Skip to main content

Efficient SPARQL Query Evaluation via Automatic Data Partitioning

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7826))

Included in the following conference series:

Abstract

The volume of RDF data increases very fast within the last five years, e.g. the Linked Open Data cloud grows from 2 billions to 50 billions of RDF triples. With its wonderful scalability, cloud computing platform like Hadoop is a good choice for processing queries over large data sets. Previous works on evaluating SPARQL queries with Hadoop mainly focus on reducing the number of joins through careful split of HDFS files and algorithms for generating Map/Reduce jobs. However, the way of partitioning RDF data could also affect the performance. Specifically, a good partitioning will greatly reduce or even totally avoid cross-node joins and significantly reduce the cost of query evaluation. Based on HadoopDB, this work processes SPARQL queries in a hybrid architecture where Map/Reduce takes charge of the computing tasks and an RDF query engine, RDF-3X, stores the data and evaluates join operations over local data. Based on analysis of query work-loads, we propose a novel algorithm for automatically partitioning RDF data. We also present an approximate solution to physically place the partitions in order to reduce data redundancy. All the proposed approaches are evaluated by extensive experiments over large RDF data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Btc 2010 (2010), http://www.hpi.uni-potsdam.de/naumann/sites/btc2010

  2. Metis, http://glaros.dtc.umn.edu/gkhome/views/metis/index.html/

  3. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical workloads. PVLDB 2(1), 992–933 (2009)

    Google Scholar 

  4. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partitioning into automated physical database design. In: SIGMOD 2004, pp. 359–370 (2004)

    Google Scholar 

  5. Andreev, K., Räcke, H.: Balanced graph partitioning. In: SPAA, pp. 120–124 (2004)

    Google Scholar 

  6. Chang, C., Kurç, T.M., Sussman, A., Çatalyürek, Ü.V., Saltz, J.H.: A hypergraph-based workload partitioning strategy for parallel data aggregation. In: PPSC (2001)

    Google Scholar 

  7. Du, F., Chen, Y., Du, X.: Partitioned indexes for entity search over rdf knowledge bases. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 141–155. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 158–182 (2005)

    Article  Google Scholar 

  9. Huang, J., Ren, D.J.K.: Scalable sparql querying of large rdf graphs. PVLDB 4(11), 1123–1134 (2011)

    Google Scholar 

  10. Husain, M., McGlothlin, J., Masud, M.M., Khan, L., Thuraisingham, B.: Heuristics based query processing for large rdf graphs using cloud computing. IEEE TKDE 23(9), 1312–1327 (2011)

    Google Scholar 

  11. Kim, H., Ravindra, P., Anyanwu, K.: Scan-sharing for optimizing rdf graph pattern matching on mapreduce. In: IEEE CLOUD, pp. 139–146 (2012)

    Google Scholar 

  12. Myung, J., Yeon, J., Lee, S.-G.: Sparql basic graph pattern processing with iterative mapreduce. In: Proc. of the 2010 Workshop on Massive Data Analytics on the Cloud, MDAC 2010, pp. 6:1–6:6 (2010)

    Google Scholar 

  13. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. PVLDB 1(1), 647–659 (2008)

    Google Scholar 

  14. Pavlo, A., Curino, V., Zdonik, S.: Skew-aware automatic database partitioning in shared-nothing, parallel oltp systems. In: SIGMOD 2012, pp. 61–72 (2012)

    Google Scholar 

  15. Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database design in a parallel database. In: SIGMOD 2002, pp. 558–569 (2002)

    Google Scholar 

  16. Sanghavi, S., Shah, D., Willsky, A.S.: Message passing for maximum weight independent set. IEEE Trans. on Information Theory 55(11), 4822–4834 (2009)

    Article  MathSciNet  Google Scholar 

  17. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and Retrieval in Jena2. In: ISWC 2003, pp. 131–150 (2003)

    Google Scholar 

  18. Yang, T., Chen, J., Wang, X., Chen, Y., Du, X.: Efficient sparql query evaluation via automatic data partitioning, technical report (2012), http://iir.ruc.edu.cn/~jchchen/rdfpartition.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, T., Chen, J., Wang, X., Chen, Y., Du, X. (2013). Efficient SPARQL Query Evaluation via Automatic Data Partitioning. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds) Database Systems for Advanced Applications. DASFAA 2013. Lecture Notes in Computer Science, vol 7826. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37450-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37450-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37449-4

  • Online ISBN: 978-3-642-37450-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics