Abstract
We study the interrelationships between various measures of nondeterminism for finite automata. The tree width of an NFA (nondeterministic finite automaton) A is a function that associates a positive integer n to the maximum number of leaves in any computation tree of A on an input of length n. The trace of an NFA is defined in terms of the maximum product of the degrees of nondeterministic choices in computation on inputs of given length. We establish upper and lower bounds for the trace function of an NFA in terms of its tree width. Additionally, the unbounded trace of an NFA has exponential growth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234 (2002)
Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inf. Comput. 86(2), 179–194 (1990)
Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity and nondeterminism in finite automata. Inf. Comput. 100(2), 261–270 (1992)
Holzer, M., Kutrib, M.: Descriptional complexity of (un)ambiguous finite state machines and pushdown automata. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 1–23. Springer, Heidelberg (2010)
Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011)
Hromkovič, J., Karhumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of nondeterminism in finite automata. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)
Hromkovic, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inf. Comput. 172(2), 202–217 (2002)
Kintala, C.M.R., Wotschke, D.: Amounts of nondeterminism in finite automata. Acta Inf. 13, 199–204 (1980)
Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35(7), 595–624 (1998)
Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)
Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)
Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput. 212, 15–36 (2012)
Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeterminism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 252–265. Springer, Heidelberg (2012); A full version of the paper is accepted for publication in JALC
Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989)
Shallit, J.O.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press (2008)
Yu, S.: Regular Languages. In: Handbook of Formal Languages, vol. 1, 41–110. Springer (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Palioudakis, A., Salomaa, K., Akl, S.G. (2013). Comparisons between Measures of Nondeterminism on Finite Automata. In: Jurgensen, H., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2013. Lecture Notes in Computer Science, vol 8031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39310-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-39310-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39309-9
Online ISBN: 978-3-642-39310-5
eBook Packages: Computer ScienceComputer Science (R0)