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ABSTRACT

Machine Learning-based heuristics have recently shown impressive performance
in solving a variety of hard combinatorial optimization problems (COPs). How-
ever they generally rely on a separate neural model, specialized and trained for
each single problem. Any variation of a problem requires adjustment of its model
and re-training from scratch. In this paper, we propose GOAL (for Generalist com-
binatorial Optimization Agent Learner), a generalist model capable of efficiently
solving multiple COPs and which can be fine-tuned to solve new COPs. GOAL
consists of a single backbone plus light-weight problem-specific adapters for input
and output processing. The backbone is based on a new form of mixed-attention
blocks which allows to handle problems defined on graphs with arbitrary combi-
nations of node, edge and instance-level features. Additionally, problems which
involve heterogeneous types of nodes or edges are handled through a novel multi-
type transformer architecture, where the attention blocks are duplicated to attend
the meaningful combinations of types while relying on the same shared parame-
ters. We train GOAL on a set of routing, scheduling and classic graph problems
and show that it is only slightly inferior to the specialized baselines while being
the first multi-task model that solves a wide range of COPs. Finally we showcase
the strong transfer learning capacity of GOAL by fine-tuning it on several new
problems. Our code is available at this url.

1 INTRODUCTION

Combinatorial Optimization (CO) problems are extensively studied in the Operations Research com-
munity, because they are both challenging in terms of theoretical complexity and central in many
applications such as transportation, logistics and finance. Traditional CO methods include exact
solvers, typically based on integer programming (Korte & Vygen, 2018), and approximation algo-
rithms (Vazirani, 2003) which provide optimality or approximation guarantees, respectively, but do
not scale; and heuristic algorithms (Boussaı̈d et al., 2013) which produce good-quality solutions
faster but without guarantees. Effective heuristics heavily rely on expert knowledge and are gener-
ally problem-specific. A more recent and promising family of methods for CO is based on Machine
Learning, either to learn the hyper-parameters of classic CO solvers, or to directly learn heuristics
in an end-to-end fashion (Bengio et al., 2021; Cappart et al., 2021). In particular constructive neural
heuristics have been successful at solving a variety of CO problems, including routing (Bello et al.,
2017; Nazari et al., 2018; Kool et al., 2018; Kwon et al., 2020), scheduling (Zhang et al., 2020;
Kwon et al., 2021) and graph problems (Khalil et al., 2017; Qiu et al., 2022). However, in most
cases, a separate model is specialized and trained for each problem, and sometimes even for each
distribution of instances within a problem, especially for varying instance sizes. While much ef-
fort has been devoted to improving the generalization to different instance distributions (Manchanda
et al., 2022; Zhou et al., 2023; Son et al., 2023; Drakulic et al., 2023), generalization to different
problems is less studied. Indeed, although there are strong neural heuristics for many CO problems,
any variation of these problems requires adjustment of their model and re-training from scratch.
While it is true that some problem-specific model tailoring may be required, since the structure of
problem instances and solutions are very diverse, many problems are related and it would be in-
teresting to exploit their commonalities. In this paper, we seek to answer the following question:
Can we design and train a single generalist model so that it can be efficiently adapted to solve a
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variety of CO problems? The idea of pretraining a unified model on some pretext task so that it can
be efficiently fine-tuned to several downstream tasks has been extremely successful in the language
and vision domains (Devlin et al., 2019; Brown et al., 2020; Radford et al., 2021). In these domains,
a self-supervised pretraining task exploits the intrinsic structure and regularities of images and text
to learn generic representations. In contrast, in CO, while most problem instances can be modeled
as graphs, there is no generic regularity to leverage by a pretext task. Graphs, unlike images or text
contain little redundancy or intrinsic semantics.

In this paper, we propose a new model, named GOAL (for Generalist combinatorial Optimization
Agent Learner), which consists of a single backbone and light-weight problem-specific adapters for
input and output processing. To handle the large discrepancy between CO problems, we propose
three complementary strategies. First, to ensure learning related representations for different CO
problems, we propose to use a problem-specific projection of the input instance features to a small
fixed-size representation, which is then projected into the main embedding space using a shared
codebook. Second, to handle problems defined on graphs with arbitrary combinations of node,
edge and instance-level features, we design a new form of mixed-attention blocks for the backbone,
injecting edge information at the core of each attention block. Finally, we introduce a novel multi-
type transformer architecture to deal with problems which involve heterogeneous types of nodes
or edges (typically represented as multipartite graphs). The idea is to duplicate the backbone’s
mixed-attention blocks in order to attend each meaningful combination of types while relying on the
same fixed set of shared parameters. In principle, GOAL is able to handle any CO problem whose
instances can be represented as a graph and where feasible solutions can be constructed iteratively,
as a sequence of node selections. We find that this pattern is generic enough to cover a wide range
of problems. We train GOAL in a multi-task setting, by imitation of expert trajectories of eight
classic CO problems, spanning multiple domains: Routing problems: the Asymmetric Traveling
Salesman Problem, the Capacitated Vehicle Routing Problem with or without Time Windows, the
Orienteering Problem ; Scheduling problems: the Job Shop Scheduling Problem and the Unrelated
Machine Scheduling Problem; Packing problems: the Knapsack Problem; and Graph problems: the
Minimum Vertex Covering Problem. The expert trajectories are based on good-quality solutions,
easily generated by traditional problem-specific solvers for instances of medium size (generally 100
nodes).

Experimentally we first show that GOAL performs very well on all the training tasks, making it the
first model that solves such a variety of CO problems. Second, we consider eight new problems and
demonstrate that GOAL can be fine-tuned to reach a good performance, either in a few minutes using
few-shot imitation learning or in a couple of hours without supervision. In both cases, the fine-tuning
takes a fraction of the time and data needed to train a model from scratch. We further provide an
ablation study to evaluate the effectiveness of a shared codebook, multi-type transformer architecture
and mixed-attention blocks. Notably the GOAL architecture gives state-of-the-art results on 7 out
of our 8 training tasks when used as single-task model. In summary, our contributions are the
following:

• We introduce GOAL: a generic and flexible model for end-to-end combinatorial optimiza-
tion. Two key ingredients of GOAL are the simple yet effective form of mixed-attention
blocks which enables handling problems represented by graphs with any combination of
node-, edge- and instance-level features and its multi-type transformer architecture which
allows to seamlessly tackle problems with multipartite graph structures.

• We demonstrate that it is possible to learn a single backbone model to effectively solve a
variety of CO tasks, spanning routing, scheduling, packing and graph problems.

• We showcase the potential of such a multi-task pretrained model to be efficiently adapted
to handle varied new CO tasks, with or without supervision. We believe this is a key step
toward a foundation model for CO.

2 RELATED WORKS

End-to-end heuristic learning for CO Our work falls into the category of end-to-end constructive
heuristics for combinatorial optimization. Constructive neural heuristics have been successfully
applied to a wide range of COPs, including many variants of routing problems (Kool et al., 2018;
Xin et al., 2021; Kim et al., 2022; Kool et al., 2022; Fu et al., 2021; Sun & Yang, 2023), scheduling
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problems (Zhang et al., 2020; Kwon et al., 2021), as well as classic COPs such as the Knapsack
Problem (Kwon et al., 2020) and the Maximum Independent Set (Khalil et al., 2017; Sun & Yang,
2023). Another successful category of neural CO methods are improvement heuristics, which focus
on iteratively enhancing a given complete solution, typically by using a neural network to guide the
selection of local search operators (Chen & Tian, 2019; Hottung & Tierney, 2020; Ma et al., 2021;
Wu et al., 2022). The seminal work of Khalil et al. (2017) introduces graph embeddings which do
work for a variety of CO problems but with limited performance. Current state-of-the-art models are
tailored for certain problem structures (e.g. euclidian routing problems, where nodes are represented
by their coordinates plus some extra node or graph features such as demand or vehicle capacity),
and successfully handled by transformer-based architectures (Kool et al., 2018). For non-euclidian
routing problems, Kwon et al. (2021) and Drakulic et al. (2023) propose adapted architectures to
deal with the distance matrix, but they are specialized for such problems and do not apply to those
with node-only features. In GOAL, we propose a novel mixed-attention modules which can flexibly
deal with both node and edge features, incurring no overhead when one or the other is missing.

Generalization of neural heuristics While the first seminal models for neural CO had a dramatic
drop in performance when tested on out-of-training distribution instances (Joshi et al., 2022; Man-
chanda et al., 2022), several recent approaches show a greatly improved generalization performance,
especially to larger instances (Fu et al., 2021; Li et al., 2021; Son et al., 2023; Pan et al., 2023), to
distribution shifts of other instance parameters (Bi et al., 2022), or both (Manchanda et al., 2022; Bi
et al., 2022; Zhou et al., 2023; Drakulic et al., 2023). Concurrently with our work, some papers have
started to explore cross-problem generalization for the family of routing problems. Specifically,
(Lin et al., 2024) propose to pretrain the AM model (Kool et al., 2018) on the TSP and to fine-tune
either the entire model or some light-weight modules on the Price Collecting TSP and OP. Addi-
tionally, Zhou et al. (2024); Liu et al. (2024); Berto et al. (2024) explore generalization to different
variants of the CVRP. They build on the idea of zero-shot compositionality (Ruis et al., 2021) by
training a model on CVRPs with some combinations of constraints from a predefined set (e.g. time
windows and duration limit constraints) and show that the model generalizes to some unseen com-
binations of the same constraints. Wang & Yu (2023) propose a bandit based approach to alternate
between problems during training, so as to focus on those which have the best return. Although these
approaches tackle multiple problems, it is important to note that the considered Euclidian routing
problems remain very similar in structure and indeed many of those problems were solved by the
seminal Attention Model of (Kool et al., 2018) with little adaptations of its base model. Our paper
goes further and considers multi-task training and transfer learning of a new model on a variety of
COPs with different structures.

Multi-task training for sequential decision making Multi-task (pre-)training has recently shown
promising results in related fields. For example, Ibarz et al. (2022) proposed a graph neural network
processor capable of learning to execute a variety of algorithms, such as sorting and searching.
The paper focuses only on polynomial problems and learns to imitate the execution of classical
algorithms. In contrast, we address NP-hard problems and learn by imitation of the solution provided
by (potentially exponential) specialized solvers. Recent approaches in control rely on sequence
modeling of expert trajectories from multiple tasks (Stooke et al., 2021; Sun et al., 2023). Although
they treat various tasks, with potentially diverse state and action spaces, these works still consider
image observations and exploit this common structure. Reed et al. (2022) propose GATO, a general-
purpose agent obtained by training a large transformer-based model on hundreds of tasks spanning
vision, language and control. It demonstrates the potential of a single network (albeit with 1.2B
parameters) to effectively tackle a wide variety of tasks.

3 MULTI-TASK LEARNING FOR COMBINATORIAL OPTIMIZATION

3.1 CONSTRUCTIVE CO PROBLEM SOLVING

We assume that a CO problem instance is given by a pair of a finite, non-empty set X of feasi-
ble solutions, and a real-valued objective function f whose domain contains X . Solving the in-
stance consists in finding an optimal solution, i.e. an element of argminx∈X f(x). Constructive
approaches assume that f is defined not only over X but over a set of partial solutions, which in-
cludes X and is amenable to a step-wise construction procedure where each partial solution can be
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Figure 1: Left: Architecture of GOAL for single-type problems; the green components are task-
specific, while the others belong to the backbone. The codebook is a shared ℓ×D (resp. ℓ̄×D̄)
matrix (with ℓ≪D, ℓ̄≪D̄) applied to the node (resp. edge) representations produced by the input
adapters. Right: Architecture of GOAL for multi-type problems (with here 2 node types T1,T2);
it uses multiple mixed attention blocks (“MMA”), some in self- and some in cross-attention mode,
but they all share the same parameters (per layer); so do the two Feed Forward blocks (“FF”). For
the edges, all the type combinations are shown (here T11,T12,T21,T22) but those which have no
meaning in a task are simply omitted. The same set of parameters is used for the two architectures.

obtained by a sequence of construction steps. Thus, solving the problem instance can be formulated
as a sequential decision procedure which iteratively selects the construction steps so as to reach not
only a feasible but an optimal solution. That in turn can be modeled as a Markov Decision Problem
(MDP) associated with the problem. In this paper, we use the BQ-MDPs introduced by Drakulic
et al. (2023) which are defined for “tail-recursive” problems, i.e. the widespread class of problems
that are solvable by dynamic programming (Bertsekas, 2019). In BQ-MDPs, the actions are the con-
struction steps, typically the selection of a node, while the states are simply instances. This differs
from many peer NCO models where each state is a pair of an instance and a partial solution. The
tail recursion property precisely ensures that the two alternatives lead to “bisimilar” MDPs, which
have the same optimal policies, as shown in Drakulic et al. (2023), but the BQ-MDPs’ states more
efficiently capture the relevant information to determine these policies.

3.2 MULTI-TASK CO PROBLEMS

Now, given a class T of tail-recursive CO problems called tasks, let Ωt for each task t∈T denote the
parametric space used to represent its instances. Consider the new (multi-task) CO problem whose
instances are represented in the disjoint union

⊎
t∈T Ωt consisting of pairs (t, ω) of a task identifier

t∈T and a point ω∈Ωt in its corresponding parameter space. It is easy to show that the multi-task
problem is tail-recursive whenever each of its components is. And its BQ-MDP is then simply the
disjoint union of the BQ-MDPs of its components.

In this paper, we study alternatives for the multi-task policy space, beyond the (trivial) Cartesian
product of the policy spaces of the individual tasks, where no parameter is shared between the
different tasks. The underlying assumption is that if the tasks are sufficiently similar, learning one
task may elicit implicit skills useful to other tasks, which are then leveraged by parameter sharing. In
the extreme, some tasks may require little training data and/or just a few shot fine-tuning to obtain
acceptable performance, leveraging their similarity to more thoroughly trained tasks. Since each
task has its own parametric space used to represent its instances, some part of any multi-task policy
has to be task specific, and trained by processing at least a few instances of each task: pure zero-shot
generalization is not possible. The situation is close to multi-lingual Natural Language Processing,
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where the vocabulary of each language needs to be seen at least once at training or fine-tuning. And
we borrow the solution used in that context, namely adapters (Bapna & Firat, 2019).

