design and development of web applications. Most of them follow
the principle of “separation of concerns” using separate models for views, such
as content, navigation, presentation, business processes, et cetera.
Content. The content model is used to represent the domain concepts that are
relevant for the web application to be built and the relationships between them.
Visualization of certain content is very often associated to a successful authen-
tication, i.e. require a name and a predefined, correct password or a digital cer-
tificate.
User Model. A user or context model can be used to collect information needed
for adaptation. A role model is a special case of user model, in which character-
istics of the user groups are defined with the purpose of authorization and access
control. Very often content and user model are integrated.
Navigation. The navigation model is used to represent navigable nodes of the
hypertext structure and the links between nodes. The existing approaches differ
in the representation of these web-specific concepts. Some see the nodes as pages
of WISs; others distinguish between the idea of navigation node and page, where
a page can be composed of several navigation nodes. There is also a difference in
the choice of a structural or behavioral representation for the navigation struc-
ture. Navigational nodes are constrained by navigational access control rules,
which means that users without permission can see only an error message or
an advertisement for a less restrictive account. Furthermore, information ac-
cessed through navigation may have specific requirements on the confidentiality,
integrity and freshness of data of the web application content.
Presentation. There are two trends in the specification of layout concerns in web
engineering. On one hand the use of prototypes, on the other hand sketching the
user interface using mock-up tools or modeling the presentational aspects. The
objective is either a detailed platform-specific specification of the user interface
3 MagicDraw. http://www.magicdraw.com, last visited 2011-02-20.

http://www.magicdraw.com

242

or the rough layout of the pages. In any case not only the static GUI widgets
but also features of Rich Internet Applications (RIAs) like auto-completion in
search fields, live validation of input fields, or drag & drop functionality should
be represented in the presentation model. Regarding security features privacy
also plays a role for the adaption of presentational aspects, e.g., private calendar
entries should not be shown during working meetings.
Process. The process model aims to represent the workflows which are invoked
from certain navigation nodes. The same security considerations apply as for the
navigation model.

UWE strongly supports this “separation of concerns” selecting the appropri-
ate UML diagram type and elements for each web concern and using the UML
extension mechanisms, i.e. defining a set of stereotypes and tagged values in a
profile. Concepts of the content and user model and their relationships are shown
as classes and associations in a UML class diagram. For the navigation model
UWE provides two different graphical representations: a structural visualization
as UML stereotyped class diagrams and a behavioral form using UML state ma-
chines, which eases the specification of security features. UWE’s presentation
model is visualized like a mockup, using composite structure diagrams in which
composition is visualized as nested classes and properties. Stereotypes are used
for GUI widgets, and tagged values to represent RIA functionality. The process
model comprises two views: first the process structure model that describes the
relations between the different process classes, which are related to the navi-
gation, and second the process flow model that shows the workflow for each
process. They are represented by UML class diagrams and UML activity dia-
grams, respectively. In the following, we add to UWE a model for access control
and extend UWE’s behavioral representation of the navigation model.

3 Modeling Access Control in Web Information Systems

We integrate the modeling of access control, both for data and navigational
access, into the modeling of WISs and RIAs. This integration enables the modeler
to address security aspects right from the early phases of the development life
cycle. We rely on standard UML modeling techniques and the definition of a
UML profile extending UWE. The profile enhances class diagrams to specify
a basic rights model building on role-based access control (RBAC) and state
machines for modeling controlled navigation. We illustrate our approach by a
secure address book application.4 Due to lack of space, not all features of our
security extension are used in this example, for further information the reader
is referred to [3].
Case study. The WIS should allow registered users to create and navigate several
address books and to add and retrieve contacts in them. Non-registered visitors
can only read an introduction and the terms of service until they register or
4 More information about the secure address book case study can be found at http://
uwe.pst.ifi.lmu.de/exampleSecureAddressBook.html, last visited 2011-05-07.

http://uwe.pst.ifi.lmu.de/exampleSecureAddressBook.html
http://uwe.pst.ifi.lmu.de/exampleSecureAddressBook.html

 243

authenticate themselves. Administrators cannot use the address book functional-
ity, but they are allowed to search for users and to delete their accounts including
all address books and contacts.

3.1 Basic Rights Model

The basic rights model is used to specify access control rules for domain concepts
which are represented as UML classes and class instances. The Role instances
from UWE’s user model and content (or user model) classes, their attributes,
and methods are connected with stereotyped dependencies. These dependencies,
on the one hand, specify create/read/update/delete (CRUD)-rights; on the other
hand, an execution dependency between a role and a method grants execution
rights for the method.

