Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akoglu L, Faloutsos C (2009) RTG: a recursive realistic graph generator using random typing. Data Min Knowl Discov. doi:10.1007/s10618-009-0140-7
Bonchi F, Castillo C, Donato D (2009) Taxonomy-driven lumping for sequence mining. Data Min Knowl Discov. doi:10.1007/s10618-009-0141-6
Cheng W, Hüellermeier E (2009) Combining instance-based learning and logistic regression for multilabel classification. Mach Learn. doi:10.1007/s10994-009-5127-5
Gärtner T, Vembu S (2009) On structured output training: hard cases and an efficient alternative. Mach Learn. doi:10.1007/s10994-009-5129-3
Grosskreutz H, Rüping S (2009) On subgroup discovery in numerical domains. Data Min Knowl Discov. doi:10.1007/s10618-009-0136-3
Huopaniemi I, Suvitaival T, Nikkila J, Oresic M, Kaski S (2009) Two-way analysis of high-dimensional collinear data. Data Min Knowl Discov. doi:10.1007/s10618-009-0142-5
Joachims T, Yu CNJ (2009) Sparse kernel SVMs via cutting plane training. Mach Learn. doi:10.1007/s10994-009-5126-6
Johns J, Petrik M, Mahadevan S (2009) Hybrid least-squares algorithms for approximate policy evaluation. Mach Learn. doi:10.1007/s10994-009-5128-4
Kranen P, Seidl T (2009) Harnessing the strengths of anytime algorithms for constant data streams. Data Min Knowl Discov. doi:10.1007/s10618-009-0139-0
Liu A, Jun G, Ghosh J (2009) A self-training approach to cost sensitive uncertainty sampling. Mach Learn. doi:10.1007/s10994-009-5131-9
Roth D, Samdani R (2009) Learning multi-linear representations of distributions for efficient inference. Mach Learn 1(1):. doi:10.1007/s10994-009-5130-x
Santos-Rodríguez R, Alaiz-Rodríguez R, Guerrero-Curieses A, Cid-Sueiro J (2009) Cost-sensitive learning based on Bregman divergences. Mach Learn. doi:10.1007/s10994-009-5132-8
Leeuwen M, Vreeken J, Siebes A (2009) Identifying the components. Data Min Knowl Discov. doi:10.1007/s10618-009-0137-2
Zhao Q-L, Jiang Y-H, Xu M (2009) A fast ensemble pruning algorithm based on pattern mining process. Data Min Knowl Discov. doi:10.1007/s10618-009-0138-1
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kolcz, A., Mladenic, D., Buntine, W. et al. Guest editors’ introduction: special issue of selected papers from ECML PKDD 2009. Data Min Knowl Disc 19, 173–175 (2009). https://doi.org/10.1007/s10618-009-0143-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10618-009-0143-4