Skip to main content
Log in

Assessment of a Progressive Fatigue Damage Model for AS4/3501–6 Carbon Fiber/Epoxy Composites Using Digital Image Correlation

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper presents an experimental study for the assessment of a three-dimensional Progressive Fatigue Damage Model (PFDM) with a carbon fiber/epoxy (AS4/3501–6) material system. Specimens with a central circular hole were selected to represent notched composite structures. Digital Image Correlation (DIC) was used to monitor the surface strain evolution throughout the fatigue lifetime. The PFDM model was implemented in the commercial finite element software ABAQUS using the user material (UMAT) utility. Residual stresses from the composite manufacturing cycle are included in the fatigue damage modeling. Results are presented that compare experimental and predicted strain distributions and fatigue lives. Comparisons between the experimental and simulated response highlight the value of the PFDM model while demonstrating its shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adam T., Dickson R.F., Fernando G., Harris B. and Reiter H.: The Fatigue Behaviour of Kevlar/Carbon Hybrid Composites IMechE Conference Publications 2 329–36 (1986a)

  2. Adam T., Dickson R.F., Jones C.J., Reiter H. and Harris B.: A Power Law Fatigue Damage Model for Fibre Reinforced Plastic Laminates ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science 1983–1988 (vols 197–202) 200 155–66 (1986b)

  3. Adam, T., Fernando, G., Dickson, R.F., Reiter, H., Harris, B.: Fatigue life prediction for hybrid composites. Int. J. Fatigue. 11, 233–237 (1989)

    Article  Google Scholar 

  4. Aidi, B., Philen, M.K., Case, S.W.: Progressive damage assessment of centrally notched composite specimens in fatigue. Compos. Part A. 74, 47–59 (2015)

    Article  Google Scholar 

  5. Bogdanor, M.J., Oskay, C.: Prediction of progressive fatigue damage and failure behavior of IM7/977-3 composites using the reduced-order multiple space-time homogenization approach. J. Compos. Mater. 51(15), 2101–2117 (2017)

    Article  Google Scholar 

  6. Costa, J., Turon, A., Trias, D., Blanco, N., Mayugo, J.A.: A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. Part II: stiffness reduction in environment sensitive fibres under fatigue. Compos. Sci. Technol. 65, 2269–2275 (2005)

    Article  Google Scholar 

  7. Degrieck, J., Van Paepegem, W.: Fatigue damage modeling of fibre-reinforced composite materials: review. Appl. Mech. Rev. 54(4), 279–300 (2001)

    Article  Google Scholar 

  8. Grédiac, M.: The use of full-field measurement methods in composite material characterization: interest and limitations. Compos. A: Appl. Sci. Manuf. 35, 751–761 (2004)

    Article  Google Scholar 

  9. Harris, B.: A Historical Review of the Fatigue Behavior of Fibre-Reinforced Plastics in Fatigue in Composites: Science and technology of the fatigue response of fibre-reinforced plastics. Woodhead Publishing Limited, England (2003)

    Google Scholar 

  10. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (1996)

    Google Scholar 

  11. Hogg, P.J.: Composites in Armor. Science. 314, 1100–1101 (2006)

    Article  Google Scholar 

  12. Iarve, E.V., Hoos, K., Braginsky, M., Zhou, E., Mollenhauer, D.H.: Progressive failure simulation in laminated composites under fatigue loading by using discrete damage modeling. J. Compos. Mater. 51(15), 2143–2161 (2017)

    Article  Google Scholar 

  13. Mehdikhani, M., Aravand, M., Sabuncuoglu, B., Callens, M.G., Lomov, S.V., Gorbatikh, L.: Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Compos. Struct. 140, 192–201 (2016)

    Article  Google Scholar 

  14. Montesano, J., Selezneva, M., Levesque, M., Fawaz, Z.: Modeling fatigue damage evolution in polymer matrix composite structures and validation using in-situ digital image correlation. Compos. Struct. 125, 354–361 (2015)

    Article  Google Scholar 

  15. Nyman, T.: Composite fatigue design methodology: a simplified approach. Compos. Struct. 35, 183–194 (1996)

    Article  Google Scholar 

  16. Papanikos, P., Tserpes, K.I., Pantelakis, S.P.: Modelling of fatigue damage progression and life of CFRP laminates. Fatigue Fract. Eng. Mater. Struct. 26, 37–47 (2003)