Fig. 1. Address book: Basic rights model

For the address book example, the basic rights diagram in Fig. 1 specifies
execution rights on methods with dependencies stereotyped �execute� and �ex-
ecuteAll� (the CRUD support using �read�/�readAll� etc. is not shown in this
example). The dependencies connect the role instances shown on the right in
Fig. 1 to the methods of the content model, like Contact and AddressBook, or of
the user model, such as the class User, on the left. In particular, a non-registered
visitor has no execution permissions. The {except} tag for �. . .All� stereotypes
allows the modeler to avoid the creation of too many dependencies. For instance,
a registered visitor can execute all methods of a user object except delete. Further
restrictions are added in comments stereotyped by �authorizationConstraint� in
the Object Constraint Language (OCL): A registered visitor shall only be al-
lowed to delete his own contacts and address books; an administrator shall have
the permission to delete all users except other administrators. The correspond-
ing restrictions on �execute� for Contact::delete(), AddressBook::delete(), and

244

User::delete() use attributes like AddressBook.owner and User.roles from the con-
tent model. The pre-defined currentUser refers to the user of the current session.

UWE’s basic rights model offers a compact notation for access specifications
where permissions and prohibitions can be readily read off. This is in contrast
to approaches like SecureUML [13] where all permissions have to be specified
separately in association classes, and exceptions cannot be expressed. However,
transformations between SecureUML and our basic rights model are possible.

3.2 Navigation State Model

A navigation state model describes the navigation structure of a WIS and its be-
havior according to the different states. In UWE, navigation can be represented
by a UML state machine: States, possibly hierarchical, represent navigational
nodes, transitions the navigational links between the nodes. The UWE security
profile allows to integrate navigational access control, but also session manage-
ment and secure connections into the state machines specifying navigation. In
particular, the navigational state model should be aligned with the access con-
trol mechanisms in the basic rights model, as e.g., a user who is not allowed to
access a function of a class should be disallowed to navigate to a node that uses
this functionality and vice versa.

Fig. 2. Address book: Outermost navigation state model

Figure 2 depicts the main navigation state diagram for the address book
example. All states are navigational nodes; when the system is in a particular
state, the information and behavior offered by this state is accessible.

Navigation starts inside ExternalArea (pointed to from the outermost initial
state) which is a substate of AddressBookApplication. Here, the substate ma-
chine LoginViaPasswordForm (indicated by) and state ShowIntro are entered

 245

simultaneously (as ExternalArea shows two regions separated by a dashed line).
ExternalArea is the starting point of the WIS, tagged by {isHome}. The tag
{navigationMenu=ExternalMainMenu} tells that when inside ExternalArea and
whichever substates, the user can access the actions from the navigation menu
ExternalMainMenu, which include showLoginNode, showRegisterNode, and devel-
operInfo (we omit a UML representation as a class diagram). When showLogin-
Node is selected, LoginViaPasswordForm is entered, when showRegistrationNode
is chosen SecureBasicRegistration is entered. Both substate machines are, in fact,
instances of the UWE security patterns offered for recurring security issues to
be discussed in Sect. 4.1 (see also Fig. 4 to the left and Fig. 5).

After successful login or successful registration (leaving the two success exit
points), two types of internal areas can be reached: one for the administrators
and one for the registered users who want to manage their contacts. However,
the subsequent area depends on the role from the role model the user takes on
during login (we assume that role visitors is the default role): The guards on the
transitions targeting the internal areas check the access rights. In these guards,
currentUser.role is abbreviated to role.

The areas ExternalArea, InternalAreaRegisteredVisitors, and InternalAreaAdmin,
as well as the super-state AddressBookApplication are distinguished navigational
nodes: Their stereotype �session� () shows that context information on the
navigating user is kept. The areas also restrict navigational access to them to
particular roles by using the tag {roles=. . . }, such that, e.g., InternalAreaRegis-
teredVisitors can only be entered by registeredVisitors. This restriction not only
protects against access through navigational transitions which should show ap-
propriate guards, but also prohibits direct unauthorized access via a URL. Addi-
tionally, the tag {unauthorizedAccess=. . . } specifies which state is entered when
the access rule is violated; for both internal areas this state is Error. The tag trans-
missionType=“cif” for the session state AddressBookApplication sets the overall
type of data transmission during the session to cif, providing for confidentiality,
integrity, and freshness: The implementation should prevent eavesdropping, re-
playing, or altering of transmitted data. The transmission type is sustained also
in the substates.