3.3 TASK REPRESENTATION

To leverage operational similarity between tasks, we need them to have at least representational
similarity. Thus, we assume that each instance of size N of a task (CO problem) is represented by a
set of N abstract “nodes”, together with features which can be attached at node, edge (node pair) or
instance level. Instance features can be replicated and appended to the features of each node, hence
can be ignored without loss of generality. Since the construction steps (actions) are returned by the
task-specific output adapters (Sec 3.4), there are no restrictions on their format. For simplicity and
to cover the problems used in our experiments, we assume in the sequel that each construction step
consists of the selection of a node, possibly with an option among a fixed number K of options
(dependent on the task: in most cases, K=1 and the action simply selects a node).

Hence, the GOAL model takes three inputs t, x, x̄, where t is a task identifier, and (x, x̄)∈Ωt is
a parameter representing an instance of task t, where x∈RN×Ft (resp. x̄∈RN×N×F̄t ) represents
the feature vectors of dimension Ft of the N nodes (resp. F̄t of the N×N edges). While some
tasks may have no edge feature (F̄t=0), we always assume that at least one node feature exists,
which distinguishes the nodes by a randomly assigned value between 0 and 1, similar to the random
features used in Graph Neural Networks (Sato et al., 2021), so we always have Ft≥1. Both Ft

and F̄t, as well as the meaning of the corresponding features, depend on task t. The output of the
model is a matrix y∈RN×Kt representing the score of each candidate action, i.e. the pair of a node
and an option for selection. As usual, it is passed to a softmax (over the whole matrix) to obtain a
probability distribution. Wherever appropriate, task-dependent masking can be used to ensure that
probabilities are null for the actions disallowed by a task.

3.4 ARCHITECTURE OF THE MODEL

The architecture of our model generalizes that of BQ-NCO (Drakulic et al., 2023), and is described
in Fig. 1 left. It essentially consists of a sequence of layers whose parameters are shared by all
the tasks (backbone) together with task-specific adapter modules at the input and output of the
model1. The input-output adapter modules for task t are specific to the dimensions Ft, F̄t,Kt and
the meaning of the corresponding features. No positional encoding is used: all relational information
is assumed to be captured by x̄. The layers themselves, on the other hand, are only aware of the
shared embedding dimensions D, D̄. They are self-attention transformer layers (Vaswani et al.,
2017) where vanilla attention is replaced by multi-head mixed attention, similar in intent to (Kwon
et al., 2021; Henderson et al., 2023) but with a different design.

Our mixed attention block, in the general case where M nodes attend on N nodes (M=N only
in self-attention), is an instance of generalized attention (Andreoli, 2019). A generalized attention
mechanism takes the following inputs: node representations as vectors for N queries, M keys,
and M values, with an optional M×N log-binary mask M. In each head h, each query, key, value
vector is first projected into a common space of dimension d, yielding for each n=1:N and m=1:M ,
vectors (of dimension d):

Q(h)
n = QnW

(h)
Q , K(h)

m = KmW
(h)
K , V (h)

m = VmW
(h)
V .

Then the key and query vectors are used to compute an M×N score matrix S, which is transformed
into an attention matrix (by adding the mask and applying softmax) multiplied by the reprojected
value vectors to produce the output representation r of the N input query nodes as a matrix with N
rows:

r =
∑
h

softmaxcol(S
(h)+M)⊤︸ ︷︷ ︸

attention matrix

V (h)W
(h)⊤
O .

Attention mechanisms then differ in the way they compute the score matrix:

(vanilla attention) S(h)
mn = ⟨ K(h)

m | Q(h)
n ⟩, (1a)

(our mixed attention) S(h)
mn = ⟨ K(h)

m +K ′(h)
mn | Q(h)

n +Q′(h)
mn ⟩. (1b)

1Adapters can also be introduced within layers, but this paper considers only input-output adapters.
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In vanilla attention, the scores are obtained by simple scalar product of the key and query vectors
(equation 1a). Our mixed attention mechanism takes as additional input M×N “edge” vectors,
projected twice into the common space of dimension d, once as key and once as query, resulting in
vectors (of dimension d):

Q′(h)
mn = EmnW

′(h)
Q , K ′(h)

mn = EmnW
′(h)
K . (2)

The score matrix is still obtained as a scalar product of a key and a query vector, but now, each of
them is the sum of a node component and an edge component (equation 1b). Our mixed attention
allows to incorporate arbitrary relational information (edge features) into the core of the attention
mechanism. It differs from positional encoding, which attempts to instill a priori the edge informa-
tion (limited to sequential ordering) into the node representations.

In the GOAL backbone, all the node (resp. edge) inputs to the attention blocks are of dimension D
(resp. D̄), and they are all projected into a common space of dimension d equal to D divided by the
number of heads. No masking is used in the backbone. One well-known limitation of this model
is its quadratic complexity, the attention matrices being of size N2. In practice though, for many
tasks, a simple, task-specific heuristic can deal with that problem by pre-filtering the set of nodes to
present to the model (usually much fewer than N ). Whenever available, we use such heuristics.

Input and output adapters are linear projections, from the task-specific instance features to the back-
bone’s input embeddings and from the backbone’s output embeddings to the task-specific action
space. However, when the embedding dimension is large and the number of training tasks is small,
there is a risk that the embeddings produced by each task end up occupying complementary sub-
spaces of the embedding space throughout the layers, which would defeat the purpose of effectively
sharing parameters across tasks. To prevent this, we simply force the input linear projection to be
low rank. Thus, node (resp. edge) features are first mapped into a low dimension ℓ≪D (resp.
ℓ̄≪D̄), through a task-specific linear projection (the input adapter proper), forcing the representa-
tions to share dimensions across tasks. Then this “small” representation is plunged into a “large” D-
(resp. D̄)-dimensional embedding, through a common linear projection, called a codebook, shared
by all the tasks (see Fig. 1 left).

3.5 MULTI-TYPE TRANSFORMER ARCHITECTURE

Many tasks (CO problems) involve different types of nodes. For example, scheduling problems
often involve “operation” and “machine” nodes. For GOAL, one solution is to simply treat them
all indiscriminately in the backbone. The adapters, being problem specific, are of course free to
treat them differently according to their types. This is sometimes unsatisfactory though, since it
forces the adapter to provide uniform embeddings for all the nodes and edges, though they are
often heterogeneous by nature: in the scheduling example, edge features may carry precedence
constraints when between operations, or processing times when between machines and operations,
and no information at all when between machines. Instead of packing all these different types
of relations into a single vector, with padding values wherever a feature is undefined for a given
edge, we propose a multi-type architecture where the adapters output separate embeddings per type
(for nodes) or compatible pairs of types (for edges). Each layer of the model, instead of being
a monolithic self-attention block operating on all the nodes, becomes a task-specific combination
of both cross- and self-attention blocks, as described by equation 1b, operating on different type-
compatible subsets of nodes and edges. This is illustrated in Fig. 1 right in the case of two types. For
n types, the architecture would be similar but involves n2 mixed-attention blocks, where each type
attends to itself and every other type, or a selection of relevant types defined by the task. Therefore,
in our scheduling example, the model will contain separate self-attention blocks, for operation nodes
and machine nodes respectively, and cross-attention blocks, for operation-machine edges and vice-
versa. Observe that while the architecture configuration is now task-specific, the model parameters
remain the same for all the configurations: all the attention blocks of a layer, be them self- or cross-
attentions, and whatever the types they involve, share the same, layer-specific parameters. This is
precisely what allows us to train a unique model to solve arbitrary single- and multi-type problems.

