GCD and LCM
It is known that the greatest common divisor of two integers $a$ and $b$ is $x$, and that their lowest common multiple is $y$. Given $x$ and $y$, determine all possible pairs $(a, b)$.
Input
The first and only line contains the integers $x$ and $y$ ($1 \le x, y \le 10^{14}$).
Output
Output a series of lines with the possible pairs $a$ and $b$, first in increasing order of $a$ and among those with the same $a$, in increasing order of $b$.
Sample Input 1 | Sample Output 1 |
---|---|
1 10 |
1 10 2 5 5 2 10 1 |
Sample Input 2 | Sample Output 2 |
---|---|
3 12 |
3 12 12 3 |
Sample Input 3 | Sample Output 3 |
---|---|
2 217143601824 |
2 217143601824 6 72381200608 32 13571475114 96 4523825038 146 2974569888 218 1992143136 438 991523296 654 664047712 2336 185910618 3488 124508946 7008 61970206 10464 41502982 15914 27289632 47742 9096544 254624 1705602 568534 763872 763872 568534 1705602 254624 9096544 47742 27289632 15914 41502982 10464 61970206 7008 124508946 3488 185910618 2336 664047712 654 991523296 438 1992143136 218 2974569888 146 4523825038 96 13571475114 32 72381200608 6 217143601824 2 |