InternalAreaAdmin can be left explicitly by choosing logout from its naviga-
tion menu InternalMainMenuAdmins; it will also be left when the user stays idle
for more than 20 time units after which the application will transit into the
navigational node LogoutMessage. Finally, the �externalLink� () developer can
be reached from ExternalArea. When this external web page is opened in a new
browser window or tab, the system will still be inside ExternalArea, otherwise
the WIS is left.

UWE navigational states profile. The excerpt of the UWE profile in Fig. 3
summarizes the integration of navigation and security we have illustrated for
the address book example.

The basic state and state machine stereotype for navigational state models
is �navigationalNode�. Here, “navigational” refers to the view and the gran-
ularity of the state machines, because not all states and transitions need to

246

Fig. 3. Navigation states profile

represent navigational behavior. In particular, an �externalLink� is not a proper
navigational state. The initial node of a WIS is marked by isHome. A �naviga-
tionalNode� can also be set as isModal, meaning that no other navigational node
of the navigation model can be accessed as long as the modal node is active.
Each �navigationalNode� can also refer to �navigationMenu�s containing the
operations which can be chosen from within the node. The �session� stereo-
type is derived from �navigationalNode� and thus inherits navigationMenu and
isHome; a session additionally keeps sessionData and specifies role access restric-
tions (roles, unauthorizedAccess, and rolesExpression for more fine-grained rules)
and a transmission type.

The UWE profile offers some further features for modeling navigation (cf. [3]):
The tag {goBack} of the stereotype �target� () allows to navigate to the state
which previously had been active. Access to collections, e.g., to lists, is spe-
cially supported. Also, large menus can be integrated on transitions, which is
particularly useful if each user can be associated with a set of roles.

Transformation to code. The UWE profile for integrating navigation and security
in WIS is constructed in a way that transformation to code can be achieved in the
near future. Such a transformation can utilize navigational access control offered
by several web frameworks. The states of the navigation state model become
HTML-fragments and the annotated access rules — together with UWE’s role
model — user role representations and rules for the web framework. For instance,
the Scala-based Lift framework5 controls navigational access via its site-map
feature: A list of menu items connects all HTML fragments with the modeled
access rules. Here, for InternalAreaRegisteredVistors a rule has to be stated that

5 Lift. http://www.liftweb.net/, last visited 2011-05-01

http://www.liftweb.net/

 247

the current user has to be associated with the role registeredVisitors. This is
specified as an immutable variable in Scala and is used to regulate the access to
every HTML fragment within this internal area.

Representation of Navigational Stereotypes in Plain UML. The precise meaning
of UWE’s navigational and security stereotypes and tags is defined by transfor-
mations into plain UML. Here, we only illustrate one such transformation for
the running address book example; all transformation definitions can be found
in [3]. In particular, the extended plain UML model resulting from applying the
transformations can be subject to verification by model checking, as presented
in the next section.

We translate the session tags {roles=admins} and {unauthorizedAccess=Error}
for InternalAreaAdmin (see Fig. 2) into UML. When removing the tags, we have to
ensure that no (sub)state of InternalAreaAdmin can be accessed without showing
role admins, either directly or by recording a URL, but these users have to be
redirected to Error. InternalAreaAdmin has two substates for which a URL could
be recorded, one for searching a user and another for deleting a user (we omit
the internal state machine of InternalAreaAdmin). Figure 4 shows the result of
the transformation for this particular situation.

Fig. 4. Address book. Partly extended navigation state model.

If a user stores a URL, which is modeled as location variable that is set while
WaitingForRequests, but is not logged in or is no longer allowed to take on the
admin role, the application navigates to the Error state. (1) The two choices on
the right have equal conditions, but guard the admin area from direct access.

248

(2) The choice in the center of the diagram protects the admin area from unau-
thorized access from ExternalArea (however, this is not necessary, because the
guard on the transition before is strong enough). On the left of the extended
state machine in Fig. 4, we have also unfolded the login pattern and we hide the
registration functionality by ‘...’.

4 Working with UWE Security Models

The aim of our approach is to allow web engineers to address security aspects
in an early phase of the development process. For this purpose the UWE pro-
file includes modeling elements and diagrams specific to the web and security
domain, providing a so-called domain specific modeling language (DSML). How-
ever, to further ease the web engineer’s work a pattern catalogue for recurring
issues and tool support for modeling and model validation are needed as well.
Therefore, we added navigational patterns to the UWE profile, implemented a
series of modeling supporting features as part of a plugin for the UML CASE
tool MagicDraw, and offer the possibility to formally check model properties.

