Abstract
We present a multi-level graph partitioning algorithm using novel local improvement algorithms and global search strategies transferred from multigrid linear solvers. Local improvement algorithms are based on max-flow min-cut computations and more localized FM searches. By combining these techniques, we obtain an algorithm that is fast on the one hand and on the other hand is able to improve the best known partitioning results for many inputs. For example, in Walshaw’s well known benchmark tables we achieve 317 improvements for the tables at 1%, 3% and 5% imbalance. Moreover, in 118 out of the 295 remaining cases we have been able to reproduce the best cut in this benchmark.
This paper is a short version of the technical report [10].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andersen, R., Lang, K.J.: An algorithm for improving graph partitions. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 651–660. SIAM, Philadelphia (2008)
Briggs, W.L., McCormick, S.F.: A multigrid tutorial. Soc. for Ind. Mathe (2000)
Fjallstrom, P.O.: Algorithms for graph partitioning: A survey. Linkoping Electronic Articles in Computer and Information Science 3(10) (1998)
Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a Scalable High Quality Graph Partitioner. In: 24th IEEE International Parallal and Distributed Processing Symposium (2010)
Lang, K., Rao, S.: A flow-based method for improving the expansion or conductance of graph cuts. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 325–337. Springer, Heidelberg (2004)
Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel algorithm for computing graph partitions of very high quality. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–13 (2008)
Osipov, V., Sanders, P.: n-Level Graph Partitioning. In: 18th European Symposium on Algorithms (2010); see also arxiv preprint arXiv:1004.4024
Pellegrini, F.: Scotch home page, http://www.labri.fr/pelegrin/scotch
Picard, J.C., Queyranne, M.: On the structure of all minimum cuts in a network and applications. Mathematical Programming Studies 13, 8–16 (1980)
Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. Technical report, Karlsruhe Institute of Technology (2010); see ArXiv preprint arXiv:1012.0006v3
Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: Dongarra, J., et al. (eds.) CRPC Par. Comp. Handbook. Morgan Kaufmann, San Francisco (2000)
Southwell, R.V.: Stress-calculation in frameworks by the method of “Systematic relaxation of constraints”. Proc. Roy. Soc. Edinburgh Sect. A, 57–91 (1935)
Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Annals of Operations Research 131(1), 325–372 (2004)
Walshaw, C., Cross, M.: Mesh Partitioning: A Multilevel Balancing and Refinement Algorithm. SIAM Journal on Scientific Computing 22(1), 63–80 (2000)
Walshaw, C., Cross, M.: JOSTLE: Parallel Multilevel Graph-Partitioning Software – An Overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58. Civil-Comp Ltd (2007) (invited chapter)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sanders, P., Schulz, C. (2011). Engineering Multilevel Graph Partitioning Algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)