3.6 TRAINING PROCEDURE

We train GOAL on a set of eight various CO problems (described in Sec 4). For each training
problem, we define the corresponding BQ-MDP, the linear input and output adapters to match the
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dimensions of the input features and the construction actions. We train the model by imitation of
high-quality solutions, provided by specialized solvers. At each step, we sample a problem and
create a batch of instances by sampling suffix subproblems from the training instances, similarly to
(Drakulic et al., 2023). The forward and backward processes involve the input and output adapters,
as well the backbone parameters, where the mixed-attention and feed-forward blocks are duplicated
within each layer if the sampled task is multi-typed.

4 EXPERIMENTS

Our experiments aim to address the following questions: (i) does the GOAL approach enable learn-
ing a single backbone to effectively solve a variety of CO problems (Sec 4.1)? (ii) can it be used as a
pretrained model and efficiently fine-tuned to solve new CO problems, unseen at training (Sec 4.2)?
(iii) to what extent do our mixed-attention blocks and multi-type architecture contribute to the results
(Sec 4.3)? We begin by describing the multi-task training of GOAL.

Training tasks. We train GOAL on eight classic and varied CO problems. For each problem, we
generate a training dataset of 1 million random instances and solve them using traditional solvers.
Specifically, we consider the following problems and oracle solvers: the Asymmetric Traveling
Salesman Problem (ATSP) with LKH (Helsgaun, 2017), the Capacitated Vehicle Routing Problem
(CVRP) with LKH (Helsgaun, 2017), the Capacitated Vehicle Routing Problem with Time Windows
(CVRPTW) with HGS (Vidal, 2022) the Orienteering Problem (OP) with A4OP (Kobeaga et al.,
2018), the Knapsack Problem (KP) with ORTools (Perron & Furnon, 2022), the Minimum Vertex
Covering Problem (MVC) with FastWVC (Cai, 2023), the Unrelated Machine Scheduling Problem
(UMSP) with HiGHS (Huangfu & Hall, 2018) and the Job Shop Scheduling Problem (JSSP) with
ORTools (Perron & Furnon, 2022). The training instances are of size 100 nodes, or 10×10 for JSSP
and 100×20 for UMSP (resulting in both cases in 100 operation nodes). The description of the
problems and the associated data generation processes is provided in Appendix F.

Training details. GOAL is trained by alternating batches in random order from each of the training
tasks, using a single-class cross-entropy loss for ATSP, CVRP, CVRPTW, OP, JSSP and UMSP and
a multi-class cross-entropy loss for KP and MVC. We use AdamW optimizer (Loshchilov & Hutter,
2018), with an initial learning rate of 0.0005 and a decay rate of 0.97 every 10th epoch. We trained
the model on 8 Nvidia V100 GPU servers, with batch size of 256 for 7 days, completing ca. 400
epochs. The best model was selected based on the average performance on a validation set of 128
instances per problem. The model hyperparameters are described in Appendix A.

Baselines. We consider the following constructive neural models as baselines: AM (Kool et al.,
2018), MDAM (Xin et al., 2021), POMO (Kwon et al., 2020), Sym-NCO (Kim et al., 2022),
BQ-NCO (Drakulic et al., 2023), MVMoE (Zhou et al., 2024), MatNet (Kwon et al., 2021), S2V-
DQN (Khalil et al., 2017), RouteFinder (Berto et al., 2024), COMPASS (Chalumeau et al., 2023)
and Gumbeldore (Pirnay & Grimm, 2024). All models except MVMoE and RouteFinder are special-
ized and trained in single-task mode. They are often combined at test time with various enhancers,
such as beam search Drakulic et al. (2023), simulation-guided beam search (Choo et al., 2022),
MCTS (Xing & Tu, 2020), instance augmentation (Kwon et al., 2020), or active search (Hottung
et al., 2021), but for fair comparison, all the results we report are obtained by a pure greedy applica-
tion of the trained policy at test time.

4.1 PERFORMANCE ON THE TRAINING TASKS

In Table 1 we compare the performance of GOAL to the relevant neural baselines for each problem
as well as its single-task version (i.e. GOAL trained separately for each task). First, we observe
that the best performance is achieved by the single-task GOAL in 7 out of the 8 tasks, with a com-
putation time comparable to that of the baselines. This proves the versatility and effectiveness of
our proposed architecture, even for a specialized model. Second, we see that multi-task GOAL is
only slightly worse than the single-task version. These results validate the capability of the GOAL
backbone, together with the task-specific adapters, to effectively solve the variety of training tasks.
More broadly, they demonstrate that multi-task learning can be a successful paradigm for neural
combinatorial optimization.
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ATSP100 CVRP100 CVRPTW100 OP100
gap time gap time gap time gap time

Oracle solver 0.00% 29s 0.00% 12m 0.00% 10m 0.00% 1.1m
AM greedy - 7.11% 1s 5.35% 1s
MDAM greedy - 4.84% 1s - 2.88% 16s
POMO no aug - 1.21% 1s - -
Sym-NCO greedy - 3.33% 1s - 2.03% 2s
BQ-NCO greedy 1.27% 2s 2.79% 2s - 0.22% 2s
MVMoE/4E - 1.65% 1s 4.90% 1s -
RouteFinder-TE - 1.50% 1s 3.19% 1s -
MatNet greedy 0.93% 1s - - -
GOAL SINGLE-TASK greedy 0.30% 10s 2.34% 10s 2.61% 10s -0.04% 3s
GOAL MULTI-TASK greedy 0.91% 10s 3.16% 10s 3.82% 10s 0.43% 3s

KP100 MVC100 UMSP100x20 JSSP10x10
gap time gap time gap time gap time

Oracle solver 0.00% 1s 0.00% 2m 0.00% 2m 0.00% 47s
POMO no aug 0.19% - - -
BQ-NCO greedy 0.10% - - -
S2V-DQN - 0.97% 2s - -
COMPASS - - - 4.70% 3h
Gumbeldore greedy - - - 3.17% 9s
GOAL SINGLE-TASK greedy 0.10% 3s 0.23% 3s 2.82% 7s 2.73% 15s
GOAL MULTI-TASK greedy 0.12% 3s 0.37% 3s 3.84% 7s 4.13% 15s

Table 1: Performance on 128 test instances from the training tasks. Each gap is with respect to the
oracle and often corresponds to the optimality gap. Lower is better.

In addition, in Appendix E, we provide experimental results demonstrating GOAL’s excellent zero-
shot generalization on instances up to 10 times larger than the training instances. We can note in
particular the strong generalization for ATSP which seems much more challenging for the state-of-
the-art baselines. This confirms the effectiveness of our mixed-attention mechanism.