The applicability of the overall approach is proven by the design and im-
plementation of a real (although simplified in the sense of focusing on security
aspects) web-based hospital information system (HIS). For a detailed description
and the sources the reader is referred to the web page of HospInfo6.

4.1 Security Patterns

Patterns are a common approach to tackle the problem of repetitive tasks. “A
security pattern describes a particular recurring security problem that arises in
a specific security context and presents a well-proven generic scheme for a secu-
rity solution.” [17] We use security patterns specified as state machines that can
be easily included as substate machines in navigation state diagrams. Typical
examples are registration, authentication (login mechanisms), credential recov-
ery (lost password), or profile configuration. We only explain the registration
pattern, further examples can be found in [3].

For user registration commonly at least two things have to be checked: The
user to be registered should be human; and the information the user provides
has to be valid, for example the given email address should have the correct
format. Another frequent requirement is to encrypt the entered data during the
transmission to the server. Accordingly, the registration pattern, see Fig. 5, is
modeled as a substate machine stereotyped as session and comprising a session
state representing the secure connection by the tag {transmissionType=“cif”}.
Inside SecureConnection, a CAPTCHA7 to tell computers apart from humans
and the input of user data are offered. Only if both regions have been filled in
6 HospInfo. A secure hospital information system http://uwe.pst.ifi.lmu.de/

exampleHospInfo.html, last visited 2011-04-20.
7 An example is Google’s reCAPTCHA. http://www.google.com/recaptcha, last vis-

ited 2011-02-10.

http://uwe.pst.ifi.lmu.de/exampleHospInfo.html
http://uwe.pst.ifi.lmu.de/exampleHospInfo.html
http://www.google.com/recaptcha

 249

Fig. 5. Secure registration pattern

and no errors are detected by the check registration is successful. In fact, this
check as well as the input data to be provided have to be customized when the
pattern is applied.

4.2 Tool Support for Modeling

Tool support is crucial for the applicability of a methodology such as UWE.
We decided to rely on the MagicDraw CASE tool for modeling all kinds of
web applications [4]. Nevertheless, our tool concept may be adopted for other
commercial and open source UML CASE tools.

MagicUWE8 is a MagicDraw plugin for developing secure WISs with the
UWE UML-profile in order to ease the modeling activities. Whenever models
are created, some tasks have to be repeated over and over. Furthermore, some
consistency checks and transformations are very time consuming, if executed
manually. The solution is to provide plugin features that provide shortcuts for
tasks like (1) inserting UWE’s stereotyped elements directly from the toolbar
and (2) copying UWE stereotypes and their tags between a state machine and
its substate machines, (3) specifying tags facilitated by a context menu, (4) de-
riving the type of a substate from the stereotypes of a superstate recursively
and (5) inheriting stereotypes for use cases stored in a package and (6) checking
features of the models. Figure 6 depicts some of these plugin features.

An example for such a functionality is the check whether the transmission
type of a secure connection is changed within nested states of the application’s
navigation model. This allows the modeler to see, if a service as e.g. a CAPTCHA
8 MagicUWE. http://uwe.pst.ifi.lmu.de/toolMagicUWE.html, last visited

2011-05-08.

http://uwe.pst.ifi.lmu.de/toolMagicUWE.html

250

Fig. 6. MagicUWE plugin

that is used within a secure area communicates over an unencrypted connection.
Without MagicUWE, all substates would have to be checked for changes by
hand, which can be very time-consuming for larger models.

4.3 Validation of Models

The expressiveness and flexibility of the UWE profile and security modeling tech-
niques makes it desirable to obtain feedback whether the model indeed satisfies
the modeler’s security intentions. Since UWE builds on standard UML and, in
particular, UML state machines, by reducing many security modeling features to
plain UML expansions, we may apply formal techniques developed for standard
UML, like model checking [11,7] or theorem proving [2].

We use the UML model checking tool Hugo/RT [11] to check the UML state
machine in Fig. 4, which results from the UWE navigation model, for security
problems. For example, we want to ensure that no unauthorized user can en-
ter the state ExtendedInternalAreaAdmin, i.e., whenever in this state the current
user must play the role admins. In the temporal OCL extension supported by
Hugo/RT this property reads:

G a.inState(AddressBookApplication.

ExtendedInternalAreaAdmin) implies

a.currentUser.role == ADMINS;

where G is the linear-temporal logic operator “always” and object a represents
the application.

