Abstract
The volume of RDF data increases very fast within the last five years, e.g. the Linked Open Data cloud grows from 2 billions to 50 billions of RDF triples. With its wonderful scalability, cloud computing platform like Hadoop is a good choice for processing queries over large data sets. Previous works on evaluating SPARQL queries with Hadoop mainly focus on reducing the number of joins through careful split of HDFS files and algorithms for generating Map/Reduce jobs. However, the way of partitioning RDF data could also affect the performance. Specifically, a good partitioning will greatly reduce or even totally avoid cross-node joins and significantly reduce the cost of query evaluation. Based on HadoopDB, this work processes SPARQL queries in a hybrid architecture where Map/Reduce takes charge of the computing tasks and an RDF query engine, RDF-3X, stores the data and evaluates join operations over local data. Based on analysis of query work-loads, we propose a novel algorithm for automatically partitioning RDF data. We also present an approximate solution to physically place the partitions in order to reduce data redundancy. All the proposed approaches are evaluated by extensive experiments over large RDF data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Btc 2010 (2010), http://www.hpi.uni-potsdam.de/naumann/sites/btc2010
Metis, http://glaros.dtc.umn.edu/gkhome/views/metis/index.html/
Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical workloads. PVLDB 2(1), 992–933 (2009)
Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partitioning into automated physical database design. In: SIGMOD 2004, pp. 359–370 (2004)
Andreev, K., Räcke, H.: Balanced graph partitioning. In: SPAA, pp. 120–124 (2004)
Chang, C., Kurç, T.M., Sussman, A., Çatalyürek, Ü.V., Saltz, J.H.: A hypergraph-based workload partitioning strategy for parallel data aggregation. In: PPSC (2001)
Du, F., Chen, Y., Du, X.: Partitioned indexes for entity search over rdf knowledge bases. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 141–155. Springer, Heidelberg (2012)
Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 158–182 (2005)
Huang, J., Ren, D.J.K.: Scalable sparql querying of large rdf graphs. PVLDB 4(11), 1123–1134 (2011)
Husain, M., McGlothlin, J., Masud, M.M., Khan, L., Thuraisingham, B.: Heuristics based query processing for large rdf graphs using cloud computing. IEEE TKDE 23(9), 1312–1327 (2011)
Kim, H., Ravindra, P., Anyanwu, K.: Scan-sharing for optimizing rdf graph pattern matching on mapreduce. In: IEEE CLOUD, pp. 139–146 (2012)
Myung, J., Yeon, J., Lee, S.-G.: Sparql basic graph pattern processing with iterative mapreduce. In: Proc. of the 2010 Workshop on Massive Data Analytics on the Cloud, MDAC 2010, pp. 6:1–6:6 (2010)
Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. PVLDB 1(1), 647–659 (2008)
Pavlo, A., Curino, V., Zdonik, S.: Skew-aware automatic database partitioning in shared-nothing, parallel oltp systems. In: SIGMOD 2012, pp. 61–72 (2012)
Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database design in a parallel database. In: SIGMOD 2002, pp. 558–569 (2002)
Sanghavi, S., Shah, D., Willsky, A.S.: Message passing for maximum weight independent set. IEEE Trans. on Information Theory 55(11), 4822–4834 (2009)
Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF Storage and Retrieval in Jena2. In: ISWC 2003, pp. 131–150 (2003)
Yang, T., Chen, J., Wang, X., Chen, Y., Du, X.: Efficient sparql query evaluation via automatic data partitioning, technical report (2012), http://iir.ruc.edu.cn/~jchchen/rdfpartition.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, T., Chen, J., Wang, X., Chen, Y., Du, X. (2013). Efficient SPARQL Query Evaluation via Automatic Data Partitioning. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds) Database Systems for Advanced Applications. DASFAA 2013. Lecture Notes in Computer Science, vol 7826. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37450-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-37450-0_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37449-4
Online ISBN: 978-3-642-37450-0
eBook Packages: Computer ScienceComputer Science (R0)