Abstract
Support Vector Machines (SVMs) deliver state-of-the-art performance in real-world applications and are now established as one of the standard tools for machine learning and data mining. A key problem of these methods is how to choose an optimal kernel and how to optimise its parameters. The real-world applications have also emphasised the need to consider a combination of kernels—a multiple kernel—in order to boost the classification accuracy by adapting the kernel to the characteristics of heterogeneous data. This combination could be linear or non-linear, weighted or un-weighted. Several approaches have been already proposed to find a linear weighted kernel combination and to optimise its parameters together with the SVM parameters, but no approach has tried to optimise a non-linear weighted combination. Therefore, our goal is to automatically generate and adapt a kernel combination (linear or non-linear, weighted or un-weighted, according to the data) and to optimise both the kernel parameters and SVM parameters by evolutionary means in a unified framework. We will denote our combination as a kernel of kernels (KoK). Numerical experiments show that the SVM algorithm, involving the evolutionary kernel of kernels (eKoK) we propose, performs better than well-known classic kernels whose parameters were optimised and a state of the art convex linear and an evolutionary linear, respectively, kernel combinations. These results emphasise the fact that the SVM algorithm could require a non-linear weighted combination of kernels.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bach FR, Thibaux R, Jordan MI (2004) Computing regularization paths for learning multiple kernels. In: NIPS, pp 1–10
Banzhaf W (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications
Bennett K, Hu J, Ji X, Kunapuli G, Pang J-S (2006) Model selection via bilevel optimization. In: IJCNN’06. International joint conference on neural networks. IEEE Computer Society, Los Alamitos, pp 1922–1929
Boardman M, Trappenberg T (2006) A heuristic for free parameter optimization with SVM. In: IJCNN 2006. IEEE, New York, pp 1337–1344
Boser BE, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifiers. In: COLT, pp 144–152
Bousquet O, Herrmann DJL (2002) On the complexity of learning the kernel matrix. In: Becker S et al (eds) NIPS. MIT Press, Cambridge, pp 399–406
Chang BR, Tsai H-F (2007) Composite of adaptive support vector regression and nonlinear conditional heteroscedasticity tuned by quantum minimization for forecasts. Appl Intell 27(3):277–289
Chang C-C, Lin C-J (2001) LIBSVM a library for SVM. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chapelle O (2004) Support vector machines: induction principle, adaptive tuning and prior knowledge. PhD thesis, UPMC
Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for Support Vector Machines. Mach Learn 46(1/3):131–159
Cho S-B, Shimohara K (1998) Evolutionary learning of modular neural networks withgenetic programming. Appl Intell 9(3):191–200
Chung K-M, Kao W-C, Sun C-L, Wang L-L, Lin C-J (2003) Radius margin bounds for Support Vector Machines with the RBF kernel. Neural Comput 15(11):2643–2681
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297
Crammer K, Singer Y (2002) On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2:265–292
Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, Cambridge
Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola JS (2001) On kernel-target alignment. In: Dietterich TG, Becker S, Ghahramani Z (eds) NIPS 2001. MIT Press, Cambridge, pp 367–373
Dioşan L, Oltean M, Rogozan A, Pécuchet JP (2007) Improving SVM performance using a linear combination of kernels. In: ICANNGA’07. LNCS, vol 4432, pp 218–227
Dioşan L, Rogozan A, Pécuchet J-P (2007) Evolving kernel functions for SVMs by genetic programming. In: ICMLA’07, Ohio, USA
Frank A, Asuncion A (2010) UCI machine learning repository
Friedrichs F, Igel C (2005) Evolutionary tuning of multiple SVM parameters. Neurocomputing 64:107–117
Fröhlich H, Chapelle O, Schölkopf B (2003) Feature selection for SVM by means of GAs. In: ICTAI. IEEE, New York, pp 142–148
Gagne C et al (2006) Genetic programming for kernel-based learning with co-evolving subsets selection. In: Runarsson TP et al (eds) 9th PPSN’06. Springer, Berlin, pp 1008–1017
Girolami M, Rogers S (2005) Hierarchic Bayesian models for kernel learning. In: ICML, pp 241–248
Gold C, Sollich P (2003) Model selection for Support Vector Machine classification. Neurocomputing 55(1–2):221–249
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading
Gunn S, Kandola J (2002) Structural modelling with sparse kernels. Mach Learn 48:137–163
Hastie T, Rosset S, Tibshirani R, Zhu J (2003/2004) The entire regularization path for the SVM. J Mach Learn Res 5:1391–1415
Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM 8:212–229
Howley T, Madden MG (2005) The genetic kernel Support Vector Machine: description and evaluation. Artif Intell Rev 24(3–4):379–395
Huang Y (2009) Advances in artificial neural networks—methodological development and application. Algorithms 2(3):973–1007
Igel C (2005) Multi-objective model selection for SVM. In: Coello Coello CA et al (eds) EMO 2005. LNCS, vol 3410. Springer, Berlin, pp 534–546
Imbault F, Lebart K (2004) A stochastic optimization approach for parameter tuning of SVM. In: ICPR (4), pp 597–600
Joachims T (2001) The maximum-margin approach to learning text classifiers. Künstl Intell 15(3):63–65
Keerthi S, Sindhwani V, Chapelle O (2006) An efficient method for gradient-based adaptation of hyperparameters in SVM models. In: NIPS’06. IEEE Computer Society, Los Alamitos, pp 1–10
King RD (1992) Statlog databases
Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680
Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge
Lacerda E, Carvalho AC, Braga AP, Ludermir TB (2005) Evolutionary radial basis functions for credit assessment. Appl Intell 22(3):167–181
Lanckriet GRG et al (2004) Learning the kernel matrix with Semidefinite Programming. J Mach Learn Res 5:27–72
Mallick BK, Ghosh D, Ghosh M (2005) Bayesian classification of tumours by using gene expression data. J R Stat Soc Ser B 67(2):219–234
Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc 209:415–446
Momma M, Bennett KP (2002) A pattern search method for model selection of SV Regression. In: Grossman RL et al (eds) SIAM 2002. SIAM, Philadelphia, pp 2–16
Ohn S-Y, Nguyen H-N, Chi S-D (2004) Evolutionary parameter estimation algorithm for combined kernel function in SVM. In: Content computing, AWCC 2004. Springer, Berlin, pp 481–486
Ong CS, Smola A, Williamson B (2005) Learning the kernel with hyperkernels. J Mach Learn Res 6:1043–1071
Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2007) More efficiency in multiple kernel learning. In: ICML, pp 775–782
Lessmann RS, Crone S (2005) Genetically constructed kernels for SVM. In: Proc. of GOR. Springer, Berlin, pp 257–262
Schölkopf B (2000) The kernel trick for distances. In: Leen TK, Dietterich TG, Tresp V (eds) NIPS. MIT Press, Cambridge, pp 301–307
Schölkopf B, Smola AJ (2002) Learning with kernels. MIT Press, Cambridge
Simon HA (2001) The sciences of the artificial, 3rd edn. MIT Press, Cambridge
Sonnenburg S et al (2006) Large scale multiple kernel learning. J Mach Learn Res 7:1531–1565
Staelin C (2003) Parameter selection for Support Vector Machines. Tech Rep HPL-2002-354R1, Hewlett Packard Laboratories
Sullivan K, Luke S (2007) Evolving kernels for SVM classification. In: Lipson H (ed) GECCO 2007. ACM, New York, pp 1702–1707
Syswerda G (1991) A study of reproduction in generational and steady state Genetic Algorithms. In: Rawlins GJE (ed) FOGA. Morgan Kaufmann, San Mateo, pp 94–101
Taylor JS, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge
Tsuda K, Rätsch G, Mika S, Müller K-R (2001) Learning to predict the leave-one-out error of kernel based classifiers. In: LNCS, vol 2130, pp 331–338
Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin
Vapnik V, Chapelle O (2000) Bounds on error expectation for SVM. Neural Comput 12(9):2013–2036
Verma B, Hassan S (2009) Hybrid ensemble approach for classification. Appl Intell, 1–21
Wahba G, Lin Y, Zhang H (1999) GACV for support vector machines. In: Smola B, SchRolkopf S (eds) Advances in large margin classifiers. MIT Press, Cambridge
Wang G, Yeung D-Y, Lochovsky FH (2007) A kernel path algorithm for SVM. In: ICML 07. ACM Press, New York, pp 951–958
Xiong H, Swamy M, Ahmad M (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460–474
Zhang Z, Jordan MI (2006) Bayesian multicategory support vector machines. In: The twenty-second conference on uncertainty in artificial intelligence (UAI), 2006
Zhang Z, Kwok JT, Yeung D-Y (2006) Model-based transductive learning of the kernel matrix. Mach Learn 63(1):69–101
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dioşan, L., Rogozan, A. & Pecuchet, JP. Improving classification performance of Support Vector Machine by genetically optimising kernel shape and hyper-parameters. Appl Intell 36, 280–294 (2012). https://doi.org/10.1007/s10489-010-0260-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-010-0260-1