 251

The WIS has little control on what a user may try in order to reach some
location, be it that the user just follows links or that the user browses to a
location directly using link guessing or previously recorded links. We thus build
(currently manually) an attacking user who tries all possible interactions with
the web application in all possible ways; this user is again represented as a UML
state machine. Hugo/RT translates the state machines for the web application
and the user, as well as the assertion into the input language of a back-end model
checker, in this case SPIN [9]. SPIN then verifies that the assertion indeed holds.
In fact, such a property may look quite obvious in our running example; however,
the situation can get rather complicated in bigger applications, like HospInfo.

5 Related Work

This work is related to several security and web engineering approaches, mainly
to those which focus on UML-based specification of secure systems.

UMLsec [10] is an extension of UML with emphasis on secure protocols. It is
defined in form of a UML profile including stereotypes for concepts like authen-
ticity, freshness, secrecy and integrity, role-based access control, guarded access,
fair exchange, and secure information flow. In particular, the use of constraints
gives criteria to evaluate the security aspects of a system design, by referring to
a formal semantics of a simplified fragment of UML. UMLsec models compared
to UWE models are very detailed and therefore quickly become very complex.
The main difficulty is the missing support of UML 2 since the provided UMLsec
tools9 and the used CASE tool ArgoUML10 still only supports UML 1.4.

SecureUML [13] is a modeling language for the model-driven development of
secure, distributed systems also based on UML. It provides modeling elements
for role-based access control and the specification of authorization constraints. A
SecureUML dialect has to be defined in order to connect a system design mod-
eling language as, e.g., ComponentUML to the SecureUML metamodel, which
is needed for the specification of all possible actions on the predefined resources.
In our approach, we specify role-based execution rights to methods in a basic
rights model using dependencies instead of the SecureUML association classes,
which avoids the use of method names with an access related return type. How-
ever, UWE’s basic rights models can easily be transformed into a SecureUML
representation.

There is a set of approaches that address modeling of security aspects of
service-oriented architectures (SOAs), such as the SECTET framework [8], the
SENSORIA approach UML4SOA [6], and SecureSOA [15]. The first one pro-
poses the use of sequence diagrams for the representation of a set of security
patterns, in UML4SOA security features are modeled as non-functional prop-
erties using class diagrams, and the latter relies on FMC block diagrams and
BPMN notation.
9 UMLsec Analysis Tools. http://ls14-www.cs.tu-dortmund.de/main2/jj/

umlsectool/, last visited 2011-03-15.
10 ArgoUML. http://argouml.tigris.org/, last visited 2011-03-20.

http://ls14-www.cs.tu-dortmund.de/main2/jj/umlsectool/
http://ls14-www.cs.tu-dortmund.de/main2/jj/umlsectool/
http://argouml.tigris.org/

252

6 Conclusions and Future Work

We have addressed access control and other security features in an early phase
of the development process of web information systems. Modeling elements and
patterns for RBAC, secure communication links and authentication-related pro-
cesses are provided, which can be applied to navigational aspects of the web
information system. UWE’s security features are defined in such a way that rep-
etitions are avoided whenever possible and security-specific modeling elements
are offered according to the granularity needed for the implementation. UWE is
a UML-based approach based on state machines for the representation of secure
navigation and secure patterns. The UWE profile is UML-compliant, i.e., usable
by any UML CASE tool. Additional comfort in the modeling process is provided
by the MagicDraw plugin [4].

The applicability of our approach is proven by two case studies: a hospital
information system and a secure address book. The first one covers the full WIS
development life cycle, from requirements analysis, through modeling to a con-
crete implementation in Scala using the Lift framework. The second one was
used for illustrating the advantages of a concise notation and the verification fa-
cilities of the navigation state machines introduced in this work that are checked
using the Hugo/RT UML verification tool.

Future work will encompass further validation consisting in the combination
of UWE’s security features and other web engineering methods, such as the
UML version of WebML [16]. In addition, we plan to extend the current UWE
approach to cover the generation of a database scheme for the access rights.
For this purpose we will consider the ongoing research work of Egea et al. [5]
concerning SecureUML [13] and databases. The corresponding transformations
will be implemented in our MagicUWE plugin. Another interesting issue is the
separation of concerns regarding security aspects (e.g. as a list of requirements)
and our navigation states model. A combination with the aspect-oriented mod-
eling approach HiLa from Zhang et al. [19] might be promising. Furthermore,
we are working on a code generator that transforms UWE navigation models to
Scala, especially the page structure and the according access rights.