    Article  Google Scholar 

  17. Pauchard, V., Grosjean, F., Campion-Boulharts, H., Chateauminois, A.: Application of a stress–corrosion–cracking model to an analysis of the durability of glass/epoxy composites in wet environments. Compos. Sci. Technol. 62, 493–498 (2002)

    Article  Google Scholar 

  18. Pinto, M., Gupta, S., Shukla, A.: Study of implosion of carbon/epoxy composite hollow cylinders using 3-D digital image correlation. Compos. Struct. 119, 272–286 (2015)

    Article  Google Scholar 

  19. Reifsnider, K.L.:, Damage and damage mechanics, in Fatigue of Composite Materials. Elsevier, New York (1991)

  20. Sanford, R.J.: Principles of Fracture Mechanics. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  21. Shokrieh, M.M., Lessard, L.B.: Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments - II. Experimental evaluation. Int. J. Fatigue. 19, 209–217 (1997a)

    Article  Google Scholar 

  22. Shokrieh, M.M., Lessard, L.B.: Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments - I. Modelling. Int. J. Fatigue. 19, 201–207 (1997b)

    Article  Google Scholar 

  23. Shokrieh, M.M., Lessard, L.B.: Progressive fatigue damage modeling of composite materials, part I: modeling. J. Compos. Mater. 34, 1056–1080 (2000a)

    Article  Google Scholar 

  24. Shokrieh, M.M., Lessard, L.B.: Progressive fatigue damage modeling of composite materials, part II: material characterization and model verification. J. Compos. Mater. 34, 1081–1116 (2000b)

    Article  Google Scholar 

  25. Shokrieh, M.M., Rafiee, R.: Simulation of fatigue failure in a full composite wind turbine blade. Compos. Struct. 74, 332–342 (2006)

    Article  Google Scholar 

  26. Shokrieh, M., Taheri-Behrooz, F.: Progressive fatigue damage modeling of cross-ply laminates, I: modeling strategy. J. Compos. Mater. 44, 1217–1231 (2010)

    Article  Google Scholar 

  27. Sihn, S., Park, J.W.: MAE: an integrated design tool for failure and life prediction of composites. J. Compos. Mater. 42, 1967–1988 (2008)

    Article  Google Scholar 

  28. Sutton, M.A., Orteu, J., Schreier, H.W.: Image Correlation for Shape, Motion and Deformation Measurements. Springer, New York (2009)

    Google Scholar 

  29. Taheri-Behrooz, F., Shokrieh, M., Lessard, L.: Progressive fatigue damage modeling of cross-ply laminates, II: experimental evaluation. J. Compos. Mater. 44, 1261–1277 (2010)

    Article  Google Scholar 

  30. Tajreja, R.: Damage and fatigue in composites- a personal account. Compos. Sci. Technol. 68, 2585–2591 (2008)

    Article  Google Scholar 

  31. Tekieli, M., De Santis, S., de Felice, G., Kwiecien, A., Roscini, F.: Application of digital image correlation to composite reinforcement testing. Compos. Struct. 160, 670–688 (2017)

    Article  Google Scholar 

  32. Tserpes, K.I., Papanikos, P., Kermanidis, T.H.: A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading. Fatigue Fract. Eng. Mater. Struct. 24, 663–675 (2001)

    Article  Google Scholar 

  33. Tserpes, K.I., Papanikos, P., Labeas, G., Pantelakis, S.: Fatigue damage accumulation and residual strength assessment of CFRP laminates. Compos. Struct. 63, 219–230 (2004)

    Article  Google Scholar 

  34. Van Paepegem, W., Degrieck, J., De Baets, P.: Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Compos. Part B. 32, 575–588 (2001)

    Article  Google Scholar 

  35. Zhao, L., Shan, M., Hong, H., Qi, D., Zhang, J., Hu, N.: A residual strain model for progressive fatigue damage analysis of composite structures. Compos. Struct. 169, 69–78 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Cooperative Agreement No. W56HZV-07-2-0001 between U.S. Army TACOM LCMC and Michigan State University. The authors would like thank Prof. D. Adams of University of Utah for help in obtaining AS4/3501-6 laminates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Krishnan.

Ethics declarations

Disclaimer

Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, A., Conway, A. & Xiao, X. Assessment of a Progressive Fatigue Damage Model for AS4/3501–6 Carbon Fiber/Epoxy Composites Using Digital Image Correlation. Appl Compos Mater 26, 1227–1246 (2019). https://doi.org/10.1007/s10443-019-09777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-09777-3

Keywords