4.2 FINE-TUNING TO NEW TASKS

In this section, we want to evaluate the transfer capability of the trained GOAL backbone to un-
seen tasks. We consider eight diverse new COPs: the Traveling Repairman Problem (TRP), the
Prize Collecting TSP (PCTSP), the Open CVRP (OCVRP), the Split Delivery CVRP (SDCVRP),
the Sequential Ordering Problem (SOP), the Maximum Covering Location Problem (MCLP), the
Maximum Independent Set (MIS) problem and the Open Shop Scheduling Problem (OSSP) (de-
tailed descriptions in Appendix F). GOAL can be fine-tuned to specific problems in two modes.
In both, the adapters are trained from scratch, and the backbone is also open to backpropagation
(no parameter freeze). The supervised mode is identical to training, except it processes only a few
(labeled) instances of the problem for a few steps. Details and results are given in Appendix B.
The unsupervised mode is more challenging, but also more realistic, since we may not have ac-
cess to good-quality solutions for the new problem. We propose to fine-tune the model by iterative
imitation-improvement steps between an Apprentice and an Expert, as in ExIt (Anthony et al., 2017).
While Exit relies on a possibly complex tree-search for improvement, we use instead a brute-force
but fast method, where the Expert samples multiple solutions (in our case 128) per instance from the
Apprentice and selects the best, if it is sufficiently better, and sends it back to the Apprentice (current
model) for imitation. This is similar to the self-labeling strategy proposed by Corsini et al. (2024)
for the JSSP. One could also use more sophisticated experts such as generic local search heuristics
or smarter sampling (Pirnay & Grimm, 2024) to accelerate the finetuning. Performance results are
given in Fig 2, which shows that unsupervised fine-tuning systematically outperforms unsupervised
training of the whole model from scratch at a comparable processing time budget. We also compare
finetuning GOAL to finetuning the single-task models and report the results in Fig 4. We observe
that the multi-task model consistently performs as well or better than the “most-related” single-task
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model (e.g. CVRP model for OCVRP or JSSP model for OSSP), hinting to the synergistic effect of
the multi-task training.
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Figure 2: Unsupervised fine-tuning of GOAL to eight diverse new tasks. We report the best results
over 10 runs both for training from scratch and fine-tuning.

4.3 ABLATION STUDY

Mixed-attention blocks. We compare our mixed-attention blocks with alternative modules which
also aim at mixing the edge information with the attention scores, namely MatNet (Kwon et al.,
2021) and G2G (Henderson et al., 2023). More precisely we focus on the ATSP and train three
versions of GOAL with the three different variants of mixed-attention. For MatNet, we keep the
original hyper-parameters used for solving the ATSP. Fig 3 (left) presents the models performance
(optimality gap on a test set of 128 instances) at different points of the training. We see that using
our mixed-attention blocks leads to a significant gain, on the performance at convergence (MatNet)
or on the speed of convergence (G2G). Note that these ablations are performed on a smaller training
dataset than in the previous experiments (100k instances), hence the larger optimality gap.

Multi-type transformer. Our multi-type architecture is meant to deal with tasks that are naturally
represented by multipartite graphs with heterogeneous nodes or edges, typically scheduling prob-
lems where job and machine nodes play different roles. To evaluate its effect on the performance,
we compare it to that obtained with the more direct alternative which ignores node and edge hetero-
geneity: we simply gather in a single tensor the node (edge) representations of the different types,
produced by the input adapter, and use the original single-type model. Note that because of the lin-
earity of the input adapters, these representations can be obtained either by defining a specific linear
transform per type, or equivalently by defining a single linear transform on the direct sum of the
feature spaces of the different types. We implemented the former for the Job Shop Scheduling Prob-
lem and present in Fig 3 (middle) a comparison between the training performance of the single-type
and multi-type architectures. Clearly, the multi-type architecture converges faster and to a better
performance: after 200 epochs of training on 100K instances, it reaches a test optimality gap of
4.6% while the single-type model achieves only 8.9%. Finally, note that the multi-type model offers
more flexibility for fine-tuning: while, in order to be task agnostic at training, parameter sharing
between the type specific attention blocks of a layer must be enforced, that constraint can be relaxed
at fine-tuning to better fit the task at hand.

Sparsification using a codebook. Fig 3 (right) experimentally confirms the importance, in the
fine-tuning phase (supervised mode), of sparsifying the input adapter with a shared codebook. The
results are given for the PCTSP, but similar results are available in Fig 6 (Appendix) for the other
problems. The shared codebook results in a more stable finetuning (over 10 runs) and to a better
optimality gap. While we do not observe a significant effect on the performance on the training tasks,
we believe that constraining the rank of the codebook tends to prevent its vectors from specializing
for individual tasks seen at training, which would be of limited use when fine-tuning to new tasks.
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Figure 3: (left) Performance with different variants of mixed-attention. (middle) Performance of
single- vs multi-type GOAL. (right) Fine-tuning of GOAL with and without the codebook.
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Figure 4: Comparison of the (supervised) fine-tuning of the single- versus multi-task GOAL on four
new problems.

5 DISCUSSION AND CONCLUSION

In this paper, we propose a generalist neural CO model (GOAL) and demonstrate the feasibility of
learning a shared backbone model to solve a variety CO problems, spanning routing, scheduling,
packing and classic graph problems. We have shown the benefits of GOAL as (i) a single-task spe-
cialized model, providing state-of-the-art results on seven CO problems; (ii) a multi-task model, able
to solve different problems with the same backbone; and (iii) a pretrained model, which is efficiently
fine-tuned to new problems. The proposed multi-task pre-training relies on imitation learning and
therefore the availability of good-quality solutions. While this is not an intrinsic limitation of the
GOAL model, we believe that imitation learning is an effective training paradigm for learning multi-
task models. This is indeed demonstrated by previous works which relied on sequence-modeling
training tasks for control (Sun et al., 2023; Reed et al., 2022). It is particularly advantageous for
CO as we can leverage high-quality solutions to classical NP-hard problems, provided by traditional
solvers, which are based on decades of OR research. In contrast, for a new potentially more original
problem, we show that GOAL can be effectively finetuned without any supervision. Our approach
is limited to problems where solution feasibility is easy to ensure during the construction, which is
a common requirement of constructive heuristics. Finally the quadratic complexity of the under-
lying transformer architecture makes the approach too costly for problem sizes beyond a thousand
nodes. Exploring more efficient forms of attention as basis for our mixed-attention blocks would be
a promising direction for better scaling.
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REPRODUCIBILITY STATEMENT

For full reproducibility, the implementation of the backbone, the adapters and all the experiments
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A GOAL HYPERPARAMETERS AND SIZE

The GOAL backbone consists of L=9 layers with an embedding size of D=D̄=128 (the same for
both nodes and edges), a feed-forward dimension of 512, and ReZero normalization Bachlechner
et al. (2021). The mixed-attention blocks have 8 heads. The task specific input adapters produce
representations of low dimension ℓ=8 for nodes and ℓ̄=4 for edges, which are mapped to embed-
dings by a shared codebook of dimension ℓ×D for nodes and ℓ̄×D̄ for edges, respectively. GOAL
backbone has 2.1M parameters and adapters are very light, with only a few thousand parameters per
task. For the illustration, RouteFinder (Berto et al., 2024) with POMO has 1.3M, MVMoE (Zhou
et al., 2024) has 3.7M (the same model is used in RouteFinder with MVMoE), and RouteFinder with
the Transformer Encoder 1.7M.