References

1. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd edn. Wiley, Chichester (2008)

2. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive Verification
of UML State Machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM
2004. LNCS, vol. 3308, pp. 434–448. Springer, Heidelberg (2004)

3. Busch, M.: Integration of Security Aspects in Web Engineering. Master’s thesis,
Ludwig-Maximilians-Universität München (2011), http://uwe.pst.ifi.lmu.de/

publications/BuschDA.pdf

4. Busch, M., Koch, N.: MagicUWE – A CASE Tool Plugin for Modeling Web Ap-
plications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 505–508. Springer, Heidelberg (2009)

http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf
http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf

 253

5. Clavel, M., da Silva, V., Braga, C., Egea, M.: Model-Driven Security in Practice:
An Industrial Experience. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 326–337. Springer, Heidelberg (2008)

6. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-
functional Properties in the Model-Driven Development of Service-Oriented Sys-
tems. J. Softw. Syst. Model. 10(3), 287–311 (2011)

7. Gnesi, S., Mazzanti, F.: On-The-Fly Model Checking of Communicating UML
State Machines. In: Proc. 2nd ACIS Int. Conf. Software Engineering Research,
Management and Applications (SERA 2004), Los Angeles (2004)

8. Hafner, M., Breu, R.: Security Engineering for Service-Oriented Architectures.
Springer, Heidelberg (2008)

9. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison–Wesley, London (2004)

10. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2004);
Tools and further information, http://www.umlsec.de/

11. Knapp, A., Merz, S., Rauh, C.: Model Checking - Timed UML State Machines
and Collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS,
vol. 2469, pp. 395–416. Springer, Heidelberg (2002)

12. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based Web Engineering: An
Approach based on Standards. In: Web Engineering: Modelling and Implementing
Web Applications. Human-Computer Interaction Series, pp. 157–191. Springer,
Heidelberg (2008)

13. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

14. Meliá, S., Gómez, J., Pérez, S., Dı́az, O.: A Model-Driven Development for GWT-
Based Rich Internet Applications with OOH4RIA. In: Proc. 8th Int. Conf. Web
Engineering (ICWE 2008), pp. 13–23. IEEE, Los Alamitos (2008)

15. Menzel, M., Meinel, C.: A Security Meta-model for Service-Oriented Architectures.
In: Proc. 2009 IEEE Int. Conf. Services Computing (SCC 2009), pp. 251–259.
IEEE, Los Alamitos (2009)

16. Moreno, N., Fraternali, P., Vallecillo, A.: WebML modelling in UML. IET Soft-
ware 1(3), 67 (2007)

17. Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models,
and New Applications. LNCS, vol. 2754. Springer, Heidelberg (2003)

18. Valverde, F., Pastor, O.: Applying Interaction Patterns: Towards a Model-Driven
Approach for Rich Internet Applications Development. In: Proc. 7th Int. Wsh.
Web-Oriented Software Technologies, IWWOST 2008 (2008)

19. Zhang, G., Hölzl, M.: Aspect-Oriented Modeling of Web Applications with HiLA.
In: Wsh. Proc. 11th Int. Conf. Web Engineering (ICWE 2011). LNCS. Springer,
Heidelberg (to appear, 2011)

http://www.umlsec.de/

	Title
	Preface
	Conference Organization
	Table of Contents
	Keynotes
	Business Information Systems Utilizing the Future Internet
	Introduction
	Towards Future Business Information Systems
	The Support of End-to-End Engineering Process (Including Full Life-Cycle Support)
	From Development in One Organization to Integration Across Organizations
	From Systems Being Provided by Individual Organizations to Systems Being Provided by Ecosystems
	From Transaction-Oriented Systems to Event-Oriented Systems Utilizing the Internet of Things

	Concluding Remarks
	References

	Next Generation of Modelling Platforms
	Introduction
	Basic Definitions
	DSLs vs. GPLs

	Metamodelling Platforms: An Overview
	Hybrid Modelling
	MCG vs. MAS Metamodelling Platforms
	The Open Model Initiative
	Conclusion
	References

	Business Intelligence and Performance Management
	Using Semantically Annotated Models for Supporting Business Process Benchmarking
	Introduction
	Foundations
	Business Process Benchmarking
	Conceptual Process Models for Benchmarking
	Semantic Annotation of Conceptual Process Models

	Model-Based Benchmarking Using Semantic Annotations
	Definition of the Meta Model
	Semantic Annotations for Business Process Benchmarking

