Skip to main content
Log in

On some conjectures about optimal ternary cyclic codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Cyclic codes are a subclass of linear codes and have efficient encoding and decoding algorithms over finite fields, so they are widely used in many areas such as consumer electronics, data storage systems and communication systems. In this paper, by considering the solutions of certain equations over finite fields, one of the nine conjectures proposed by Ding and Helleseth about optimal cyclic codes in (IEEE Trans Inf Theory 59(9):5898–5904, 2013) is settled. In addition, we make progress toward other two conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumert L.D., McEliece R.J.: Weights of irreducible cyclic codes. Inf. Control 20(2), 158–175 (1972).

    Article  MathSciNet  Google Scholar 

  2. Carlet C., Ding C., Yuan J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).

    Article  Google Scholar 

  3. Ding C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inf. Theory 55(3), 955–960 (2009).

    Article  MathSciNet  Google Scholar 

  4. Ding C., Helleseth T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory 59(9), 5898–5904 (2013).

    Article  MathSciNet  Google Scholar 

  5. Ding C., Liu Y., Ma C., Zeng L.: The weight distributions of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 57(12), 8000–8006 (2011).

    Article  MathSciNet  Google Scholar 

  6. Ding C., Li C., Li N., Zhou Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339(2), 415–427 (2016).

    Article  MathSciNet  Google Scholar 

  7. Fan C., li N., Zhou Z.: A class of optimal ternary cyclic codes and their duals. Finite Fields Appl. 37, 193–202 (2016).

    Article  MathSciNet  Google Scholar 

  8. Feng T.: On cyclic codes of length \(2^{2^{r}}-1\) with two zeros whose dual codes have three weights. Des. Codes Crypogr. 62, 253–258 (2012).

    Article  Google Scholar 

  9. Feng K., Luo J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008).

    Article  MathSciNet  Google Scholar 

  10. Huffman W., Pless V.: Foundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  11. Li C., Yue Q.: Weight distributions of two classes of cyclic codes with respect to two distinct order elements. IEEE Trans. Inf. Theory 60(1), 296–303 (2014).

    Article  MathSciNet  Google Scholar 

  12. Li N., Li C., Helleseth T., Ding C., Tang X.: Optimal ternary cyclic codes with minimun distance four and five. Finite Fields Appl. 30, 100–120 (2014).

    Article  MathSciNet  Google Scholar 

  13. Li, N., Zhou, Z., Helleseth, T.: On a conjecture about a class of optimal ternary cyclic codes. In: Proceedings of the 2015 seventh International Workshop on Signal, Signal Design and its Applications in Communications (IWSDA). (2015). https://doi.org/10.1109/IWSDA.2015.7458415..

  14. Liu Y., Yan H., Liu C.: A class of six-weight cyclic codes and their weight distribution. Des. Codes Crypogr. 77(1), 1–9 (2015).

    Article  MathSciNet  Google Scholar 

  15. Li, L., Liu, L., Zhu, S.: Several classes of optimal ternary cyclic codes. arXiv: 1701.01247.

  16. Luo J., Feng K.: Cyclic codes and sequences form generalized Coulter–Matthews function. IEEE Trans. Inf. Theory 54(12), 5345–5353 (2008).

    Article  Google Scholar 

  17. Luo J., Feng K.: On the weight distribution of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008).

    Article  MathSciNet  Google Scholar 

  18. Ma C., Zeng L., Liu Y., Feng D., Ding C.: The weight enumerator of a class of cyclic codes. IEEE Trans. Inf. Theory 57(1), 397–402 (2011).

    Article  MathSciNet  Google Scholar 

  19. Shi M., Zhang Y.: Quasi-twisted codes with constacyclic constituent codes. Finite Fields Appl. 39, 159–178 (2016).

    Article  MathSciNet  Google Scholar 

  20. Shi M., Qian L., Sok L., Solé P.: On constacyclic codes over \({\mathbb{Z}}_{4}[u]/<u^{2}-1>\) and their Gray images. Finite Fields Appl. 45, 86–95 (2017).

    Article  MathSciNet  Google Scholar 

  21. Wang L., Wu G.: Several classes of optimal ternary cyclic codes with minimal distance four. Finite Fields Appl. 40, 126–137 (2016).

    Article  MathSciNet  Google Scholar 

  22. Xiong M., Li N.: Optimal cyclic codes with generalized Niho-type zeros and the weight distribution. IEEE Trans. Inf. Theory 61(9), 4914–4922 (2015).

    Article  MathSciNet  Google Scholar 

  23. Xu G., Cao X., Xu S.: Optimal \(p\)-ary cyclic codes with minimum distance four from monomials. Cryptogr. Commun. 8(4), 541–554 (2016).

    Article  MathSciNet  Google Scholar 

  24. Yan H., Zhou Z., Du X.: A family of optimal ternary cyclic codes from the Niho-type exponent. Finite Fields Appl. 54, 101–112 (2018).

    Article  MathSciNet  Google Scholar 

  25. Zeng X., Hu L., Jiang W.: The weight distribution of a class of \(p\)-ary cyclic codes. Finite Fields Appl. 16(1), 126–137 (2010).

    Article  MathSciNet  Google Scholar 

  26. Zhou Z., Ding C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the three anonymous reviewers, the Editor in Chief and CE, Prof. Tor Helleseth, for their comments which improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwang Cao.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Liu: is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJB120014). X. Cao: is supported by the National Natural Science Foundation of China (No. 11771007). W. Lu: is supported by the National Natural Science Foundation of China (No. 11801070).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cao, X. & Lu, W. On some conjectures about optimal ternary cyclic codes. Des. Codes Cryptogr. 88, 297–309 (2020). https://doi.org/10.1007/s10623-019-00679-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00679-w

Keywords

Mathematics Subject Classification