B SUPERVISED FINE-TUNING OF GOAL

In section 4.2 we describe the process of fine-tuning our multitask model on eight unseen tasks
in unsupervised mode. Although fine-tuning without labeled data is useful for transferring to new
tasks, it comes at a cost - it is quite expensive. Our experiments show that fine-tuning to the new
problems with unsupervised learning takes, on average, a few hours.

On the other hand, we demonstrate that GOAL can be effectively fine-tuned using a very small
amount of labeled data, in a short time. Figure 5 presents the performance of fine-tuning GOAL
on the same eight problems used in unsupervised tuning. Here, we use only 128 solved (but not
necessarily optimal) instances and tune the model with just one training step per instance (more
precisely, one training step per tail-subproblem of each instance). In contrast to unsupervised tuning,
this method is extremely fast; fine-tuning takes only a few minutes.
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Figure 5: Supervised fine-tuning on eight new problems. We report the best results over 10 runs for
both training from scratch and fine-tuning.

C IMPACT OF CODEBOOK ON FINE-TUNING

In 4.3 We discussed the importance of sparsifying the input adapter with a shared codebook. Al-
though this feature does not impact training performance, it is very important in the fine-tuning
phase. By adding a codebook to the model, fine-tuning becomes more stable and achieves better
performance. In the main text, we presented a figure comparing fine-tuning for the PCTSP with
models that have and do not have a codebook. Figure 6 illustrates the impact of the codebook on
fine-tuning the multitask model across all eight problems we used for transfer. In these experiments,
we used light-trained models with and without a codebook. The models are trained on 100K in-
stances, for 200 epochs. For each experiment, we perform 10 inference runs and report the mean
with a confidence interval of 100.
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Figure 6: Ablation study of codebook
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Figure 7: Illustration of the multi-type model on scheduling tasks in GOAL. The ”MA” blocks use
vanilla multi-head attention while the ”MMA” use our multi-head mixed-attention.

D MULTI-TYPE MIXED ATTENTION LAYERS FOR UMSP AND JSSP

As an illustration of our proposed multi-type transformer architecture, we present in Figure 7 the
inputs to the mixed-attention blocks for the Unrelated Machine Scheduling (UMSP) and the Job
Shop Scheduling Problems (JSSP). Note that in the case of UMSP, since there is no edge information
between jobs and between machines, the self-attention blocks (left-most and right-most attention
blocks) degenerate to vanilla attention. The cross-attention blocks, on the other hand, are mixed, and
they are fed the same edge information, holding the job execution times on each machine (transposed
from each other). In JSSP, the situation is similar, but ops have two kinds of relations between
themselves: precedence, and sharing the same job. Hence the self-attention block on ops is mixed.
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Train. distrib. Generalization
100 200 500 1000

ATSP

LKH 0.00% 29s 0.00% 48s 0.00% 2m 0.00% 4m
MatNet 1.57% 1s 97.21% 12s - -
BQ-NCO 1.63% 1s 1.90% 9s 4.29% 26s 8.09% 1m
GOAL 0.45% 5s 1.54% 30s 1.62% 3m 1.96% 5m

CVRP

LKH 0.00% 12m 0.00% 2h 0.00% 5h 0.00% 7h
AM 7.11% 1s 10.16% 1s 17.2% 1s 72.95% 2s
MDAM 4.84% 1s 7.54% 6s 12.94% 24s 32.25% 1m
POMO 1.21% 1s 5.94% 6s 31.36% 32s 284.58% 1m
Sym-NCO 3.33% 1s 8.42% 3s 37.58% 54s 481.53% 9m
BQ-NCO 2.79% 1s 2.81% 9s 3.64% 55s 5.88% 2m
GOAL 3.16% 5s 3.42% 30s 3.90% 2m 7.37% 5m

CVRPTW
HGS (1s) † 108/128 2m 14/128 2m 0/128 2m 0/128 2m
HGS (1m) 0.00% 10m 0.00% 26m 0.00% 2h 0.00% 2h
GOAL 3.82% 5s 7.71% 30s 9.49% 2m 6.75% 5m

OP

EA4OP 0.00% 1m 0.00% 3m 0.00% 11m 0.00% 45m
AM 5.35% 1s 11.05% 1s 22.29% 1s 30.73% 1s
MDAM 2.88% 16s 5.55% 1s 18.31% 4s 30.05% 15s
SymNCO 2.03% 2s 6.60% 3s 19.81% 24s 31.79% 1m
GOAL 0.43% 3s 1.60% 10s 7.45% 17s 15.62% 30s

KP

ORTools 0.00% < 1s 0.00% < 1s 0.00% < 1s 0.00% < 1s
POMO 0.19% 1s 0.50% 1s 6.41% 31s 5.34% 1m
BQ-NCO 0.10% 2s 0.14% 6s 0.74% 7s 0.92% 13s
GOAL 0.12% 3s 1.63% 6s 2.40% 10s 2.59% 16s

10x10 10x15 15x15 20x15

JSSP
ORTools 0.00% 47s 0.00% 2m 0.00% 3h 0.00% 80h
COMPASS ⋄ 4.70% 3h - 8.00% 5h 10.40% 8h
GOAL 4.13% 15s 11.02% 43s 10.74% 45s 22.53% 4m

Table 2: Generalization performance on larger instances. Lower is better. All NCO methods perform
greedy decoding, except for methods marked with ⋄; they do not provide results for greedy decoding.
Solvers marked with † are unable to solve all instances within the given time budget; we report the
number of instances successfully solved.

E GENERALIZATION TO NEW INSTANCE DISTRIBUTIONS

Table 2 presents the generalization to instances up to 10 times bigger than the training ones, for a
subset of the training tasks. Our approach takes a bit more time than some baselines, but note that
scaling to much larger instances is not a focus of this paper. One possible way to avoid the quadratic
complexity of attention is by using task-specific heuristics, such as the KNN heuristic for routing
problems (proposed by Drakulic et al. (2023), to reduce the size of the input instance and the overall
complexity. Another approach could be using methods that do not rely on quadratic attention blocks,
such as those proposed by Luo et al. (2024), though this method tends to be highly specialized for
specific problems.

Our model demonstrates excellent generalization performance in terms of the optimality gap for
problems with various edge features, such as ATSP (with an asymmetric distance matrix) and JSSP
(with two binary matrices with precedence constraints and job-machine relations).