	Implementation and Application
	Related Work
	Conclusion and Outlook
	References

	Performance Measurement Framework with Formal Indicator Definitions
	Introduction
	Performance Measurement Concepts
	Key Concepts: From Strategy to Measures
	Features of Indicators
	Measurement Concepts

	Performance Measurement Systems
	Data Warehouse as a Solution
	Overview of Data Warehouses for Performance Measurement
	Concept of a Data Warehouse of Processes
	Summary about Process Measurement Systems

	Performance Measurement Framework with Indicator Lifecycle
	Formal Model for Indicator Definition
	Principles of Indicator Reformulation
	Requirement Pattern Description
	Indicator Examples

	Conclusions and Future Work
	References

	Using the Entity-Attribute-Value Model for OLAP Cube Construction
	Introduction
	Related Work
	Methodology
	Example Implementation
	Tests and Results
	Multiple Bridges
	Consolidated Bridge
	Performance Testing and Results

	Conclusions
	References

	Near Real-Time Data Warehousing with Multi-stage Trickle and Flip
	Introduction
	Related Work
	Trickle and Flip
	Multi-stage Trickle and Flip
	The Main Idea
	Setup and Operation
	Benefits and Issues

	Conclusion
	References

	Data and Processes
	Data Consistency in Transactional Business Processes
	Introduction
	Consistency Conflicts
	A Business Process Management System with Consistency Monitoring
	Consistency Ranges and Consistency Check Conditions
	Data Access Collector
	Consistency Analysis
	Garbage Collector
	Conflict Notification and Visualization

	Application
	Related Work
	Conclusions and Future Work
	References

	Business Process and Regulations: Approach to Linkage and Change Management
	Introduction
	Related Work
	Linkage of Business Processes and Regulations
	Document Analysis
	Change Detection in Regulations

	DA and CD System
	High-Level Architecture of DA and CD System
	Retrieval of Regulations
	Regulation Structural Analysis: Approach and Prototype
	Change Management Mechanism

	Example
	Conclusions and Future Work
	References

	Parallel Tabu Search Algorithm for Data Structure Composition
	Introduction
	Short Overview of Tabu Machine Model and Dynamics
	A Consecutive TM-Algorithm for OLS Problem
	A General Description of DTM Functioning
	The Algorithm of DTM Functioning
	Performance Evaluation
	Conclusion
	References

	Ontologies
	Survey on Ontology Languages
	Introduction
	Concept of Ontology
	Ontology Languages
	KIF (SUO-KIF SUMO Language)
	OWL (Lite, DL, Full)
	RDF
	The Ontology Interchange Language (OIL)
	The DARPA Agent Markup Language (DAML9)

	Related Work on the Comparison of Ontology Languages and Ontologies
	Selecting Criteria for Comparison of Ontology Languages
	Discussion
	References

	Advanced RDB-to-RDF/OWL Mapping Facilities in RDB2OWL
	Introduction
	RDB2OWL Core Language: An Overview
	Advanced RDB2OWL Constructs
	Multiclass Conceptualization
	Auxiliary Database Objects
	RDB2OWL Functions
	Aggregate Functions
	Extended Mapping Example

	Conclusions
	References

	Export of Relational Databases to RDF Databases by Model Transformations
	Introduction
	Model Transformation-Based Migration Method
	Accessing Source ER Schema
	Importing Target OWL Ontology
	Exporting RDF Triples
	Main Step: Compilation of L0 to SQL

	Results of Practical Application
	Conclusions and Future Work
	References

	Architectures
	An Analysis of Enterprise Architecture Maturity Frameworks
	Introduction
	Enterprise Architecture Maturity
	EA Maturity Objectives
	EA Maturity Method
	EA Maturity Model Types

	EA Maturity Models, Frameworks and Approaches
	Scope of EA Maturity Frameworks

	Analyzing EA Maturity Frameworks
	Conclusion
	Outlook and Future Research
	References

	Enterprise Resource Planning (ERP) Systems: Use of Reference Models
	Introduction
	BPR and ERP Systems
	Business Process Reference Models

	Purchase Reference Model Design
	Purchase Reference Model
	Purchase Posting Reference Model

	Use of the Purchase Reference Model in Process Renovation
	Purchase Requisitions Process Modelling
	Purchase Requisitions Process Renovation

	Conclusion
	References

	A Universal Model-Based Solution for Describing and Handling Errors
	Introduction
	The Essence of the Transformation-Driven Architecture
	Error Handling and the Meta-meta Level of Abstraction
	Describing Errors
	ErrorClass
	WaitingErrorClass
	NonWaitingErrorClass
	AccumulatingErrorClass

	Handling Errors
	Related Work
	Conclusion
	References

	Stakeholders’ Perspectives
	Validating Organizational Knowledge Patterns: Case Study from Information Demand Modeling
	Introduction
	Knowledge Patterns
	Knowledge Patterns
	Organisational Knowledge Patterns

	Development and Validation of OKP
	Development of Organisational Knowledge Patterns
	Validation of Organisational Knowledge Patterns

	Case Study: Information Demand Patterns
	The Concept of Information Demand Patterns
	Development and Validation of Information Demand Patterns

	Discussion
	Summary and Future Work
	References

	Analysis of Dynamic Interactions with External Parties During Maintenance of ERP Systems
	Introduction
	Background and Related Work
	Enterprise Resource Planning Systems
	Maintenance

	Research Methodology
	Analysis and Findings
	Discussion and Conclusion
	References

	Discovering of Users’ Interests Evolution Patterns for Learning Goals Recommendation
	Introduction
	Related Work
	Collaborative Filtering
	Collaborative Filtering for E-Learning

	Proposed Solution
	Inputs and Outputs of the Proposed Method
	Description of the Algorithm
	Interpretation of the Output

	Conclusions and Future Work
	References

	Web Information Systems and Services
	Modeling Secure Navigation in Web Information Systems
	Introduction
	Web Engineering
	Modeling Access Control in Web Information Systems
	Basic Rights Model
	Navigation State Model

	Working with UWE Security Models
	Security Patterns
	Tool Support for Modeling
	Validation of Models

	Related Work
	Conclusions and Future Work
	References

	Quality of Health Web Sites: Dimensions for a Wide Evaluation
	Introduction
	Health Web Sites
	Web Site Definition
	Health Web Site Definition
	Health Web Sites Categories

	Health Web Sites Statistics
	Health Web Sites’ Importance
	Software Quality
	Dimensions of Websites Quality
	Contents Quality Evaluation
	Services Quality Evaluation
	Technical Quality Evaluation

	Structure for a Global Quality Evaluation of a Health Website
	Final Remarks
	References

	Analysis and Evaluation of Selected Shops with Organic Food in Poland
	Introduction
	Assumptions of the Study
	Analysis of Collective Results
	Analysis of Variants with a Preference Scale
	Instead of Conclusions
	References

	Evaluating the Application of Service-Oriented Auditing in the B2G Domain: A Case Study
	Introduction
	Background
	Basic Concepts
	 Extended Single Window and Its Stakeholders

	Service Oriented Auditing Methodology
	Uncoordinated Auditing
	Coordinated Auditing

	B2G Case Study
	Supply Chain of IO-1
	Built-in Controls of IO-1
	Problem Description
	Problem Analysis Based on SOAu Methodology

	Conclusion
	References

	Cloud Computing and Economic Growth in the Baltic Sea Region Countries
	Introduction
	Literature Review
	Information and Communication Technology
	Cloud Computing

	Method and Data
	Results
	Summary
	References

	Systems Approach
	The Viable Systems Approach (VSA) for Re-interpreting Network Business Dynamics
	Introduction
	Network-District: A Complex Concept in a Relational Key
	Network Dynamics from a Systems Perspective: The Viable Systems Approach (VSA) Conceptual Framework
	Conclusions
	References

	Views on Scientific Workflows
	Introduction
	Related Work
	Views on Scientific Workflows
	Aggregation of Complex Workflow Logic
	Phases in Simulation Workflows
	Status of a Scientific Workflow
	Data Flow Visualization
	Custom Icon for Service Invocation
	Performance Analysis
	Access to Runtime Information of Used Services

	Implementation
	Conclusions
	References

	Agile Business Process Management in Research Projects of Life Sciences
	Introduction
	Challenges in Life Science Automation
	Previous Works

	BPM-Approach in LSA
	Requirements on BPM in LSA
	The Concept of BPM Integration
	First Results and Future Works - An Example R&D Process

	References

	A Conceptual Framework for Design Science Research
	Introduction
	Design Science Research
	Outcome of Design Science: Abstract and Situational Design
	Artificial and Naturalistic Evaluation

	A Conceptual Framework for Meta-design
	Details of the Conceptual Framework
	Example: Design Science for Producing a Literature Review Artefact

	Conclusions
	References

	Author Index