F DESCRIPTION OF THE CONSIDERED CO PROBLEMS

In this Section, we describe the CO problems (in alphabetical order) that are solved by GOAL as
well as the instance generation process. GOAL solves problems from various categories: Routing,
Scheduling, Packing, Graph, and Location Problems. For each problem, we provide all the details
of how it is represented in our model, including a list of instance, node and edge features, the action
chosen by the model, and the objective. We also describe how we generate a solution trajectory for
problems where we use single cross-entropy loss for behavioral cloning.
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F.1 CAPACITATED VEHICLE ROUTING PROBLEM AND SPLIT-DELIVERY CAPACITATED
VEHICLE ROUTING PROBLEM

The Capacitated Vehicle Routing Problem (CVRP) is a
standard routing problem. The goal of CVRP is to op-
timize the delivery routes of a fleet of vehicles to a set
of customers while considering each vehicle’s capacity.
The objective is to minimize the overall distance trav-
eled by the vehicles while respecting the capacity con-
straints and ensuring that all the customer demands are
met. Split-Delivery CVRP (SDCVRP) is a variant of the
CVRP that allows a single customer’s demand to be ful-
filled by multiple vehicles. In our experiments we use

Euclidean CVRP for training GOAL and SDCVRP for fine-tuning.

Data generation. Node locations are randomly sampled from the unit square, while node demands
are randomly generated integers from the interval [1, 10]. Following Kool et al. (2018), the vehicle
capacity depends on the problem size: capacity of 50 for a problem size of 100, 80 for 200, 100 for
500, and capacity of 250 for problems with 1000 nodes.

Instance features: Remaining vehicle capacity
Node features: Origin/destination tokens, demand
Edge features: Distance between nodes
Oracle: LKH
Objective: Minimize traveled distance
Action: Select a node, with direct edge or via-depot
Trajectory: Nodes ordered by a solution subtour. Subtours are ordered by their final

remaining capacity in descending order

F.2 CAPACITATED VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

The Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) is an extension of the
CVRP. In addition to demand constraints, each customer also has a specified time window during
which they can be visited, along with the necessary service time required for serving that customer.
The objective of the CVRPTW is to find routes for the vehicles that satisfy the capacity limits,
deliver goods within the specified time windows, and minimize the total travel and waiting time or
the number of vehicles used. In our experiments, we consider the standard version of the Euclidean
problem where total traveling and serving time should be minimized and we use it for training
GOAL.

Data generation. For the time windows and service times, we use a similar procedure to Falkner &
Schmidt-Thieme (2020), where the locations are sampled sampled from the unit square. We ensure
the feasibility of the resulting instances by sampling time windows using a more refined procedure.
Windows start time values are sampled from the range (0.01, 0.25). It’s important to note that start
times do not directly impact problem feasibility, as vehicles can wait at the node until the service
starts. On the other hand, the choice of the visiting end time has an impact on feasibility. An instance
is unfeasible if the window end time of a customer is less than the travel time from the depot plus
the service time. To avoid this, end times are sampled from the interval [max(window start time,
travel time from depot) + 2 × service time, max(window start time, travel time from depot) + 4 ×
service time].

Instance features: Remaining vehicle capacity, current time
Node features: Origin/destination tokens, demand, start time window, end time window,

service time
Edge features: Distance between nodes
Oracle: HGS
Objective: Minimize traveled time
Action: Select a node, with direct edge or via-depot
Trajectory: Nodes ordered by a solution subtour. Subtours are ordered by their final
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remaining capacity in descending order

F.3 JOB SHOP SCHEDULING PROBLEM
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Machine-1 The Job Shop Scheduling Problem (JSSP) is a classic

scheduling problem. We are given N jobs and M ma-
chines. Each job consists of a sequence of operations that
need to be processed in a specific order (implying prece-
dence constraints). Each operation has a given processing

time. Each machine can only process one operation at a time and when an operation is started it can-
not be interrupted (no preemption). A solution is a schedule, defined by the start time of each
operation such that a specific criterion, such as makespan, total completion time, or total tardiness
is minimized.

Data generation. We follow the standard procedure for generating JSSP benchmark datasets: ex-
ecution times are randomly sampled from U(1, 100).

Instance features: None
Node features: Operation execution time, job availability time, machine availability time
Edge features: Precedence constraint, operation-machine dependency
Oracle: ORTools
Objective: Minimize makespan
Action: Select an operation
Trajectory: Tasks ordered by minimal finishing time

F.4 KNAPSACK PROBLEM

The Knapsack Problem (KP) is a well-known combinatorial optimization problem that involves
selecting a subset of items from a given set. Each item had a weight and a value, and the goal is
to maximize the cumulated value of selected items, without exceeding a given cumulated weight
threshold, known as the knapsack’s (weight) capacity.

Data generation. Following the same procedure as in Kwon et al. (2020), node weights and values
are randomly sampled from the unit interval, and knapsack capacity is set to 25.

Instance features: Remaining knapsack capacity
Node features: Value, weight
Edge features: None
Oracle: ORTools
Objective: Maximizing packed values
Action: Select an item
Trajectory: There is no order

F.5 MAXIMUM INDEPENDENT SET PROBLEM

In the Maximum Independent Set (MIS), we are given an
undirected graph G = (V,E) and the goal is to find a sub-
set of nodes S ⊂ V of maximal size |S| such that each
pair of nodes in S is not connected by an edge. In other
words, the maximum independent set is the largest pos-
sible independent set in G, i.e., an independent set with
the maximum number of vertices. In our experiments, we
fine-tune GOAL to MIS problem.

Data generation. For this problem, we follow a similar
procedure as in Khalil et al. (2017). We generate random

graphs by using Erdős–Rényi model with the critical edge probability p sampled from [0.05, 0.15].
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Instance features: None
Node features: None
Edge features: Adjacency value (0-1)
Oracle: FastWVC
Objective: Maximize number of selected nodes
Action: Select an node
Trajectory: There is no order

F.6 MAXIMUM COVERAGE LOCATION PROBLEM

In the Maximum Coverage Location Problem (MCLP),
we are given a set of locations with associated weights
and several facilities with associated radius of coverage.
The goal is to find the optimal placement of the facilities,
on a subset of the locations, to maximize the number of
covered locations. There is also a variant in which nodes
have associated weights; in this case, the objective is to
maximize the sum of the weights of the covered locations.
In our experiments, we fine-tune our multitask model to
MCLP.

Data generation. Node locations are randomly sam-
pled from the unit square, the number of facilities is fixed to 10 and their radius of coverage to
0.1.

Instance features: Number of facilities, radius of coverage
Node features: None
Edge features: Distance between nodes
Oracle: PuLP2

Objective: Maximize the number of covered locations
Action: Select an facility node
Trajectory: There is no order

F.7 MINIMUM VERTEX COVER PROBLEM

The goal of the Minimum Vertex Cover Problem (MVC) is to find the smallest set of vertices in a
graph, such that each edge is incident to at least one of these vertices. In the weighted version of this
problem (MWVC), each vertex has an associated weight, and the goal is to select vertices with the
minimum cumulated sum of weights while satisfying the vertex cover condition. Data generation
and problem features are the same as in MIS. We use MVC to train our model.

F.8 OPEN SHOP SCHEDULING PROBLEM

The Open Shop Scheduling Problem (OSSP) is a schedul-
ing problem in which a set of jobs (with a given set of
operations) must be processed on a set of machines, but
unlike job shop scheduling, there is no predefined order.
Each operation must be processed, with no overlapping
between operations and machines at the same time unit.

The goal is typically to minimize the makespan, or the total time required to complete all jobs. Data
generation and problem features are the same as in JSSP, except OSSP does not have precedence
constraints.
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F.9 OPEN VEHICLE ROUTING PROBLEM

Open Vehicle Routing Problem (OCVRP) is a variant of
CVRP where an unbounded fleet of vehicles is available
at the depot, each serving a set of customers. In con-
trast with other CVRP variants, vehicles do not need to
return to the depot at the end of their service. This makes
OCVRP similar to the classical CVRP, as both problems
involve a set of locations with demand and vehicle capac-
ity constraints. However, the key difference lies in the
route structure: in OCVRP, vehicles do not need to return
to the depot after completing deliveries, which affects the

solution space and cost minimization strategy. OCVRP has common applications in logistics, where
delivery trucks do not need to return to the depot after completing deliveries. Data generation and
problem features are the same as for the CVRP. In our experiments, we handle the Euclidean version
of the OCVRP and fine-tune GOAL to solve it.

F.10 ORIENTEERING PROBLEM

The Orienteering Problem (OP) is a combinatorial opti-
mization problem that combines aspects of the Traveling
Salesman Problem (TSP) and the Knapsack Problem. It
is commonly used in routing and scheduling applications
where the goal is to maximize collected rewards while re-
specting a constraint on total travel distance or time. The
OP is defined by a set of locations (nodes), each associ-
ated with a reward; a starting location and an ending loca-
tion (usually the same node); a travel cost matrix between
locations; and a maximum allowable travel budget. The

objective is to visit a subset of locations that maximizes the total collected reward while ensuring
the total travel cost does not exceed the budget.

Data generation. We generated data following previous work Kool et al. (2018): node locations
are uniformly sampled from the unit square and prizes are proportional to the distance to the depot
(in Kool et al. (2018) this variant of the problem is called OPdistance). The maximal distance
constraint is set to 4. We use Euclidean OP for training GOAL.

Instance features: Remaining distance
Node features: Origin/destination tokens, prize
Edge features: Distance between nodes
Oracle: A4OP
Objective: Maximize collected prizes
Action: Select a node (including coming back to the depot)
Trajectory: Ordered nodes by a solution tour

F.11 PRICE COLLECTION TRAVELING SALESMAN PROBLEM

The Prize-Collecting Traveling Salesman Problem
(PCTSP) is a variant of the classic Traveling Salesman
Problem. In the PCTSP, each node has an associated
prize and penalty, and the goal is to minimize the
traveled distance while satisfying a minimum total prize
constraint. Unlike the traditional TSP, where all cities
must be visited, the PCTSP allows for skipping some
nodes; however, unvisited nodes incur a penalty, creating
a trade-off between collecting prizes and minimizing
travel distance. The final objective is to minimize the

sum of the traveled distance and the sum of the penalties for unvisited nodes.
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Data generation. We generated data following previous work Xin et al. (2021): node loca-
tions are uniformly sampled from the unit square, while prizes are randomly sampled from
U [0, num − nodes] and penalties are sampled from U [0, num − nodes]. Both features are nor-
malized by multiplying by 4/num− nodes and 12/num− nodes, respectively.

Instance features: Remaining prize constraint
Node features: Origin/destination tokens, prize, penalty
Edge features: Distance between nodes
Oracle: ORTools
Objective: Minimize the sum of traveled distances and penalties of univisited nodes
Action: Select a node (including coming back to the depot)
Trajectory: Ordered nodes by a solution tour

F.12 SEQUENTIAL ORDERING PROBLEM

The Sequential Ordering Problem (SOP) is a combinatorial optimization problem where a set of
tasks or nodes must be visited in a specific order while minimizing the total travel cost or distance.
This problem can be modeled as the Traveling Salesman Problem, with precedence constraints. The
objective is to find the shortest possible route that satisfies these precedence conditions. In our
experiments, we fine-tune our multitask model to SOP.

Data generation. The values of the cost matrix are integers randomly generated from a uniform
distribution U [1, 1000] with zero costs between the same task. To fulfill feasibility constraints, we
randomly order the tasks, and for the i-th task, we randomly add k precedent jobs, where k is
sampled from U [0, ⌊i/2⌋].

Instance features: None
Node features: Origin token
Edge features: Distance between nodes, precedence constraint
Oracle: LKH
Objective: Minimize cost
Action: Select a node
Trajectory: Ordered nodes by a solution tour

F.13 TRAVELING REPAIRMAN PROBLEM

The Traveling Repairman Problem (TRP) is a combina-
torial optimization problem where a repairman must de-
termine the most efficient route to visit a set of locations,
performing repairs or services at each site. In the Travel-
ing Repairman Problem, a set of locations is given with
the time needed to travel between any pair of locations.
Each location has a task to be performed by the repair-
man. The objective of the problem is to find the route
that minimizes the sum of the delays for reaching each
point. In our experiments, we fine-tune GOAL to Eu-

clidean TRP.

Data generation. Node locations are uniformly sampled from the unit square.

Instance features: None
Node features: Origin token
Edge features: Distance between nodes
Oracle: LKH
Objective: Minimize waiting time of all nodes
Action: Select a node
Trajectory: Ordered nodes by a solution tour
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F.14 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is a classic com-
binatorial optimization problem. The objective of the
TSP is to find the shortest possible route that a salesman
can take to visit a given set of cities exactly once and
return to its starting point. In the path-TSP variant, the
origin and destination of the salesman are distinct nodes
(but may have the same coordinates, so that the TSP is
a special case of the path-TSP). A TSP instance can be
represented either by node coordinates or by a distance
matrix. The majority of NCO models address TSP in the

coordinate setting, yet the matrix setting holds greater significance for practical applications, as it
applies beyond the Euclidean context, where the matrix can represent time, energy, or cost, rather
than distance, and need not satisfy the symmetry property of a distance matrix. In our work, we
use the Asymmetric TSP (where the distances satisfy the triangular inequality property) to train our
multi-task model.”

Data generation For the Euclidean case, we generate datasets as described in Kool et al. (2018):
points are uniformly sampled from the unit square, and the corresponding distance matrix A is com-
puted. For non-Euclidean problems (ATSP) we generate data as described in Kwon et al. (2021),
where distance matrices are generated randomly, but post-processed to satisfy the triangular inequal-
ity.

Instance features: None
Node features: Origin/destination tokens
Edge features: Distance between nodes
Oracle: Concorde (for Euclidean) and LKH (for non-Euclidean)
Objective: Minimize tour length
Action: Select a node
Trajectory: Ordered nodes by a solution tour

F.15 UNRELATED MACHINE SCHEDULING PROBLEM
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an optimization problem in operations research where a
set of jobs must be assigned to a set of machines, each
with different processing times for each job, to minimize
a specific criterion, such as makespan, total completion

time, or total tardiness. Unlike related machine scheduling, where machines have similar character-
istics and processing times are proportional, in UMSP, the performance and efficiency of machines
vary, making it a more complex and challenging problem to solve. Horowitz & Sahni (1976) shows
that this problem is NP-hard. We use UMSP for multitask training of our GOAL model.

Data generation. For UMSP, the processing times are randomly generated from U(1, 100).

Instance features: None
Node features: Machine availability times
Edge features: Execution times
Oracle: ORTools
Objective: Minimize makespan
Action: Select a machine to randomly selected task
Trajectory: Ordered tasks by execution time
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